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Figure 1: For embodied agents, understanding daily objects requires the ability to perceive not only category but also
attribute and affordance. In OCL, we try to reveal object concept learning in both three levels and explore their profound
causal relations.

Abstract

Understanding objects is a central building block of AI,
especially for embodied AI. Even though object recogni-
tion excels with deep learning, current machines struggle to
learn higher-level knowledge, e.g., what attributes an object
has, and what we can do with it. Here, we propose a chal-
lenging Object Concept Learning (OCL) task to push the
envelope of object understanding. It requires machines to
reason out affordances and simultaneously give the reason:
what attributes make an object possess these affordances.
To support OCL, we build a densely annotated knowledge
base including extensive annotations for three levels of ob-
ject concept (category, attribute, affordance), and the clear
causal relations of three levels. By analyzing the causal
structure of OCL, we present a baseline, Object Concept
Reasoning Network (OCRN). It leverages concept instanti-
ation and causal intervention to infer the three levels. In
experiments, OCRN effectively infers the object knowledge
while following the causalities well. Our data and code are
available at https://mvig-rhos.com/ocl.

1. Introduction
Object understanding is essential for intelligent robots.

Recently, benefiting from deep learning and large-scale

*Corresponding author.

datasets [1, 2], category recognition [3, 4] has made tremen-
dous progress. But to close the gap between human and
machine perception, machines need to pursue deeper under-
standing, e.g., recognizing higher-level attributes [5] and af-
fordances [6], which may help it establish object concept [7]
when interacting with contexts.

Category apple is a symbol indicating its referent (real
apples). In line with symbol grounding [8], machines
should learn knowledge beyond category to approach con-
cept understanding. According to cognition studies [9, 7],
attribute depicting objects from the physical/visual side
plays an important role in object understanding. Thus,
many works [10, 11, 12] studied to ground objects with
attributes, e.g., a hammer consists of a long handle and
a heavy head. Moreover, attributes can depict object
states [5]. An elegant characteristic of attributes is cross-
category: objects of the same category can have various
states (big or fresh apple), whilst various objects can
have the same state (sliced orange or apple). If the
category is the first level of object concept, the attribute can
be seen as the second level closer to the physical fact.

However, recognizing attributes is still far away from
concept understanding. Given a hammer, we should know
it can be held to hit nails, i.e., requiring machines to
infer affordance [6] indicating what actions humans can
perform with objects. Thus, we refer to affordance as
the third level, which is closely related to common sense
and causal inference [6]. Though affordance has been
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studied in robotics [13, 14] and vision [15, 16] commu-
nities for decades, it is still challenging. First, previous
works [17, 18] often focus on recognizing affordance solely.
But we usually infer affordance based on attribute observa-
tion. If we need to knock in a nail without a hammer at
hand, we may find other hard or heavy objects instead,
e.g., a thick book. This profoundly reveals the causality
between attribute and affordance. Second, previous works
are designed for scale/scene-limited tasks, e.g., in [16], 40
objects and 14 affordances are included; Hermans et al. [14]
collect 375 indoor images of 6 objects, 21 attributes, and 7
affordances; a recent dataset [17] contains 10 indoor objects
and 9 affordances. Thus, they cannot afford general affor-
dance reasoning for large-scale applications.

To reshape object learning, we believe it is essential
to look at the above three levels in a unified and causal
way based on an extensive knowledge base. Hence, we
move a step forward to propose the object concept learn-
ing (OCL) task: given an object, machines need to infer
its category, attributes, and further answer “what can we do
upon it and why”, as shown in Fig. 1. In a nutshell, ma-
chines need to reason affordance based on object appear-
ance, category, and attributes. To this end, we build a large-
scale and dense dataset consisting of 381 categories, 114
attributes, and 170 affordances. It contains 80,463 images
of diverse scenes and 185,941 instances in different states.
Different from previous works [19, 14, 16], OCL offers a
more subtle angle. It includes: (1) category-level attribute
(A) and affordance (B) labels; (2) instance-level attribute
(α) and affordance (β) labels. Besides, we annotate the
causal relations between three levels to evaluate the reason-
ing ability of models and keep the follow-up methods from
fitting data only. Accordingly, based on the causal struc-
ture of OCL, we propose a neuro-causal method, Object
Concept Reasoning Network (OCRN), as the future base-
line. It leverages concept instantiation (from category-level
to instance-level) and causal intervention [20] to infer at-
tributes and affordances. OCRN outperforms a host of base-
lines and shows impressive performance while following
the causal relations well.

In summary, our contributions are threefold:

(1) Introducing the object concept learning task poses
challenges and opportunities for object understanding
and knowledge-based reasoning.

(2) Building a benchmark consisting of diverse objects,
elaborate attributes, and affordances, together with
their clear causal relations.

(3) An object concept reasoning network is introduced to
reason three levels with concept instantiation perform-
ing well on OCL.

2. Related Work
Object Attribute depicts the physical properties like

color, size, shape, etc. It usually plays the role of intermedia
between pixels and higher-level concepts, e.g., prompting
object recognition [12], affordance learning [14], zero-shot
learning [10], and object detection [21]. Recently, several
large-scale datasets [12, 11, 22, 23, 5, 24, 25] are released.
For attribute recognition, besides direct attribute classifica-
tion [10, 26, 11, 23] and leveraging the correlation between
attribute-attribute and attribute-object [27, 28, 29], intrinsic
properties (compositionality, contextuality [30, 31], sym-
metry [32, 33]) of attribute-object are also proven useful.
[30] uses the model weight space to encode the attributes
to model the compositionality and contextuality. [31] uses
the attributes as linear operators to transform object embed-
dings. [32] leverages the symmetry property to model the
attribute changes within attribute-object coupling and de-
coupling.

Object Affordance. is introduced by [6]. Affordance
learning has two canonical paradigms: direct mapping [18]
or indirect method [16, 34, 35, 36] with intermediates like
object category, attribute, and 3D contents. Some works
learned affordance from human-object interactions (HOI) to
encode the relation between object and action [37, 38, 39].
Visual Genome [24] provides relations between objects, in-
cluding actions instead of affordances. However, these rela-
tions cover limited and sparse affordances. Differently, we
use easily accessible object images as the knowledge source
and densely annotate all attributes/affordances for all ob-
jects. Besides the vision community, the robot community
pays much attention to affordance [40, 41, 42] for grasp-
ing and manipulation. For instance, [40] utilized the robot
to discover the object affordance via self-supervised learn-
ing. Recently, several datasets [17, 19, 15] have been pro-
posed. IIT-AFF [17] collected ten daily indoor objects and
provided nine common affordances to construct a dataset
for robot applications. Zhu et al. [16] built a dataset con-
taining attribute, affordance, human pose, and HOI spatial
configuration. But labeling pose [43] and HOI [44, 45] are
costly. Chao et al. [19] proposed a semantic category-level
affordance dataset including 91 objects [2] and 957 affor-
dances.

Causal Inference. There is increasing literature on
exploiting causal inference [20] in machine learning, es-
pecially with causal graphical models [46, 20], includ-
ing feature selection [47] and learning [48], video analy-
sis [49, 50], reinforcement learning [51, 52], etc. Recently,
Wang et al. [53] studied the causal relation between objects
in images and used intervention [20] to alleviate the obser-
vation bias. Atzmon et al. [54] analyze the causal genera-
tive model of compositional zero-shot learning and disen-
tangle the representations of attributes and objects. Here,
we explore the causal relations between three object levels



Dataset # Image # Instance # Object # Attribute # Affordance
APY [12] 15,339 15,339 32 64 /
SUN [11] 14,340 14,340 717 102 /
COCO-a [23] 84,044 188,426 29 196 /
ImageNet150k [22] 150,000 150,000 1,000 25 /
Chao et al. [19] / / 91 / 957 (B)
Hermans et.al. [14] 375 - 6 21 7
Zhu et al. [16] 4,000 4,000 40 57 14
OCL 80,463 185,941 381 114 170

Table 1: Dense annotated datasets. OCL provides category-
and instance- level attributes (A, α), affordances (B, β).

and apply backdoor adjustment [20] to alleviate the existing
bias.

3. Constructing OCL Benchmark
We construct a benchmark to characterize abundant ob-

ject knowledge following Fig. 2.

3.1. Fine-Grained Object Knowledge Base

Data Collection. We briefly introduce the collection of
affordances, categories, attribute classes, and image sources
here.

(1) Affordance: We collect 170 affordances out of
1,006 candidates from widely-used action/affordance
datasets [19, 55, 44, 56, 16, 17] given generality and
commonness.

(2) Category: Considering the taxonomy (WordNet [57])
and diversity, we collect 381 objects out of 1,742 can-
didates from object datasets [12, 11, 2, 23, 1, 22].

(3) Attribute: We manually filter the 500 most frequent
attributes from attribute datasets [12, 11, 2, 23, 1, 22,
24] and choose 114 attributes, covering colors, de-
formations, supercategories, surface, geometrical and
physical properties.

(4) Image: We extract 75,578 images from object
datasets [12, 11, 2, 23, 1, 22, 24], together with Ground
Truth (GT) boxes. We manually collected 4,885 Inter-
net images of selected categories to ensure diversity.
Then, we annotate the missing box and category labels
for all instances. Finally, 185,941 instances of 381 cat-
egories from 80,463 images are collected: an average
of 488 instances per category and 2.31 boxes per im-
age. Details are given in the supplementary. OCL is
long-tail distributed, where the head categories have
over 5,000 instances each, but the rarest categories
have only 9 instances, which challenges the robustness
of machines greatly.

