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Abstract

Benchmark performance of deep learning classifiers
alone is not a reliable predictor for the performance of a
deployed model. In particular, if the image classifier has
picked up spurious features in the training data, its predic-
tions can fail in unexpected ways. In this paper, we de-
velop a framework that allows us to systematically iden-
tify spurious features in large datasets like ImageNet. It is
based on our neural PCA components and their visualiza-
tion. Previous work on spurious features often operates in
toy settings or requires costly pixel-wise annotations. In
contrast, we work with ImageNet and validate our results
by showing that presence of the harmful spurious feature of
a class alone is sufficient to trigger the prediction of that
class. We introduce the novel dataset “Spurious ImageNet”
which allows to measure the reliance of any ImageNet clas-
sifier on harmful spurious features. Moreover, we introduce
SpuFix as a simple mitigation method to reduce the depen-
dence of any ImageNet classifier on previously identified
harmful spurious features without requiring additional la-
bels or retraining of the model. We provide code and data
at https://github.com/YanNeu/spurious imagenet.

1. Introduction
Deep learning has led to tremendous progress in image

classification [37, 50] and natural language processing [14].
Over the years, however, it has become apparent, that evalu-
ating predictive performance on a fixed test set is not neces-
sarily indicative of the performance when image classifiers
are deployed in the wild. Several potential failure cases
have been discovered. This starts with a lack of robust-
ness due to image corruptions [31], adversarial perturba-
tions [68], and arbitrary predictions on out-of-distribution
inputs [45, 32, 30]. In this paper, we consider the problem
of identifying and debugging image classifiers from spuri-
ous features [2]. Spurious features in image classification
are features that co-occur with the actual class object and
are picked up by the classifier. In the worst case, they lead
to shortcut learning [25], where only the spurious but not the

Spurious Features in Training Data
bird feeder graffiti eucalyptus label

Hummingbird Freight Car Koala Hard Disc

Images from the web with spurious feature
but no class features classified as class below

Hummingbird Freight Car Koala Hard Disc

Figure 1: Top: Examples of spurious features found via
our neural PCA components but not in previous study [61].
Bottom: We validate our spurious features by mining im-
ages from the web showing only the spurious feature but
not the class. They are classified by four ImageNet models
as the corresponding class. Some of them even contain Im-
ageNet classes (bees on feeder, grasshopper in leaves).

correct feature is associated with the class, e.g., [86] found
that a pneumonia detector’s bad generalization across hos-
pitals was caused by the neural network learning to iden-
tify the hospital where the training data originated from. A
weaker form of spurious feature (at least from a learning
perspective) is the case when the classifier picks up the cor-
rect class features, e.g., of a hummingbird, but additionally
associates a spurious feature, e.g., a bird feeder, with the
class as they appear together on a subset of the training set.
This becomes a harmful spurious feature if only the spuri-
ous feature without the class feature is sufficient to trigger
the classification of that class, see Fig. 1 for an illustration of
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such spurious features found via our method. Harmful spu-
rious features are difficult to detect and thus can easily go
unnoticed, leading to unexpected behaviour of a deployed
image classifier.
In this paper we make the following key contributions:
• we develop a pipeline for the detection of harmful spuri-

ous features with little human supervision based on our
class-wise neural PCA (NPCA) components of an adver-
sarially robust classifier together with their Neural PCA
Feature Visualization (NPFV).

• unlike prior work, which used masking images or pixel-
wise annotations, we validate our found spurious features
by using our NPCA components to find real images con-
taining only the spurious feature but not the class object.

• using these images we create the dataset “Spurious Im-
ageNet” and propose a measure for dependence on spu-
rious features. We do a large-scale evaluation of state-
of-the-art (SOTA) ImageNet models. We show that the
spurious features found for the robust model generalize
to non-robust classifiers. Moreover, we analyze the in-
fluence of different training setups, e.g. pre-training on
ImageNet21k or larger datasets like LAION.

• we develop SpuFix, a technique to mitigate the depen-
dence on identified harmful spurious features without re-
quiring new labels or retraining, and show how to trans-
fer it to any ImageNet classifier. SpuFix consistently im-
proves the dependence on harmful spurious features even
for SOTA models with negligible impact on test accuracy.