Annotating Attribute in two levels of granularity: (1)
Category-level attribute (A) contains common sense. For

each category, we annotate its most common attributes. In
concept learning, the usage of the category-level labels as
common knowledge can date back to [58]. Following [58],
to avoid bias, annotators are given category-attribute pairs
(category names instead of images) and multiple annotators
vote to build the binary A matrix MA in size of [381, 114].
(2) Instance-level attribute (α) is the individual attributes of
each instance. The annotation unit is an attribute-instance
pair and each pair is labeled by multiple annotators.

Annotating Affordance in two levels of granularity: (1)
Category-level affordance B, similar to A, is annotated
in category-affordance pairs, indicating the common affor-
dances of each category. Following [19], the annotators la-
bel B matrix MB in size of [381, 170]. (2) Instance-level
affordance β is annotated for each instance with the help
of object state. As B is defined by common states, ob-
jects in specific states may have different affordances from
B: if a service robot finds a broken cup, it may infer
that the cup can still hold water as it is trained with B la-
bels. Thus, we need detailed β beyond B. β exhibits evi-
dent similarities for objects in similar status forming “state”
aligning with commonsense, thus we use them to stream-
line annotation and reduce the annotator discrepancy. A
state is defined as an [category, description (e.g.,
a set of attributes)] pair, and instances in a state usually pos-
sess similar affordances, e.g., fresh, juicy, clean
oranges are eatable. First, six experts conclude the
states by scanning all instances of a category and listing
all states according to affordance. Then these states were
merged manually. In total, 1,376 states are defined, and
each category has 3.6 states on average. Next, β is an-
notated for each state, and the instances are first assigned
with the state-level β. Bext, the instance-level β is detailed
based on the state-level β according to the visual content
of each instance. Note that the state is category-dependent
and can not be transferred among object categories, which
is different from attribute and affordance. Besides, the com-
position of attributes makes the state space huge and there
can be many unseen states. Thus, we only use them in an-
notation but not in our method.

Fig. 3 shows some examples of OCL. We compare OCL
with previous dense datasets in Tab. 1. More details, figures,
and tables are given in the supplementary.

3.2. Causal Graph Definition

We use a causal graph to shed light on the subtle causal-
ities of our knowledge base in Fig. 4. Causal graph [20]
indicates the underlying causalities based on components:

• O: object category

• I: object instance in an image

• A: category-level attribute
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Figure 2: OCL construction. a) Data collection. b) Annotating category-level attributes and affordances. c) Annotating
instance-level attributes and affordances. d) Finding direct and clear instance-level causal relations.
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Figure 3: OCL samples including category, α (red), β (blue), and their causal relations in various contexts.

• α: instance-level attribute

• B: category-level affordance

• β: instance-level affordance

According to the prior knowledge about the causalities
between three levels, a hierarchical structure is depicted: (a)
the inner triangle with dotted lines is the category-level:
object category O, category-level attributes A, and affor-
dances B; (b) the outer triangle is the instance-level: in-
stance visual appearance I , instance-level attributes α, and
affordances β. Each directed possible arc in the graph indi-
cates the possible causality between two nodes.

Here, besides the red arcs indicating the common causal
relations (e.g., I → α, I → β as attribute/affordance recog-
nition from images), we define some special arcs given our

category-level attribute and affordance settings: (1) O →
A, O → B (dotted arcs): Given O, A,B are strictly deter-
mined within labels. (2) O → I , A → α, B → β (blue
arcs): The category-level O, A, and B are direct causes of
instance-level I , α, and β during the concept instantiation.
Note that, according to the previous analysis, we focus on
the A → B and α → β but sometimes the opposite can
also happen: A ← B and α ← β (“or” in Fig. 4). In anno-
tation and experiments, we observe that α → β is stronger
and more common and natural to human perception, so we
focus more on α→ β in our causal benchmark (Sec. 3.4).

In this work, we focus on α, β perception (I → α,
I → β) and visual reasoning (with I , inferring β given α)
for embodied AI. Thus, Fig. 4 is simplified. Our knowledge
base can support more tasks such as attribute/affordance
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Figure 4: Causal graph of our OCL task. “or” indicates that
either A← B or A→ B (α→ β or α← β) exists.

conditioned image generation (α → I , β → I) [59]. How-
ever, they are beyond the scope of this paper (Suppl. Sec. 3).

3.3. Causal Inference Benchmark on α→ β

We annotate instance-level (considering the context of
each instance) causality of α → β to answer “which at-
tribute(s) are the critical and direct causes of a certain af-
fordance?” in two phrases:

Filtering: Initially, we need to make binary decisions
on all instance-α-β triplets, which is far beyond handleable.
Fortunately, we find that most α-β classes (e.g., shiny and
kick) are meaningless and always of no causality. Thus,
we exclude the most impossible pairs and only annotate ex-
isting rules without ambiguity, meanwhile, guaranteeing the
completeness of causality. For each of the 114×170 α-β
pairs, we attach 10 samples for reference and 3 experts vote
yes/no/not-sure. We take the majority vote and the not-sure
and controversial pairs are rechecked. The not-sure and no
pairs are removed, and so do the ambiguous pairs. Finally,
we obtain about 10% α-β classes as candidates. The left
90% pairs may hold value, we plan to use LLMs to mine
new rules in future work, especially from ambiguous pairs.

Instance-level Causality: we adopt object states as a
reference. Multiple annotators have been involved for each
state-α-β triplet and are asked whether the specific attribute
is the clear and direct cause of this affordance in this state.
The answers are combined and checked for all instances of
a state. Finally, we obtain about 2 M instance-α-β triplets
of causal relations. As we have labeled all α and β for all
instances, the causal relations would be in four situations:
[0,0], [1,1]; [0,1], [1,0]. The former two are “positive”, e.g.,
fresh(1/0)→eat(1/0) for an apple. While the last two
are “negative”, e.g., broken(1/0)→drive(0/1) for a car.

Fig. 3 shows some causal examples. These causalities
are not thoroughly studied in previous datasets [16, 17, 18,
14]. For more details, please refer to the supplementary.

3.4. Task Overview

Here, we formulate the OCL task formally. Given an in-
stance I (content in box bo representing an object instance),
OCL aims to infer attribute α and affordance β while fol-
lowing the causalities. Formally, OCL can be described as:

< Pα, Pβ >= F(I, P (O|I)), (1)

where Pα, Pβ are the probabilities of α, β, P (O|I) is the
predicted category probability from an object detector [4].

We aim at benchmarking the reasoning ability of ma-
chines, causal relations in Fig. 4 can all be candidates. How-
ever, annotating causal relations is usually ambiguous and
it is impractical to cover all relations. In a user study, ex-
perts met significant divergence when annotating different
arcs. For embodied AI, affordance β is more important in
robot-world interactions. Moreover, both the causal relation
annotation and the ablations support that the causal effect of
α→ β is more significant than the other alternatives. Thus,
we only annotate the unambiguous α → β (Sec. 3.3) and
mainly measure the learning of α → β here. Formally, the
evaluation of α→ β learning follows

∆Pβ = ITE[F(I, P (O|I))], (2)

where ∆Pβ is the Individual Treatment Effect [60] of af-
fordance prediction change after we operate ITE[·] on a
model F(·). ∆Pβ is expected to follow the GT causal re-
lation between α, β from humans. For example, when the
attributes of an object change, then the causal-related affor-
dances should also change accordingly. We will detail the
ITE evaluation in Sec. 5. Note that A,B are decided by O.
Given O, we can get A,B via querying the prior MA,MB

(Sec. 3). Thus, we do not evaluate A→ B here.
We split images into the train, validation, and test sets

with 56K:14K:9K images. The validation and test sets
cover 221 of the 381 categories, and the train set covers
all categories. OCL is a long-tailed recognition task [61,
62] and requires generalization to cover the whole object
category-attribute-affordance space with imbalanced infor-
mation. Thus, it is challenging for current machines without
the reasoning ability to understand the causalities.

4. Object Concept Reasoning Network
Before proposing the OCRN, we first simplify the causal

graph in Fig. 4 to facilitate the implementation. We focus on
α → β and omit β → α. Similarly, we omit B → A. Be-
sides, I, α, β are the instantiations of O,A,B respectively
and we use a O′ node to represent O,A,B. The adapted
causal graph is shown in Fig. 5. OCRN implements the
instantiation of attribute and affordance, corresponding to
A → α, B → β. Thus the model can propose a coarse es-
timation of attribute and affordance at category-level, then



tune the results with the image patterns as a condition for a
more accurate prediction. Besides, we exploit intervention
to remove the causal relation between I and O to construct a
category-agnostic model. It suffers less from category bias
and is more capable of learning uncommon cases.

Object Category Bias. OCL can be depicted as P (α|I)
and P (β|I, α). As the samples of different categories are
usually imbalanced, conventional methods may suffer from
severe category bias [53], e.g., animal accounts for 22%
instances in OCL, and home appliance only accounts for
3%. In P (α|I), category bias is imported following

P (α|I) =
m∑
i

P (α|I,Oi)P (Oi|I), (3)

where P (Oi|I) is the predicted category probability. That
is, O is a confounder [20] and pollutes attribute inference,
especially for the rare categories.

Causal Intervention. To tackle this, we propose OCRN
using intervention [20] to deconfound the confounder O for
α (Fig. 5). In α estimation, we use do(·) operation [20] to
eliminate the arc from O to I: P (α|do(I)) is

m∑
i

P (α|I,Oi)P (Oi)

=

m∑
i

P (Oi)

m∑
j

P (α|I, Aj)P (Aj |Oi)

=

m∑
i

P (α|I, Ai)P (Oi),

(4)

where m = 381. Aj is the category-attribute vector of jth

category. As A is decided by O, P (Aj |Oi) = 1 if i = j
and P (Aj |Oi) = 0 if i ̸= j, where Oi is the ith category
and Aj is the category-attribute of jth category. P (Oi) is
the prior probability of the i-th category (frequency in our
train set). We apply the intervention to reduce the bias from
O recognition for an category-agnostic model.