2. Related work
When classifiers in safety-critical systems such as

healthcare or autonomous driving are deployed in the wild
[3], it is important to discover potential failure cases before
release. Prior work has focused on corruption [31], adver-
sarial robustness [11, 68, 43], and out-of-distribution detec-
tion [45, 32, 30]. There is less work on spurious features,
although their potential harm might be higher.
Spurious features: It has been noted early on that classi-
fiers show reliance on spurious features [15] e.g., a cow on
the beach is not recognized [9] due to the missing spuri-
ous feature of grass. Other forms of spurious features have
been reported in the classification of skin lesions [12], pneu-
monia [86], traffic signs [67], and object recognition [88].
Moreover, it has been shown that deep neural networks are
biased towards texture [26] and background context [80],
see [25] for an overview. [58] argues theoretically that spu-
rious features are picked up due to a simplicity bias.

Detection of spurious features has been achieved using
human label-intense pixel-wise annotations [48, 59, 60].
In [78], they use sparsity regularization to enforce a more
interpretable model and use it for finding spurious fea-
tures. [4] propose a complex pipeline to detect spurious fea-
tures. While they scale to ImageNet, their analysis is lim-

ited to a few spurious features for a subset of 100 classes.
[61, 44, 62] do a search on full ImageNet based on class-
weighted “neural maps”. The neural maps are used to add
noise to “spurious” resp. “core” features but no significant
difference in classification performance is observed. It re-
mains unclear if their found spurious features are harmful,
that is the feature alone triggers the decision for that class.
Interpretability methods: In recent years several inter-
pretability methods have been proposed e.g., attribution
methods such as GradCAM [57], Shapley values [42], Rel-
evance Propagation [7], and LIME [51]. The use of these
methods for the detection of spurious features has been an-
alyzed in [2, 1] with mixed success and it has been argued
that interpretability methods are not robust [19, 64, 27].
However, attribution methods work better for robust clas-
sifiers due to more interpretable gradients [22]. Another
technique is counterfactual explanations [76, 75] which are
difficult to generate for images due to the similarity to ad-
versarial examples [68]. Thus visual counterfactual expla-
nations are realized via manipulation of a latent space [56]
or in image space [53, 6, 13] for an adversarially robust clas-
sifier. Visual counterfactuals for non-robust classifiers using
diffusion models [35, 65, 33, 18] have been proposed in [5].
ImageNet: ImageNet [52] suffers from several shortcom-
ings: apart from an inherent dataset bias [71], semanti-
cally overlapping or even identical class pairs were reported
[34, 73, 10], e.g., two classes “maillot”, “sunglass” vs “sun-
glasses”, “notebook” vs “laptop” etc. We disregard such
trivial cases of dataset contamination and focus on classes
with harmful spurious features, in particular ones where
only a small portion of the training set is contaminated.

3. Spurious features
A proper definition of spurious features is difficult. We

describe two settings of harmful spurious features which ap-
pear in this paper. We denote by Ck the set of all images
containing objects belonging to class k (assuming for sim-
plicity that we have a deterministic problem and ignoring
multi-labels). Let S be the set of all images containing a
feature s (e.g. a bird feeder). It is a correlated feature for
class k when Ck ∩S and S \Ck are non-empty, i.e. the fea-
ture occurs frequently with the class object but there is no
causal implication that appearance of s implies the appear-
ance of the class object (a bird feeder in the image does not
imply presence of a hummingbird). A correlated feature
becomes a spurious feature when the classifier picks it up
as feature of this class. Not every spurious feature is imme-
diately harmful, even humans use context information [25]
to get more confident in a decision. However, a spurious
feature is harmful if the spurious feature alone is enough to
trigger the decision for the corresponding class without the
class object being present in the image. We consider two
scenarios for a harmful spurious feature shown in Fig. 2.



Figure 2: Type of harmful Spurious Feature: Left: The
spurious feature s is taken up by the classifier which pre-
dicts class k on Ck ∪S instead only on Ck. Right: The spu-
rious feature s is shared between classes but appears more
often in class k. The classifier associates S with class k and
thus predicts class k also on Cl ∩ S instead of class l.