Similar to α, in β estimation, category bias also exists:

P (β|I, α) =
m∑
i

P (β|I, α,Oi)P (Oi|I, α). (5)

With Eq. 4, α is beforehand estimated and thus can be seen
as “enforced” and deconfounded. For I , we again use the
intervention [20]:

P (β|do(I, α)) =
m∑
i

P (β|I, α,Bi)P (Oi). (6)

Similar to Eq. 4, P (Bj |Oi) = 1 if i = j, P (Bj |Oi) = 0 if
i ̸= j, we omit the process for clarity.

4.1. Model Implementation

We represent nodes {I, A,B, α, β} as {fI , fA, fB , fα,
fβ} respectively in latent space. fI is the RoI pooling
feature of an instance extracted by a COCO pre-trained
ResNet-50 [63]. Following Eq. 4, we represent category-
level attribute A based on the mean object category feature
f̄Oi , which is the mean of fI of all training samples in cat-
egory Oi. We map f̄Oi

to the attribute latent space fAi

with fully-connected layers (FC) (Fig. 5). fAi
stands for

the category-attribute representation for ith category.
Attribute Instantiation. Next, we obtain α representa-

tion following Eq. 4:

fαi
= Fα(fI , fAi

), fα =

m∑
i

fαi
· POi

, (7)

where POi
is the prior category probability (P (Oi) in

Eq. 4). Eq. 7 indicates the attribute instantiation from A
to α with I as the condition. Hence, we can equally trans-
late the α estimation problem into a conditioned instantia-
tion problem. Fα(·) is implemented with multi-head atten-
tion [64] with two entries (Fig. 5). The attention output is
compressed by a linear layer to the instantiated representa-
tion fαi

. The debiased representation fα is the expectation
of fαi w.r.t POi according to back-door adjustment in Eq. 4.

We also get the feature for specific attributes for ITE op-
eration (Sec. 5). fα is first separated to fαp

for each attribute
p (p ∈ [1, 114]) by multiple independent FCs, then we
can manipulate specific attributes by masking some certain
fαp

. Next, the features are aggregated via concatenating-
compressing by an FC to f ′

α as shown in Fig. 5.
Affordance Instantiation. Similarly, FCs are used to

obtain fB from f̄Oi
and fAi

and Eq. 6 is implemented as:

fβi
= Fβ(fI , f

′
α, fBi

), fβ =

m∑
i

fβi
· POi

. (8)

Fβ(·) operates instantiation with conditions {fI , f ′
α, fBi}.

4.2. Learning Objectives.

To drive the learning, we devise several objectives:
Category-level loss LC . We input category-level fA, fB

to two linear-Sigmoid classifiers to classify A,B. The
binary cross-entropy losses are LA and LB . The total
category-level loss is LC = LA + LB .

Instance-level loss LI . We input instance-level fα, fβ ,
together with fαi

, fβi
to linear-Sigmoid classifiers. The

separated fαp
are also sent to independent binary classifiers.

The binary cross-entropy losses are represented as Lα, Lβ .
The total instance-level loss is LI = Lα + Lβ .

The total loss is L = λCLC +LI . We adopt a two-stage
policy: first inferring attributes, then reasoning affordances.
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. At last, linear-Sigmoid classifiers give the final predictions.

black = 1
eat = 0

fresh = 1
eat = 1

Q1: Is it eatable?
A1: Model X: eat = 0.8

Model Y: eat = 0.9
Q2: what if it is not fresh?
A2: Model X: eat = 0.2

Model Y: eat = 0.8

Q1: Is it eatable?
A1: Model X: eat = 0.1

Model Y: eat = 0.1
Q2: what if it is not black?
A2: Model X: eat = 0.6

Model Y: eat = 0.0

ITE = 𝛽𝛽|do(𝛼𝛼) − 𝛽𝛽|do(𝛼𝛼)
= [A1] – [A2]

ITE ≠ 0 if causal relation exists 

X is better than Y for reasoning

𝒮𝒮ITE(𝑋𝑋) max[ 0.8−0.2, 0]=0.6
max[−(0.1−0.6), 0]=0.5
max[ 0.9−0.8, 0]=0.1
max[−(0.1−0.0), 0]=0.0

1.1

0.1𝒮𝒮ITE(𝑌𝑌)

Figure 6: Example of ITE reasoning benchmark.

5. Experiment
5.1. Metrics

α, β Recognition: we measure the correctness of model
prediction α̂ and β̂. For multi-label classification tasks, we
use the mean Average Precision (mAP) metric.

Reasoning: we use Individual Treatment Effect
(ITE) [60]. ITEi = Yi,T=1 − Yi,T=0 measures the causal
effect T → Y of ith individual with the difference between
outcomes (Y ) with or without receiving the treatment (T ).
In OCL, we discuss the causal relation between pth attribute
and qth affordance: αp → βq . So we interpret the treat-
ment T as the existence of αq and the outcome Y as the
βq output. We measure the difference of βq output when
the whole αq feature is wiped out or not, which should be
non-zero when the causal relation αp → βq exists.

In detail, given a model, for an instance with causal rela-
tion αp → βq (p ∈ [1, 114], q ∈ [1, 170]), we first formulate

ITE as the affordance probability change following Eq. 2:

ITE = ∆β̂q = β̂q|do(αp) − β̂q|do(ZZαp). (9)

β̂q|do(αp) is the factual output of the affordance probability.
β̂q|do(ZZαp) is the counterfactual output when the αp is wiped
out, which can be got by assign zero-mask [65] to the fea-
ture of αp (e.g., fαp in OCRN) and keep the other features.

Then, based on ITE, we benchmark instances following:
ITE: If the causality αp → βq exists on the instance, ITE

should be non-zero when eliminating the effect of αp. And
the direction of ITE depends on the affordance ground-truth
βq: if βq = 0, the predicted β̂q tend to be 1 after wiping out
αp so ITE should be a negative value; contrarily, ITE should
be positive if βq = 1. Hence we compute the ITE score as:

SITE =

{
max(∆β̂q, 0), βq = 1,

max(−∆β̂q, 0), βq = 0,
(10)

so that larger SITE indicates the model infers more accurate
ITE directions and has better reasoning performance. An
example is given in Fig. 6.

α-β-ITE: we combine recognition and reasoning perfor-
mances. We multiply SITE with P (α̂p = αp) and P (β̂q =
βq) as a unified metric Sα-β-ITE.

For all metrics, we compute AP for each [αp, βq] and av-
erage them to mAP. Non-existing pairs are not considered.

5.2. Baselines

Different methods exploit different causal paths includ-
ing the sub-graphs with α → β or α ← β based on Fig. 4.



We implement a series of baselines following different sub-
graphs to fully exert the potential of OCL and divide them
into 3 folds w.r.t. α − β causal structure. We briefly list
them here and detail them in the supplementary:

Fold I. No arc connecting α and β:
(1) Direct Mapping from fI to Pα, Pβ via an MLP (DM-

V): feeding fI into MLP-Sigmoids to predict Pα, Pβ .
(2) DM Linguistic feature (DM-L): replacing the fI of

DM-V with linguistic feature fL, which is the expectation
of Bert [66] embeddings of category names w.r.t P (Oi|I).

(3) Visual-Linguistic alignment, i.e., Multi-Modality
(MM): mapping fI to a latent space and minimizing the dis-
tance to fL, feeding it to an MLP-Sigmoids to get α, β.

(4) Linguistic Correlation of O-α, O-β (LingCorr): mea-
suring the correlation between object and α or β classes via
their Bert [66] embedding cosine similarities. Pα, Pβ are
given by multiplying P (O|I) to correlation matrices.

(5) Kernelized Probabilistic Matrix Factorization
(KPMF) [67]: calculating feature similarity to all training
samples as weights. Taking the weighted sum of GT α or β
of training samples as predictions.

(6) A&B Lookup: getting PA, PB from MA,MB .
(7) Hierarchical Mapping (HMa): mapping fI to

category-level attribute or affordance space by an MLP, then
feeding it to an MLP-Sigmoids to predict Pα or Pβ .

Fold II. β → α:
(8) DM from β to α (DM-β → α): same as DM-V but

using fβ to infer α.
(9) DM from β and I to α (DM-βI → α): same as DM-

V but using both fI and fβ to infer α.
Fold III. α→ β:
(10) DM from α to β (DM-α → β): same as DM-V but

using both fI and fα to infer β.
(11) DM from α and I to β (DM-αI → β): same as

DM-V but using both fI and fα to infer β.
(12) Retrieving α-β relation by Ngram [68] (Ngram):

adopting Ngram to retrieve the relevance of α & β. Then
we use DM predicted α and the relevance to estimate β.

(13) Markov Logic Network [69] (MLN-GT): using GT
α to infer β with MLN.

(14) Instantiation with attention (Attention): feeding
[fα, fI ] to an MLP-Sigmoid to generate attentions and pre-
dicting Pβ by multiplying the attentions with PB .

(15) DM with multi-head attention (DM-att): the α and
β features are sent to multi-head attention to learn their in-
teraction, then use MLP-Sigmoids to get predictions.

(16) Vanilla CLIP: CLIP [70] trained from scratch.

5.3. ITE loss

Though machines are expected to learn the causalities
given α, β labels only. We wonder how it would perform
given causal supervision. We adopt an extra Hinge loss to
maximize the ITE score of all [αp, βq]. In detail, we intend

the ITE of causal relations larger than a margin τ (= 0.1 in
experiments), so the loss term is:{

max{0, τ −∆β̂q}, βq = 1,

max{0, τ +∆β̂q}, βq = 0.
(11)

We enumerate all annotated [αp, βq] of an instance to ob-
tain LITE . Different from the default, the total loss here is
L = λCLC + LI + λITELITE .

5.4. Implementation Details

For a fair comparison, all methods adopt a shared
COCO [2] pre-trained ResNet-50 [63] (frozen) to extract fI
and use the same object boxes in training and inference. In
OCRN, the dimension of fI and all fAi

, fBi
, fα, fβ is 1024.

The individual features of each attribute category are 512d
and aggregated to 1024d by an FC. We train the attribute
module with a learning rate of 0.3 and batch size of 1024
for 470 epochs. Then the attribute module is frozen, and the
affordance module is trained with a learning rate of 3.0e-3
and batch size of 768 for 20 epochs. In training, λC = 0.03,
λITE = 3.

5.5. Results

Tab. 2 presents the results. We can find that the causal
structure of the models matters in OCL. Comparing DM
methods implementing different causal graphs (including
α→ β, α← β), α as intermediate knowledge (DM-α→ β
and DM-αI → β) could advance β perception (DM-V).
But when β serves as intermediate (DM-β → α and DM-
βI → α), β perception is comparable or even worse than
DM-V. So the causal relation α → β is more evident than
β → α in the realistic dataset, which supports our choice in
Sec. 3.4 that we focus more on the α → β arc and imple-
ment our model with only α→ β.

OCRN outperforms the baselines and achieves decent
improvements on all tracks. In terms of α recognition,
with or without LITE , OCRN outperforms the second-best
method with 1.7 and 2.5 mAP respectively. As for β recog-
nition, the improvements are 0.7 and 1.1 mAP with or with-
out LITE . Comparatively, HMa utilizes the supervision of
A,B, but it performs much worse. A&B Lookup directly
uses GT A,B to infer α, β, but its poor performance verifies
the significant difference between A,B and α, β. Moreover,
we find that all methods perform better on β than α, and the
improvement of OCRN on α is larger too. This may be be-
cause α are more diverse than β, e.g., we can eat lots of
foods, but foods usually have various attributes (fruit
vs. pizza). And OCL also has fewer attribute classes than
affordance classes (114 vs. 170). Another reason is that the
positive samples in β labels (23.2%) are much more than
the positives in α labels (9.4%). The different pos-neg ratio
affects learning a lot and results in the above gap.



Fold Method α β SITE Sα-β-ITE

i N/A

DM-V 29.9 51.8 - -
DM-L 21.2 47.5 - -
MM 23.8 48.9 - -
LingCorr 7.9 25.9 - -
KPMF 25.4 49.1 - -
A&B-Lookup 18.9 30.9 - -
HMa 28.6 51.7 - -
DM-att 21.9 49.2 - -
Vanilla CLIP 23.6 49.6 - -

ii: β → α
DM-β → α 30.0 52.0 - -
DM-βI → α 29.5 51.8 - -

iii: α→ β

DM-α→ β 28.7 52.6 7.6 6.7
DM-αI → β 29.0 52.6 8.1 7.0
Ngram 22.6 50.8 8.3 7.6
MLN-GT - 33.4 9.5 9.1
Attention 24.1 48.9 8.1 7.1
OCRN 31.6 53.3 9.5 9.2

α→ β

DM-α→ β w/ LITE 28.8 52.4 15.5 14.0
DM-αI → β w/ LITE 29.0 52.5 15.4 13.6
Ngram w/ LITE 22.2 49.9 14.1 12.9
MLN-GT w/ LITE - 33.7 12.3 11.8
Attention w/ LITE 23.9 49.0 17.8 15.5
OCRN w/ LITE 31.5 53.6 20.3 16.9

Table 2: OCL results. w/ LITE means that training with
ITE loss. The baselines in the upper block cannot operate
ITE due to the model structure. Different α-β relations are
exploited for causal graph comparison.

In ITE evaluation, without the guidance of LITE , all
methods achieve unsatisfactory performances. However,
OCRN still has an advantage. Only MLN-GT adopting the
first-order logic and GT α labels is comparable with OCRN.
If trained with LITE and direct causality labels, all methods
perform much better to learn the causalities, e.g., on OCRN,
the ITE loss brings 10.8 and 7.7 mAP improvements on
the two ITE tracks. Particularly, the typical deep learning
model Attention performs best in baselines, but MLN-GT
no longer holds the advantage. Relatively, OCRN shows
more improvements and outperforms Attention with 2.5 and
1.4 mAP on the two ITE tracks.

We provide more visualizations and discussions in the
supplementary. In particular, we also apply OCRN to
Human-Object Interaction Detection [44], where OCRN
boosts the performances of multiple HOI models and veri-
fies the generalization and application potential of OCL.

5.6. Ablation Study

We verify the components of OCRN on the validation set
in Tab. 3.

(1) Deconfounding. OCRN w/o deconfounding is im-
plemented following Eq. 3 and 5, where P (O|I) and
P (O|I, α) are the category predictions of pre-trained de-
tectors [71]. All the α, β, and ITE performances drop due
to the object bias. For more bias analyses please refer to the

Method α β SITE Sα-β-ITE

OCRN 32.4 52.2 20.5 17.0
w/o deconfounding 32.1 51.8 18.2 16.1
w/o LAi , LBi 32.1 51.8 19.8 16.7
w/o Lα, Lβ 10.0 27.0 16.6 16.4
128 Dims 31.7 51.5 18.0 16.0
512 Dims 32.3 52.1 19.9 16.7
2048 Dims 32.2 51.5 19.1 16.3
Mean aggregation 32.2 51.3 18.9 16.7
Max-pooling aggregation 32.1 49.1 19.0 16.8
Random counterfactual 32.4 51.8 5.1 5.1

Table 3: Ablation study results (validation set).

supplementary.
(2) Losses. The performances slightly drop after remov-

ing category-level LAi
, LBi

, but significantly drop without
instance-level Lα, Lβ by over 20 mAP.

(3) Feature dimension. We compare different dimen-
tionality for feature fAi

, fBi
, fα, fβ . Smaller and larger

feature sizes than 1024 all have degrading effects.
(4) ITE-related implementations. We probe some dif-

ferent methods: (a) Mean aggregation: f ′
α =

∑
i fαp

; (b)
Max-pooling aggregation: f ′

α is the max value of fαp
as

each component; (c) Random counterfactual feature: as-
signed random vector as the counterfactual attribute feature
(instead of zero vector) during ITE. These methods perform
worse than the chosen setting on ITE performance but are
comparable on α and β performance.

5.7. Discussion

Overall, OCL poses extreme challenges to current AI
systems. It expects representative learning to accurately
recognize attributes and affordances from raw data mean-
while causal inference to capture the causalities within di-
verse instances and contexts, i.e., both the intuitive System
1 and logical System 2 [72]. From the experiments, we
find that models struggle to achieve satisfying results on all
tracks simultaneously. Notably, it is difficult to achieve a
satisfying ITE score via data fitting. There is much room
for improvement. For future studies, a harmonious per-
formance on α, β, and causality learning are encouraged
to better capture object knowledge. Potential directions
may include causal representation learning [73], neural-
symbolic reasoning [74], and Foundation Models [75]. etc.

6. Conclusion
In this work, we introduce object concept learning

(OCL) expecting machines to infer affordances and explain
what attributes enable an object to possess them. Accord-
ingly, we build an extensive dataset and present OCRN
based on casual intervention and instantiation. OCRN
achieves decent performance and follows the causalities



well. However, OCL remains challenging and would inspire
a line of studies on reasoning-based object understanding.
Acknowledgment: Supported by the National Key
R&D Program of China (No.2021ZD0110704), Shang-
hai Municipal Science and Technology Major Project
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Causal feature selection. Computational methods of feature
selection, pages 63–82, 2007. 2

[48] Krzysztof Chalupka, Pietro Perona, and Frederick Eber-
hardt. Visual causal feature learning. arXiv preprint
arXiv:1412.2309, 2014. 2

[49] Lyndsey C Pickup, Zheng Pan, Donglai Wei, YiChang
Shih, Changshui Zhang, Andrew Zisserman, Bernhard
Scholkopf, and William T Freeman. Seeing the arrow of
time. In CVPR, 2014. 2

[50] Karel Lebeda, Simon Hadfield, and Richard Bowden. Ex-
ploring causal relationships in visual object tracking. In
ICCV, 2015. 2

[51] Suraj Nair, Yuke Zhu, Silvio Savarese, and Li Fei-Fei.
Causal induction from visual observations for goal directed
tasks. arXiv preprint arXiv:1910.01751, 2019. 2

[52] Ishita Dasgupta, Jane Wang, Silvia Chiappa, Jovana Mitro-
vic, Pedro Ortega, David Raposo, Edward Hughes, Pe-
ter Battaglia, Matthew Botvinick, and Zeb Kurth-Nelson.
Causal reasoning from meta-reinforcement learning. arXiv
preprint arXiv:1901.08162, 2019. 2

[53] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru
Sun. Visual commonsense r-cnn. In CVPR, 2020. 2, 6, 20,
28, 29

[54] Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal Chechik. A
causal view of compositional zero-shot recognition. arXiv
preprint arXiv:2006.14610, 2020. 2

[55] Chunhui Gu, Chen Sun, David A Ross, Carl Von-
drick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul Suk-
thankar, Cordelia Schmid, and Jitendra Malik. Ava: A
video dataset of spatio-temporally localized atomic visual
actions. In CVPR, 2018. 3, 13

[56] Saurabh Gupta and Jitendra Malik. Visual semantic role
labeling. arXiv preprint arXiv:1505.04474, 2015. 3, 13, 25

[57] Christiane Fellbaum. Wordnet. The encyclopedia of applied
linguistics, 2012. 3, 13

[58] Daniel N Osherson, Joshua Stern, Ormond Wilkie, Michael
Stob, and Edward E Smith. Default probability. Cognitive
Science, 15(2):251–269, 1991. 3, 13