Spurious Class Extension: For this type of spurious
feature (left in Fig. 2) the classifier picks up the spurious
feature s for class k and predicts the class k even on S \Ck
with high confidence (prediction of “hummingbird” for
images showing a bird feeder but no hummingbird). The
classifier predicts class k beyond its actual domain Ck and
thus we call this a spurious class extension. While this
spurious feature does not necessarily hurt in terms of test
performance it can easily lead to completely unexpected
behavior when the classifier is deployed in the wild.

Spurious Shared Feature: Here, two classes Ck and
Cl share a spurious feature s (e.g., “water jet” for the
classes “fireboat” and “fountain”). As there are more
training images with feature s in Ck than in Cl the classifier
associates S with class k and predicts class k for S ∩ Cl.

The two types of harmful spurious features are not
exclusive. A shared spurious feature s can at the same
time lead to a spurious class extension, e.g., the object
bird feeder leads to a spurious class extension of the class
“hummingbird” (see Fig. 4) to images of bird feeders with-
out hummingbirds. In the training set the hummingbird
feeder appears only in images of class “hummingbird” but
the hummingbird feeder has parts which mimic flowers and
flowers are a shared spurious feature with bees. In Fig. 4
right top row, images of bees on a bird feeder are classified
as “hummingbird” instead of “bee”, so the spurious feature
is strong enough to override the decision for the true class
“bee” (spurious shared feature).

4. Finding spurious features via neural PCA
and associated feature visualizations

First, we define our class-wise neural PCA (NPCA)
which allows us to find diverse subpopulations in the train-

ing data, e.g., we checked that the bird feeder for “hum-
mingbird” is visible in 15% of the training images (compo-
nent 2), while another 15% contain a part of it (component
3), see Fig. 3 or, for more examples, App. F. Then we intro-
duce our neural PCA feature visualization (which requires
an adversarially robust model) and how we select NPCA
components for human inspection. The identification of
spurious features requires minimal human supervision, and
our effective setup allows us to screen all ImageNet classes.

Adversarially robust model: Similar to [61], we use an
adversarially robust model to find spurious features in Ima-
geNet. The reason for this is that robust models have gener-
ative properties [74, 53, 6, 61, 13] in the sense that maximiz-
ing the predicted probability of a class in a neighborhood of
an image leads to semantically meaningful changes. They
also have more informative gradients [22] and thus attri-
bution maps such as GradCAM [57] work better. We use
the multiple-norm robust model of [13] as they claim it has
the best generative properties. The generative properties of
robust models are mainly used for the neural PCA feature
visualization where we maximize the NPCA component of
a class starting from a gray image. If a spurious feature
appears without the class object, this is a strong indicator
of a harmful spurious feature. A non-robust model would
only produce semantically meaningless adversarial noise,
hence we need a robust model for this part of our detection
pipeline. Our detected spurious features are not specific to
the robust model. We show that SOTA ImageNet models
share the same spurious features (Fig. 4 and Sec. 7.2).

Class-wise neural PCA: Let (xi, yi)Ni=1 be the training
set, where yi ∈ {1, . . . ,K} and K is the number of classes.
We consider features of the penultimate layer ϕ(x) ∈ RD
of a neural network for an input x. For a given class k and
its associated weights wk ∈ RD in the final layer, we define

ψk(x) = wk ⊙ ϕ(x). (1)

where ⊙ is the componentwise product. Let b ∈ RK be the
bias vector of the final layer then the logit fk of class k is:

fk(x) =
∑D

j=1
wkj ϕ(x)j + bk = ⟨1, ψk(x)⟩+ bk. (2)

Let Ik be the index set of the training set of class k and
ψ̄k the class-wise mean, ψ̄k = 1

|Ik|
∑
s∈Ik ψk(xs). The

class-wise neural PCA allows us to identify variations in
the set {ψ(xr)}r∈Ik arising due to small subpopulations in
the training set. In the class-wise neural PCA, we compute
eigenvectors of the class-wise covariance matrix,

C =
∑
s∈Ik

(
ψk(xs)− ψ̄k

)(
ψk(xs)− ψ̄k

)T
. (3)

The eigenvectors, v1, . . . , vD form an orthonormal basis of
RD and we write ψk(x)− ψ̄k in this basis,

ψk(x)− ψ̄k =
∑D

l=1
vl
〈
ψk(x)− ψ̄k, vl

〉
, (4)
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Figure 3: Top 5 Neural PCA components for class hum-
mingbird: first row shows our neural PCA feature visu-
alization (NPFV), second row shows four most activating
training images of each NPCA component and the last row
GradCAM for the NPCA component. Our NPCA compo-
nents capture different subpopulations in the training data.
Comp. 2 is identified as spurious feature “bird feeder”, see
NPFV and most activating training images (see also Fig. 4).

and define

α
(k)
l (x) = ⟨1, vl⟩

〈
ψk(x)− ψ̄k, vl

〉
, (5)

The logit fk(x) of the k-th class can then be written as

fk(x) =
∑D

l=1
α
(k)
l (x) +

〈
1, ψ̄k

〉
+ bk. (6)

Thus for a given x, we can interpret α(k)
l (x) as the con-

tribution of the neural PCA component l of class k to the
logit fk(x) of class k since the term

〈
1, ψ̄k

〉
+ bk is con-

stant for all inputs. Based on this we introduce a mitigation
technique for spurious features without retraining in Sec. 5.

Neural PCA Feature Visualization: To identify se-
mantic features corresponding to our neural PCA compo-
nent l, we show the training images which attain the maxi-
mal values of α(k)

l (x). Additionally, we generate an image
z
(k)
l , which we call the Neural PCA Feature Visualization

(NPFV) of feature l of class k, by maximizing α(k)
l (x):

z
(k)
l = g + argmax∥δ∥2≤ϵ α

(k)
l (g + δ),

where g is a gray image (all channels equal to 0.5). Thus we
maximize the feature α(k)

l outgoing from a non-informative
and unbiased initialization g. The optimization problem is
solved using adaptive projected gradient descent (APGD)
[16] with 200 steps. The budget for changes, ϵ = 30, is
small to avoid the overactivation of feature attacks maxi-
mizing the output of individual neurons [21, 63, 61], see

Fig. 8. In Fig. 4 we show for each identified spurious fea-
ture, the corresponding NPFV, e.g., for “hummingbird” one
can see the bird feeder but no hummingbird. The NPCA
components together with the maximally activating training
images are in principle sufficient to identify spurious fea-
tures, but the NPFV is very useful to judge how harmful
a spurious feature is. Therefore, we use an adversarially
robust model, since a non-robust model would yield seman-
tically meaningless adversarial noise as NPFV.

Selection of neural PCA components for human in-
spection: The penultimate layer of the robust ResNet50
we are using has 2048 neurons. Thus it is infeasible (and
unnecessary) to investigate all neural PCA components. A
strong criterion that one has found a harmful spurious fea-
ture is i) the NPFV shows mainly the spurious feature and
not the class, and ii) the NPFV has high confidence. If ii) is
not satisfied, then the NPFV is a spurious feature the clas-
sifier may have picked up, but it is not harmful in the sense
that this feature alone causes the classifier to choose that
class. Moreover, we noticed that the eigenvalues of the neu-
ral PCA, and the corresponding α values, decay quickly.
Thus we compute the NPFV for the top 128 neural PCA
components (having maximal variance) and then select the
ten components which realize the highest confidence for
their NPFV in the corresponding class. Note that we do
not optimize the confidence when generating the NPFV but
only α(k)

l (x) which is part of the logit of the k-th class.
Identification of spurious neural PCA components

via human supervision: For each ImageNet class k we
show the human labeler the top 10 components. For each
component l we show the NPFV z

(k)
l and the 5 training im-

ages xr of class k with the largest values of α(k)
l (xr). More-

over, we compute GradCAM [57] images for the NPFV and
the five training images using the NPCA component α(k)

l

as score. The human marks a component as spurious if i)
the NPFV shows dominantly an object not belonging to the
class ii) the five training images show consistently this ob-
ject, iii) the GradCAM activations are primarily not on the
class object. The setup shown to the human labeler can be
seen in App. B. The labeling of one class takes on aver-
age about 45 seconds, so the full labeling of all ImageNet
classes took about 13 hours. The human labeler (researcher
in machine learning) found in total 337 spurious compo-
nents. Another human labeler checked all of them and re-
moved spurious features in case of disagreement, resulting
in 322 spurious features from 233 ImageNet classes.