[59] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 5

[60] Donald B Rubin. Causal inference using potential out-
comes: Design, modeling, decisions. Journal of the Ameri-
can Statistical Association, 100(469):322–331, 2005. 5, 7,
19

[61] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In
CVPR, 2019. 5

[62] Yue Xu, Yong-Lu Li, Jiefeng Li, and Cewu Lu. Construct-
ing balance from imbalance for long-tailed image recogni-
tion. In ECCV, 2022. 5

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 6, 8

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017. 6

[65] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and
Hanwang Zhang. Unbiased scene graph generation from
biased training. In CVPR, 2020. 7, 20, 22, 28, 29

[66] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 8, 20, 21

[67] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and
Guillermo Sapiro. Kernelized probabilistic matrix factor-
ization: Exploiting graphs and side information. In SDM,
2012. 8, 21

[68] Y. Lin, J.-B. Michel, E. L. Aiden, J. Orwant, W. Brockman,
and S. Petrov. Syntactic annotations for the google books
ngram corpus. In ACL, 2012. 8, 21

[69] Matthew Richardson and Pedro Domingos. Markov logic
networks. Machine learning, 62(1-2):107–136, 2006. 8, 22



[70] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 8

[71] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021. 9, 23, 27

[72] Yoshua Bengio. From system 1 deep learning to system 2
deep learning. In Posner lecture at NeurIPS’2019, 2019. 9

[73] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer,
Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and
Yoshua Bengio. Toward causal representation learning.
Proceedings of the IEEE, 109(5):612–634, 2021. 9

[74] Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-
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We report more details and analyses here:
Sec. A: Category/Attribute/Affordance Selection
Sec. B: Annotation Details
Sec. C: Causal Graph
Sec. D: OCL Characteristics
Sec. E: ITE Metric Details
Sec. F: Baseline Details
Sec. G: Detailed Result Analysis
Sec. H: Application on HOI Detection
Sec. I: Comparison on Debiasing
Sec. J: Discussion about States
Sec. K: Discussion about Causality and Causal Graph
Sec. L: Detailed Lists

A. Category/Attribute/Affordance Selection

We choose affordances, categories, and attributes, con-
sidering their causal relations. Their word clouds are shown
in Fig. 7. The complete lists can be found in Suppl. Sec. L.

(1) Affordance: To build a general and applicable
knowledge base, we collect 1,006 affordance candidates
from several widely-used action/affordance datasets: 957
from [19], 160 from [55], 146 from [44], 97 from [56], 41
from [16], 21 from [17] (with overlaps). We find that not all
affordances are in common use and some of them are dif-
ficult for visual recognition, e.g., accept (consider right
and proper). So each candidate is scored by 5 human ex-
perts from 0.0 to 5.0 according to generality and common-
ness. We keep 170 top-scored affordances in our base (134
from [19], 78 from [55], 127 from [44], 53 from [56], 13
from [16], 11 from [17], with overlaps).

(2) Category: Considering the taxonomy (Word-
Net [57]), we collect a pool with over 1,742 object cate-
gories from previous datasets: 32 from [12], 28 from [23],
717 from [11], 1,000 from [22] (with overlaps). Then we
merge the similar categories according to WordNet [57] and
filter out the categories which are not common daily objects
(man, planet), unrelated to the above 170 affordances
(skyscraper) or too uncommon (malleefowl). Fi-
nally, our database has 381 common object categories.
These object categories are divided into 12 super categories,
shown in Fig. 8.

(3) Attribute: We extract the attributes from several
large-scale attribute datasets: 64 from [12], 203 from [23],
66 from [11], 25 from [22], top 500 from [24]), and manu-
ally filter the 500 most frequent attributes. Five experts give
0 to 5 scores based on their relevance to human actions and
the selected 170 affordances to better explore the causal re-
lations between attributes and affordances. Some attributes
(cloudy, competitive) that are not useful for affor-
dance reasoning are discarded. Finally, 114 attributes are
kept, covering colors, deformations, supercategories, sur-
face, geometrical, and physical properties.

B. Annotation Details

B.1. Attribute Annotation

(1) Category-level attribute (A). Following [58], to
avoid bias, annotators are given category-attribute pairs
(category names, not images). They propose a 0-3 score
according to the category concept in their minds (0: No, 1:
Normally No, 2: Normally Yes, 3: Yes). Each pair is an-
notated by three annotators and takes the plurality as the A
label. If the range of 3 proposals exceeds 1, another three
annotators will re-annotate this pair until achieving consen-
sus. We binarize the annotations (0: No, 1: Yes) with a
threshold of 2 and get a category-level attribute matrix MA

([381, 114]).

(2) Instance-level attribute (α). Two annotators label
each pair with 0 (No) and 1 (Yes). If they give different la-
bels, this pair will be handed over to another two annotators
until meeting consensus.

B.2. Affordance Annotation

(1) Category-level affordance B. Following [19], the
annotators are given category-affordance pairs. The pairs
are annotated in four bins (0-3) and normalized (same as
A) to describe the possibility of an affordance in a category.
Each pair is annotated by three annotators and makes con-
sensus the same as A. The 0-3 scores are binarized (1: Yes,
0: No) with a threshold of 2. The final category-level affor-
dance matrix MB is [381, 170].

(2) Instance-level affordance β is annotated for every
instance with the help of object states [5]. As B is de-
termined by common states, objects in specific states may
have different affordances from B, e.g., we cannot board
a flying plane. As the instances in the same state should
have similar β (all rotten apples cannot be eaten),
six experts first conclude the states. The experts scan all
instances of each category and use their knowledge of af-
fordance to define all the existing states. Then all 186 K
instances are dispatched to the concluded states via crowd-
sourcing. If some instances do not belong to any prede-
fined states, they will be returned to the experts to add more
states. In total, 1,376 states are defined, and each category
has 3.6 states on average. Next, β is annotated for each
state. Given a state-affordance pair and example images,
two annotators mark it with 0 (No) and 1 (Yes). The results
are combined in the same way as α. Thus, each instance
would have a state and the corresponding β. An annotator
would recheck each instance together with its state and β
labels to ensure the quality. If its state is inaccurate or the
state β labels are unsuitable, this annotator would correct
them.
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Figure 7: Word clouds of object categories, attributes, and affordance (by positive frequencies in OCL).
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B.3. Causal Relation Annotation

(1) Filtering. As exhaustive annotation is arduous, we
only annotated existing rules without ambiguity. Starting
from the [114,170] matrix of α-β classes, we ask three ex-
perts to vote on the causal relation of each class. They scan
all instances to answer whether the relationship exists in
any case. That is, we just annotate the least pairs with the
largest possibility to be casually related. Some causal pairs
may be excluded. In detail, for each of the 114×170 α-β
pairs, we attach 10 samples for reference and 3 experts vote
yes/no/not sure. We take the majority vote and the
not sure and controversial pairs are rechecked. The not
sure and no pairs are removed, and so do the ambiguous
pairs. The pairs we selected are checked carefully to ensure
the causalities and we only evaluate models on them. Thus,
the missed causal pairs or non-causal pairs would not affect
the results. Finally, we obtain about 10% α-β classes as
candidates. The left 90% pairs may hold value and we will
mine new rules with LLMs in future work, especially from
ambiguous pairs.

(2) Instance-level causality: we also adopt object states
as a reference. For each state-α-β triplet, two annotators are
asked whether the specific attribute is the direct and unam-

biguous cause of this affordance in this state and gives their
binary answer. We use the same method in annotating β
to combine results and assign state-level labels to instances.
Next, for all instances of a state, an expert decides whether
the state-level relations are reasonable for each instance in
specific contexts and correct the inaccurate ones. Finally,
we obtain about 2 M instance-α-β triplets of causal rela-
tions.

B.4. A Running Example of Dataset Construction.

A running example is shown in Fig. 9 to show the pro-
cess of annotations clearly.

C. Causal Graph
In this section, we first briefly introduce the causal graph

model and causal intervention. Then we introduce the de-
tails of the causal graph our knowledge base can support.
Then, we detail the implementation of the causal graphs
used by different methods.

C.1. Basics of Causal Inference and Causal Graph

A causal graph is a DAG that describes the causal re-
lations between multiple factors. Each directed edge points
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Figure 9: A running example of dataset construction.

𝐼

𝛼 𝛽

𝐴 𝐵

𝑂

or

or

oror

Figure 10: A more complex causal graph of our knowledge
base. A,B,O are the object category and category-level
attribute and affordance. I is the object appearance, α, β
are the instance-level attribute and affordance. Note that
“or” indicates that the arcs between A,B, α, β, I, α, and
I, β indicate that either A ← B or A → B (the others are
similar) is considering in the setting.
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Figure 11: An example of the causal graph and causal in-
tervention. We study the causal relation X → Y while con-
founder Z exists and brings bias. After the intervention on
variable X , the poisonous relation Z → X is eliminated.

from the “cause” to its “effect”, e.g. in Fig. 11, node X is the
cause of node Y . Under the scenario that causal variables
and causal graphs are known, causal inference studies how
to infer the strength of causal edges given observations, or
infer the outcomes given some of the causal variable values.

However, the causal relation in the real world is sophis-
ticated. The causal relation that we observed may have
been polluted by spurious variables. For example, let X

in Fig. 11 be ice cream sales and Y be drownings, one may
observe that more ice cream sales lead to more drownings
and infer that they are causally related. Actually, the ob-
served relation is due to another factor Z: weather temper-
ature. These variables are called confounders, which is the
common cause of two causal variables that we are studying,
e.g. in the left graph in Fig. 11, Z is a confounder when we
focus on the causal edge X → Y .

In causal inference, confounders should be eliminated to
avoid biases on causal learning, by applying intervention
on the cause variables (e.g. X in our example) to “control”
its distribution to block the effect of confounder. Traditional
scientific research on causality adopts Randomized Con-
trolled Trial (RCT) to completely remove the confounder,
but it is not applicable when we only have observational
data. Pearl. [20] et al. propose do-calculus to systemati-
cally analyze the causal graph and alleviate the confounder
bias in a probabilistic view. In the simple case in Fig. 11,
the confounder Z can be eliminated with Back-door Ad-
justment:

P (Y |do(X)) =
∑
z

P (Y |X,Z = z)P (Z = z), (12)

where z is the specific value of the random variable Z. The
causal graph of our OCRN also meets the back-door crite-
rion so we apply the back-door adjustment to alleviate bias
from the confounder O.

C.2. Causal Graph of Our Knowledge Base

A more complicated causal graph considering more arcs
between nodes is shown in Fig. 10. The causal relations
between nodes or arcs in Fig. 10 are determined as follows:

Firstly, we introduce two kinds of special arcs.
O → A, O → B (dotted arcs): in OCL, A and B are

defined as the category-level annotations. Given O, A, and



B are strictly determined. In Fig. 10, we use two dotted
arrows from O to A,B respectively to indicate this deter-
ministic relation to distinguish them from the other causal
relations.

O → I , A → α, B → β (blue arcs): we see the
category-level O, A, and B are direct causes of instance-
level I , α, and β during the concept instantiation according
to OCL definition. Because the visual representation I and
properties α, β of an instance are derived from the concept-
level categorical ones. The reversed arcs O ← I , A ← α,
B ← β mean that O, A, B are the aggregations of instances
and would be marginally affected by one specific instance,
thus we do not include these arcs here for clarity.

Next, we illustrate the regular causal arcs as follows.

I → α, I → β: the recognition process of α and β.
As I indicates the physical noumenon, it is the source of
semantic and functional properties and decides/causes α, β.

α → I , β → I: the generation of visual pattern from
attribute or affordance descriptions and can be utilized in
image generation/manipulation tasks [76].

A ← B or A → B, α ← β or α → β: the causal
direction between attribute and affordance can be reversed
sometimes. The arc from α to β is evident, e.g., a broken
cup is not useable. Sometimes, the reverse arc causal
effect from β to α also exists, e.g., an eatable banana
would not be unripe.

C.3. Causal Graph Implementation

In this work, we mainly study the recognition and rea-
soning of attribute and affordance for robotics and embod-
ied AI, hence we remove the two arcs corresponding to im-
age generation α → I , β → I . Due to the deterministic
relation between O, A, and B, we can simplify the three
nodes to a single node O′ (Fig. 12).

Different methods can exploit different causal paths. We
propose diverse baselines to implement different causal sub-
graphs, including the subgraphs with α → β, and α ← β.
The causal graphs of some baselines are shown in Fig. 13.

The ablation experiment with arc α → β and α ← β
shows that the causal effect of α → β is stronger than
the alternative in our datasets. Besides, from the aspect of
embodied AI and robotics, affordance is more important in
practical applications like object manipulation, so we focus
more on affordance recognition and regard β inference as
our main goal. Therefore, in OCRN and some other base-
lines, we keep the arc α→ β. And in causal reasoning, we
focus on the evaluation of α → β too. The causal graph of
OCRN is shown in Fig. 14.

D. OCL Characteristics
D.1. Object Box Size

We visualize the distribution of normalized object box
size in Fig. 15, where the box width and height are normal-
ized by the width and height of the whole image. It shows
that most objects in our knowledge base are small objects,
providing abundant regional information.

D.2. Annotator Information

Annotators’ age, major, and education degree are pre-
sented in Fig. 16, 17, and 18.

D.3. Matrix Samples

The category-level attribute and affordance (A,B) matri-
ces are detailed in Fig. 19, 20 as heatmaps, and the cells with
dark color indicate positive samples. For example, ice
cream is cold while clock is not natural, cake can
be eaten while eraser can not be cooked. These are
in line with our common sense.

D.4. State Distribution

Before annotating the affordances, we first define the ob-
ject states for all object categories and annotate the state af-
fordances. In total, we define 1,376 states for 381 object
categories. And Fig. 21 shows the state distribution per ob-
ject category.

D.5. Attribute-Affordance Relation

We analyze the instance-level attribute-affordance rela-
tions in our knowledge base under three criteria. (1) At-
tribute Conditioned Affordance Probability. It is com-
puted as P (β|α) to estimate affordance probability given
an attribute. The range is [0,1]. (2) Attribute-Affordance
Correlation. For all instances in our dataset, we evalu-
ate the label correlation of each attribute-affordance pair,
whose scale is in [-1,1]. (3) Attribute-Affordance Causal-
ity. Starting with the annotated cause-effect (α− β) labels,
we count for how many times each attribute-affordance pair
appear in our dataset and normalize the value by the max-
imum occurrences, leading to a value in the range [0,1].
It should be mentioned that we only annotate whether an
attribute-affordance pair has explicit and key causality, but
the detailed effect (positive or negative) should be referred
to instance labels.

We visualize the samples of attribute-affordance relation
matrices in Fig. 22, 23, 24 and observe some interesting
properties of them. They reveal some common relations,
such as what is between tasty and eat. However, some of
the criteria suffer from data bias. For the condition matrix
in Fig. 22, it only cares about cases with positive attribute
labels, which is not good in highlighting the negative rela-
tions, e.g., the relation between natural and produce. For



𝐼

𝛽

𝐵

𝑂

𝑂

𝐴 𝐵

𝑂′ = 𝐼

𝑂′

𝛽𝛼𝛼

𝐴

or

or

or

or

Figure 12: Simplified causal graph for OCL task. Note that “or” indicates that the arcs between A,B and α, β are either
A← B or A→ B (α← β or α→ β), instead of concurrence.

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

(a) DM-V

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

(b) DM-α → β

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

(c) DM-β → α

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

(d) DM-αI → β

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

𝐼𝐼

𝛼𝛼 𝛽𝛽

𝑂𝑂𝑂

(e) DM-βI → α

Figure 13: Causal graphs of the baselines.

the former two matrices in Fig. 22, 23, they all point out
the relation between tasty and pick, since most tasty objects
are pickable food. This finding is simply misled by the data
bias but violates the causal graph (inference from attribute
to object category, then affordance). Last, the matrix ob-
tained from our causal annotation in Fig. 24 is more sparse
and clear of causality.

D.6. Unified Object Representation

To compare the difference between attribute-only and
attribute-affordance representations, we cluster the object
instances of two similar animals (zebra and horse) with

their attribute labels and attribute-affordance labels, respec-
tively. The results are shown in Fig. 25 via t-SNE [77]. With
both attribute and affordance labels, zebra and horse can be
better separated than attribute only. And attribute and affor-
dance together can differentiate specific states well, such as
riding, pulling car, etc.

D.7. Difference between Category- and Instance-
Level Labels

We analyze the differences between category-level A,B
labels and instance-level α, β labels. For each object
category, we compute the average ratio of changed at-
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Figure 14: Causal graph of OCRN.
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Figure 15: Distribution of normalized object box width
(left) and height (right).

tribute/affordance classes during each instantiation from A
to α or from B to β. The top 50 categories with the most
significant differences between A and α as well as B and
β are reported respectively in Fig. 26. We find that affor-
dance labels change more dramatically than attribute labels
during instantiations. This is because each attribute change
may affect several affordances, e.g., when a common book
becomes burning, we can neither open nor read it.

D.8. Attribute-Affordance Causal Relations

We annotate all object instances’ causal relations of fil-
tered [αp, βq] pairs. In total, 1,085 [αp, βq] pairs are cho-

sen for the causality annotation, and over 2 M instance-α-
β triplets are annotated. In the ITE evaluation (main text
Sec. 5), we report the mean AP of top-300 [αp, βq] pairs
to avoid the biased influence of very rare [αp, βq] pairs that
include less than 35 object instances.

D.9. Data Partitioning

For the OCL task, our knowledge base is split into the
train, val, and test sets. The statistical details of the split are
listed in Tab. 4. The image number ratio of the three sets is
nearly 4:1:0.6, and the instance ratio is around 5:1:1.

Set Image Object Instance Object category
Train 56,916 135,148 381
Val 14,446 25,176 221
Test 9,101 25,617 221
Val+Test 23,547 50,793 221
All 80,463 185,941 381

Table 4: Detailed data split of our knowledge base.

D.10. Images and Instances

Some additional data samples of our knowledge base
are shown in Fig. 27, 28a, 28b, 29, 30, and 31, including
samples of diverse object categories with various bounding
box distributions, different attributes and affordances, and
human-labeled object states and obvious causal relations.
We also show the counts of object categories, attributes, and
affordances in instance/image in Fig. 32, 33, and 34.

D.11. More Statistics of Annotation

We divide A,B, α, β, causality annotation into multi-
ple finer-grained small sets in our pipeline. Generally, we
have 13, 19, 124, 140, and 85 annotator sets (381 total) for
A,B, α, β, and causality annotation respectively. We as-
sign each small set to 2 annotators. However, considering
the controversial situations introduced, part of the annota-
tion are confused cases based on their results. In the whole
process, 9.6% of A, 7.7% of B, 5.2% of α, 7.9% of β, and
13.7% of causality are confusing and re-assigned to addi-
tional annotators. These indeterminable ones will be sent
to two extra annotators until agreement. The quality of the
dataset is guaranteed by a low confusion ratio and multiple
refining stages.