5. SpuFix - Mitigation of spurious features

Once the spurious features are identified, the question is
how one can mitigate that the classifier relies on them. One
way is to identify the training images containing the spu-
rious feature and then discard or downweight them during



Hummingbird - Random train. images (confidence /αk) Images with spurious bird feeder but no hummingbird

0.93 / 1.7 1.00 /−0.9 0.96 /−1.0 0.99 / 2.2 1.00 / 1.54 0.94 / 5.7 0.94 / 3.4 0.82 / 2.9 0.91 / 5.6 0.91 / 4.7
NPFV-2 Max. activating train. images - NPCA Comp. 2 all classified as humming bird by four ImageNet models

1.00 / 9.7 1.00 / 7.5 1.00 / 5.9 1.00 / 5.6 1.00 / 5.6 0.86 / 4.3 0.81 / 3.5 0.89 / 3.3 0.89 / 3.8 0.78 / 5.91
Freight car - Random train. images (confidence /αk) Images with spurious grafitti but no freight car

1.00 / 7.7 1.00 / 3.4 1.00 / 6.3 0.98 /−0.8 1.00 / 4.2 0.97 / 3.5 0.79 / 4.0 0.81 / 2.4 0.85 / 3.2 0.88 / 2.6
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as freight car by four ImageNet models

1.00 / 12.1 1.00 / 10.9 1.00 / 10.4 1.00 / 10.2 1.00 / 10.2 0.85 / 2.5 0.86 / 2.5 0.90 / 2.3 0.82 / 2.2 0.87 / 2.2
Koala - Random train. images (confidence /αk) Images with spurious eucalyptus/plants but no koala

1.00 / 0.77 0.87 / 2.4 1.00 / 0.4 1.00 / 0.0 0.95 / 0.5 0.49 / 3.5 0.61 / 3.1 0.36 / 3.1 0.36 / 3.1 0.69 / 2.7
NPFV-3 Max. activating train. images - NPCA Comp. 3 all classified as koala by four ImageNet models

1.00 / 5.5 1.00 / 4.6 1.00 / 4.5 1.00 / 4.4 0.86 / 4.3 0.56 / 2.6 0.62 / 2.5 0.74 / 2.5 0.72 / 2.4 0.66 / 2.2
Fireboat - Random train. images (confidence /αk) Images with spurious water jet but no fireboat

0.88 /−1.1 0.95 / 0.5 0.12 /−0.6 0.84 /−0.2 0.02 /−1.1 0.63 / 2.3 0.71 / 2.2 0.84 / 2.2 0.65 / 2.1 0.63 / 1.9
NPFV-2 Max. activating train. images - NPCA Comp. 2 all classified as fireboat by four ImageNet models

1.00 / 5.5 0.42 / 4.1 1.00 / 4.0 1.00 / 3.9 1.00 / 3.9 0.53 / 1.9 0.79 / 1.9 0.78 / 1.8 0.79 / 1.8 0.76 / 1.8

Figure 4: Spurious features (ImageNet): found by human labeling of our neural PCA components. For each class we
show 5 random train. images (top left), the neural PCA Feature Visual. (NPFV) and 4 most activating train. images for the
spurious feature component (bottom left). Right: four ImageNet models classify images showing only the spurious feature
but no class object as this class.



training. However, this would require relabeling all spu-
rious ImageNet classes which is not feasible. We could
order the training set according to the value α(k)

l of the
corresponding neural PCA component which indicates how
much of the spurious feature an image contains. While this
would speed up the process significantly, it would still re-
quire a significant amount of manual relabeling. Can one do
it also without any additional labeling? Yes, as described in
Sec. 4 we can rewrite the logit of the k-th class as

fk(x) =
∑D

l=1
α
(k)
l (x) +

〈
1, ψ̄k

〉
+ bk. (7)