D.12. Potential Bias

We have considered the bias issue in the construction of
our dataset. (1) In our dataset, the existing datasets (Im-
ageNet [1], COCO [2], aPY [12], SUN [11]) are open-
sourced datasets and the images collected from the Internet
are publicly accessible too. The dataset is constructed for
only non-commercial purposes. We will only provide the
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URLs of these images to avoid copyright infringement. (2)
During image collection, we choose images with general
objects and are particularly careful with the image selection
to avoid unsuitable content, private images, or implicit bi-
ases. (3) During annotation, the annotators cover different
genders, ages, and fields of expertise to avoid potential an-
notation biases. And they are all informed on how we will
use the annotations in our research.

E. ITE Metric Details
ITE (Individual Treatment Effect (ITE) [60]) is to

measure whether a model infers affordance with proper at-
tention to the causality-related attribute. That said, when
removing the attribute, the model is expected to have large
prediction difference further away from the ground truth.

We detail some settings in our ITE metric. For the ITE
score:

SITE =

{
max(∆β̂q, 0), βq = 1,

max(−∆β̂q, 0), βq = 0,
(13)

where

∆β̂q = β̂q|do(αp) − β̂q|do(ZZαp) == β̂q − β̂q|do(ZZαp), (14)

we want the moving direction of affordance prediction af-
ter the intervention to be correct according to the GT affor-
dance labels (βq). Concretely, for an instance with the la-
beled causal relation between [αp, βq], if the label βq = 1,
we expect the prediction change ∆β̂q to be larger, indicat-
ing the elimination of αp leads to a drop of predicted prob-
ability. Because without the effect of αp, the probability of
βq should be contrary to the fact (βq = 1). Similarly, if
βq = 0, we expect ∆β̂q to be smaller, i.e. the elimination of
αp leads to an increase of predicted probability. The design
of the ITE loss also follows the setting of this ITE score.

In α-β-ITE, the ITE score is multiplied by two factors of
recognition performance:
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causality.

P (α̂p = αp) =

{
α̂p, αp = 1,

1− α̂p, αp = 0,

P (β̂q = βq) =

{
β̂q, βq = 1,

1− β̂q, βq = 0.

(15)

And the overall metric is:

Sα-β-ITE = SITEP (α̂p = αp)P (β̂q = βq) (16)

The factors measure the correctness of attributes and affor-
dances. Hence a model achieves a high Sα-β-ITE only if
it correctly predicts attribute and affordance and learns the
causal relation between them.

In our experiments, for attribute/affordance recognition
only, all methods adopt labels to learn knowledge from the
data. In the evaluation of causal relation, only the “w/
LITE” models adopt the causal relation labels. We hope
the models can automatically learn to mine and learn the in-
trinsic causalities. Thus, we design the ITE to evaluate this

ability. Similar to our OCRN, some works [53, 78, 65] also
try to marry supervised deep learning and causal inference.

F. Baseline Details

We introduce the details of all baselines here:
Fold I. No arc between α and β.
(1) Direct Mapping from Visual Feature (DM-V):

feeding fI into MLP-Sigmoids to predict Pα, Pβ . Each
α and β class owns customized MLP followed by Layer-
Norm [79] to generate class-specific features and share the
same MLP-Sigmoid in classification.

(2) DM from Linguistic Representation (DM-L): re-
placing the input representation fI of DM-V with linguistic
feature fL, which is the expectation of Bert [66] of category
names w.r.t P (Oi|I).

(3) Multi-Modality (MM): mapping fI to the seman-
tic space via minimizing the distance to its fL. The multi-
modal aligned fI is fed to an MLP-Sigmoids to predict
Pα, Pβ .
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Figure 25: Clustering using attribute and attribute-
affordance labels.

(4) Linguistic Correlation (LingCorr): measuring
the correlation between object and α/β classes via their
Bert [66] cosine similarity. Pα, Pβ are given by multiplying
P (O|I) to correlation matrices.

(5) Kernelized Probabilistic Matrix Factorization
(KPMF) [67]: calculating the Softmax normalized cosine
similarity between each testing instance and all training
samples as weights. Then Pα or Pβ is generated as the
weighted sum of GT α or β of training samples.

(6) A&B Lookup: returning the expectation of
category-level attribute or affordance vectors Ai, Bi w.r.t
P (Oi|I). In detail, seen category probabilities are obtained
from GT prior MA,MB . Unseen category probabilities are
voted by the top 3 most similar seen categories according
to the cosine similarity of category Word2Vec [80] vectors.
Then, we generate category-level attribute and affordance
matrices M ′

A,M
′
B given the GT prior (seen) and similarity-

based probabilities (unseen). Finally, we multiply P (O|I)
with M ′

A,M
′
B to predict PA, PB and assign them to Pα, Pβ

respectively.
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Figure 26: Top-50 object categories with the largest ratio of
the difference between category- and instance-level labels.

(7) Hierarchical Mapping (HMa): first mapping fI to
category-level attribute or affordance space by an MLP su-
pervised by GT A or B. Then the mapped features are fed
to an MLP-Sigmoids to predict Pα or Pβ .

Fold II. Directed arc from β to α.
(8) DM from β to α (DM-β → α): training a β clas-

sifier with fI same with DM-V, but using the concatenated
representation of affordance as fβ to train the α classifier.

(9) DM from β and I to α (DM-βI → α): training a β
classifier with fI same with DM-V, but using the concate-
nated representation of attributes fβ and objects fI to train
the α classifier.

Fold III. Directed arc from α to β.
(10) DM from α to β (DM-α→ β): training an α clas-

sifier with fI same with DM-V, but using the concatenated
representation of attributes as fα to train the β classifier.

(11) DM from α and I to β (DM-αI → β): training an
α classifier with fI same with DM-V, but using the concate-
nated representation of attributes fα and objects fI to train
the β classifier.

(12) Ngram [68]: adopting Ngram to retrieve the rele-
vance between α and β and generating an association ma-
trix Mα−β . Then we multiply DM predicted Pα with Mα−β
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Figure 27: More OCL samples of object categories.

to estimate Pβ .

(13) Markov Logic Network (MLN-GT) [69]: adopt-
ing MLN to model the α−β relations following [16]. After
training on OCL, we infer β with GT α to estimate its per-
formance upper bound.

(14) Instantiation with attention (Attention): feeding
[fα, fI ] to an MLP-Sigmoid to generate attentions and pre-
dicting Pβ by multiplying the attentions with PB .

We operate baselines with a directed arc from α to β
(Fold III) to perform ITE. The ITE calculation needs fea-
ture zero-masking to eliminate the effect of specific at-
tributes [65]. These methods (DM-At, DM-AtO, Attention,
OCRN) follow the same ITE calculation (feature masking).
Two unique cases are Ngram and MLN-GT. Ngram uses at-
tribute probabilities to infer affordance. Thus, we random-

ize the specific attribute probabilities for Ngram to operate
the ITE calculation. And MLN-GT must use GT attribute
labels to distinguish the “positive” and “negative” causes
and then reason out the effect affordance. Thus, in ITE, we
directly eliminate its corresponding attribute input.

G. Detailed Result Analysis

G.1. Detailed Attribute and Affordance Perfor-
mances

We compute and analyze the performance (AP) of
OCRN on each attribute or affordance class in Fig. 35 and
Fig. 36, which suggest that visually abstract concepts like
fake are more difficult to model than concrete ones like
metal, breakable. The performance of attribute classes
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Figure 28: More OCL samples of attributes and affordances.

is lower than affordance classes. This is mainly because the
attributes have more diversity. Thus the positive instances
of each attribute class are less than the affordance class.

G.2. Visualization of ITE Result

In Fig. 37, we show the correct instance proportions (%)
of OCRN and Attention after ITE. (a) randomly chosen
causal pairs [αp, βq] with ground truth βq = 1, expecting
β̂q > β̂q|do(ZZαp). (b) randomly chosen causal pairs [αp, βq]

with ground truth βq = 0, expecting β̂q < β̂q|do(ZZαp). The
higher proportions indicate that OCRN performs better on
ITE.

G.3. Attribute and Affordance Recognition Given
Detected Boxes

Though OCL is a high-level concept learning task with
object boxes as inputs, we can also consider object detec-
tion in evaluation for practical applications. We adopt Swin

Transformer (Swin) [71] as the detector. It is pretrained
on COCO [2] and finetuned on the OCL train set with GT
boxes of 381 categories. On the OCL test set, it achieves
22.9 AP50 on object detection. Subsequently, it will pro-
vide detected box bo for all models in inference. We can
consider the detection effect in the attribute and affordance
recognition metric to build a more strict criterion. Namely,
all false positive detections (IoU<0.3 with referring to GT
boxes) as the false positives of α and β recognition too.
Moreover, ITE calculation needs to construct the counter-
factual of an object instance. If the inaccurately detected
object box shifts according to the GT box, it is difficult to
know whether the counterfactual comes from the attribute
masking or visual content change, using the corresponding
attribute-affordance causal relation labels of this GT box.
Thus, considering the unique property of causal inference
different from common recognition, here we do not report
the ITE score. Tab. 5 shows the results given detected boxes.
Due to the more strict criterion and detection quality, the
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performances of all methods degrade greatly. But OCRN
still holds the superiority on two tracks.

G.4. OCL-Based Image Retrieval

We visualize the OCL reasoning performance by retriev-
ing the top-score instances with OCRN. Some results are
shown in Fig. 38 and Fig. 39. The model can correctly re-
trieve the related images, especially on some common con-

cepts e.g., columnar, sit.

H. Application on Human-Object Interaction
(HOI) Detection

To further verify the generalization ability, we apply
OCL to Human-Object Interaction (HOI) detection [81, 82,
83] and help HOI methods boost their performances. HOI
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Figure 31: More OCL samples in the same category but different states.
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detection recently attracts a lot of attention and makes pro-
gresses [44, 84, 85, 86, 87, 88, 89, 90] thanks to the success
of deep learning and large-scale HOI datasets [44, 56, 91,
92].

HOI depicts the actions performed upon objects by hu-

mans. Usually, an object has multi-affordance, i.e., a per-
son can perform different actions upon it. But in an image,
just one or several actions/affordances are usually happen-
ing/activated. Without object knowledge, previous meth-
ods [93, 94, 95] can find the activated affordances from hun-
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Figure 33: Counts of attribute classes.
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Figure 34: Counts of affordance classes.

dreds of actions [44]. For example, for each human-object
pair in HICO-DET [44], a model has to select one or several
actions from the defined 116 actions. With OCL, things are
different. OCL covers many actions, so we can use OCRN
to infer Pβ of an object to narrow the solution space. Thus,
we propose two ways:

(1) OCL Filtering: We use Pβ to narrow the action
space with a threshold γ and generate P γ

β . Affordances with
probabilities higher than γ are kept and others are set to zero
(γ = 0.5). Then, the HOI model only needs to predict in
a narrowed action space. In practice, we multiply the pre-
diction PHOI from HOI model with P γ

β element-wisely to
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Figure 35: AP of attribute classes.
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Figure 36: AP of affordance classes.

Method α β
DM-V 7.4 11.0
DM-L 4.6 9.1
MM 5.4 9.9
LingCorr 1.7 5.6
KPMF 6.4 10.5
A&B-Lookup 4.1 5.8
HMa 6.5 10.9
DM-At 6.8 10.5
DM-AtO 6.6 10.8
Ngram 5.1 10.2
MLN-GT - -
Attention 5.5 10.1
OCRN 7.9 11.3

Table 5: Attribute and affordance recognition results given
detected boxes from Swin Transformer [71].

obtain the final prediction P ′
HOI = PHOI ∗ P γ

β .
(2) Human-as-Probe: Another more straightforward

way is to predict HOI via OCL directly. We treat the hu-
man paired with the object as a probe. Assuming the hu-
man feature is fh and human-object spatial configuration
feature is fsp (from [93, 94]). As Pβ indicates all possible
affordances, the ongoing actions can be seen as the instan-
tiation of Pβ , i.e., they are activated by the “probe” fh and
fsp. So we use fh and fsp to generate attention Ah+sp via
MLP-Sigmoid. Then we operate Pβ ∗Ah+sp and late fusion
to get the final prediction P ′

HOI = (Pβ∗Ah+sp+PHOI)/2.
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Figure 37: ITE given different [αp, βq].

Concretely, we use OCRN to enhance HOI detection
models (iCAN [94], TIN [93], IDN [95]) on HICO-
DET [44]. As OCL merely contains 15 object categories
in HICO-DET [44], the rest 65 object categories are un-
seen. We embed OCRN into three HOI models according
to OCL filtering and Human-as-Probe, and the public model
checkpoints of [94, 93, 95] are used.

The results are shown in Tab. 6. With OCL filtering,
iCAN [94], TIN [93], and IDN [95] achieve a gain of mAP
by 0.65%, 0.90%, and 0.77% respectively. The Human-as-
Probe is more suitable for HOI detection and contributes
a performance boost of 1.50%, 1.46%, and 0.98% to three
models. These strongly verify the efficacy and generaliza-
tion ability of OCL.

I. Comparison on Imbalance Learning
I.1. Debiasing Learning

The motivation of the OCRN is to follow the prior
knowledge of the three levels of objects with a deep
learning-based causal graph model, to pursue the object un-
derstanding beyond the common direct mapping from pix-
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Method Full Rare Non-Rare
iCAN 14.84 10.45 16.15
iCAN+Filtering 15.49 8.76 17.50
iCAN+Probe 16.34 11.66 17.74
TIN 17.03 13.42 18.11
TIN+Filtering 17.93 13.79 19.17
TIN+Probe 18.49 15.02 19.58
IDN 23.36 22.47 23.63
IDN+Filtering 24.13 23.74 24.24
IDN+Probe 24.34 24.03 24.43

Table 6: Results of HOI detection (using detected object
boxes).

els to labels, and to avoid the bias estimation such as in
the Simpson’s paradox [20]. Thus, we use intervention to
deconfound the confounder category and exclusive the pos-
sible spurious bias and correlation imported bias from im-

Model Test Inference α Amp. β Amp.
OCRN argmaxyP (y|x) 0.127 0.112
DM-V + Joint ND-way Softmax argmaxy maxd Pte(y, d|x) 0.151 0.158
DM-V + Joint ND-way Softmax argmaxy

∑
d Pte(y, d|x) 0.148 0.154

DM-V + N-way classifier per domain argmaxyPte(y|d∗, x) 0.135 0.112
DM-V + N-way classifier per domain argmaxy

∑
d s(y, d, x) 0.147 0.145

Table 7: Comparison with debiasing models.

balanced object categories. Overall, we propose our OCRN
in a causal inference perspective instead of the pure clas-
sification viewpoint, which also suits our causal graphical
model well. Similar cases are also proposed in recent works
like [53, 78, 65]. Moreover, to better compare our method
with the common debiasing methods, we further conduct
the experiments as follows.

We regard α, β recognition as multiple independent bi-
nary classification tasks and implement some methods in-
troduced in [96] on our strong baseline DM-V to reduce bias
from object categories. We use mean bias amplification
(Amp) in [97] as bias evaluation metric: small Amp means
model suffers less from data category bias. The test results
are shown in Tab. 8. The proposed OCRN has compara-
ble or smaller bias amplification than the variants of DM-V
since our model follows the causal graph and exploits the
tools of causal inference, while most methods for category
bias are from the view of classification.

To verify the debiasing of OCRN, we compare the model
bias of OCRN w/ or w/o deconfounding. The bias of cat-
egory O upon an attribute α is measured following [97], by
b(O,α) = c(O,α)/

∑
α′ c(O,α′). When measuring data

bias, c(O,α) is the number of co-occurrence of O and α in
OCL, and when it comes to model bias, c(O,α) is the sum
of probabilities that O are predicted positive with α. The
bias of β is measured in the same manner. Fig. 40 and 41
show some examples of the biases of training data and mod-
els, indicating that OCRN deconfounding effectively pre-
vents the model from bias toward the train set.

I.2. Long-tailed Learning

Besides the debiasing learning techniques, we also ap-
ply longtailed learning methods on our baseline method
DM-α→ β for comparison, including class-balanced sam-
pling [98] and focal loss [99]. The models with additional
re-balancing modules suffer from minor accuracy degrada-
tion, mainly for OCL is long-tailed on object class while we
infer α, β, so the gap minimizes the effect of long-tailed
learning.

J. Discussion about States
We did not use object states in our model because there

is also a compositional zero-shot problem and object-state
pairs, i.e., there can be unseen states in real-world data.



Model Bias Data Bias

Attribute Class

w deconfounding

w/o deconfounding

training data
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for category giraffe.

Method α β
DM-α→ β 28.7% 52.6%
DM-α→ β+Class balance sampling [98] 27.3% 52.1%
DM-α→ β+Focal loss [99] 27.6% 51.2%

Table 8: Comparison with debiasing models.

Differently, affordances are more general. The models ex-
plicitly incorporating object states will fail to generalize to
these zero-shot states and it adds to the object category bias.
In experiments, the state supervision during training would
indeed slightly improve the affordance recognition perfor-
mance, since instances in the same state lie in a tight cluster
in affordance label space. But this will hurt the ITE perfor-
mance greatly.

K. Discussion about Causality and Causal
Graph

Annotating causality in the real world is extremely dif-
ficult. In data annotation, we have met numerous ambi-
guities and difficulties to confirm the “right” causal rela-
tions. To address these challenges, we follow the following
principles: (1) Firstly, we only emphasize clear and strong
causal relations via crowdsourcing, but omit the vague ones.
(2) Second, we take an object affordance-centric view-
point to look at the possible causal relations. (3) We would
rather discard than condone the controversial situation in
the annotation. (4) We only focus on the simple relations
between one attribute and one affordance, instead of the
very complex compositions of multiple attributes and affor-
dances which are almost impossible to annotate. Therefore,
we finally find that we can label a very small percent-
age of all arcs with the whole causal graph consisting of
so many nodes (category, attributes, affordances, contexts,
etc.) while keeping the quality.

Our causal graph follows the human priors from our ex-

perts and crowdsourcing annotators. Some previous works
also follow this before designing the method, such as [16].
From the viewpoint of causal discovery [20, 78, 65, 53],
the above arcs (e.g., the inverted arc from attribute to cate-
gory in the causal graph directed acyclic graph, DAG) are
indeed possible. However, here, we mainly study the ob-
ject concept learning problem, especially attribute and af-
fordance learning for intelligent robots and embodied AI.
Thus, from the perspective of affordance learning, we think
the arcs from category to attribute and affordance are more
vital and meaningful to us.

Causality can also be confused with enabling condi-
tion. In OCL, the affordance of an object indicates what
human can do to/with it. In this case, “fresh” causes “eat-
able” (rather than causes “eat” action). As causality is
discussed in the view of embodied agents, this rule can
hold. In modern causal inference models like structured
causal models (SCM), causality and enabling conditions are
not strictly distinguished. As stated by Cheng et al. [100],
causes and enabling conditions hold the same logical rela-
tion to the effect in those terms and the methods that ex-
plain their distinction come from the subject judgment of
humans. The distinction can be explained based on the nor-
mality of potential factors, or considering the existing as-
sumption of the inquirer. They proposed an approach by
measuring the covariation between potential factors to the
effect over a set of questions. So in SCM, both will be rep-
resented as nodes and involved in causal mechanisms. OCL
follows the “open” setting: affordance is a subjective prop-
erty of the object, so all reasons given by humans/robots
(including enabling conditions) are regarded as causal fac-
tors.

L. Detailed Lists
The detailed object categories, attributes, and af-

fordances are listed on our website: https://
mvig-rhos.com/ocl.

https://mvig-rhos.com/ocl
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