For a spurious component l of class k, we use min{α(k)
l , 0}

instead of α(k)
l to remove its positive contribution from the

logit (negative contributions are semantically different). Af-
ter removal of the spurious features, the new logit becomes

fSpuFixk (x) = fk(x)−
∑
l∈Sk

max{α(k)
l (x), 0} (8)

where Sk is the set of spurious NPCA components of class
k. We denote this method as SpuFix. It significantly re-
duces dependence on spurious features, see Sec. 7.3.

Transfer of SpuFix to any ImageNet classifer: As de-
scribed in Sec. 3, harmful spurious features are a result of
subpopulations in the training data. While not every spuri-
ous correlation will be picked up by every model, most of
our detected spurious features generalize to a wide range of
classifiers (see Sec. 7). In the following, we show how Spu-
Fix can be transferred to any given ImageNet classifier f̃
for which f̃k denotes the logit and ψ̃k the weighted penul-
timate layer of class k. The goal is to find a direction b
in the weighted feature space ψ̃k of f̃ for every spurious
NPCA component l corresponding to the eigenvector vl of
the original model, resp. α(k)

l (x), and then truncate its pos-
itive component. To find this direction we maximize the co-
variance of the projection onto b and α(k)

l over the training
images of class k:

b
(k)
l = argmax

∥b∥2=1

∑
s∈Ik

〈
b, ψ̃k(xs)− ¯̃

ψk

〉
α
(k)
l (xs). (9)

which has a closed form solution

b
(k)
l =

∑
s∈Ik

(
ψ̃k(xs)− ¯̃

ψk

)
α
(k)
l (xs)∥∥∥∑s∈Ik

(
ψ̃k(xs)− ¯̃

ψk

)
α
(k)
l (xs)

∥∥∥
2

. (10)

In contrast to the eigenvectors vl, the matched vectors b(k)l

are not necessarily orthogonal. Thus before truncation the
centered features ψ̃k(x)− ¯̃

ψk need to be projected onto the
subspace spanned by the b(k)l and represented in the non-
orthogonal basis {b(k)l }l∈Sk . We denote this representation

by P (k)(x) (details in C.1). The logit of class k of the Spu-
Fix version of f̃ is then:

f̃SpuFixk (x) = f̃k(x)−
∑
l∈Sk

max
{〈

1, b
(k)
l

〉
P

(k)
l (x), 0

}
.

(11)
In the case where f̃ = f (the robust model), we recover
the original SpuFix truncation in (8) (see C.2). It turns out
that SpuFix is even effective when the architecture is quite
different from the ResNet50 we used for detection, e.g. ViT
or VOLO, see Sec. 7.3 and Table 1 and 2.

6. Comparison to neural features of [61]
We compare our NPCA framework to the method of [61]

to detect spurious features for ImageNet. As model, they
use a ℓ2-robust ResNet50. Let Jk be the set of training im-
ages classified as class k. [61] define the j-th component
m

(k)
j of the class-wise mean over predictions,

m(k) =
1

|Jk|
∑

xs∈Jk
ψk(xs), (12)

as the importance of the j-th neuron for class k.1 Then,
they order the neurons of the penultimate layer according
to the score m(k)

j and consider the top-5 neurons of each
class. The main difference to our approach is that they as-
sume single neurons with maximal influence on the mean
are capturing spurious features whereas our NPCA compo-
nents are linear combinations of neurons that capture the
variance around the mean. Given that the ResNet50 has
only 2048 neurons for 1000 classes, some neurons are la-
beled as core and spurious feature for multiple classes si-
multaneously, even though the images are quite different. A
major advantage of NPCA is that due to the orthogonality
of the PCA components, we identify diverse subpopulations
in the training data. As [61] use no constraints for the neu-
rons, they often find very similar subpopulations. Hence,
one may miss spurious subpopulations when only checking
the top-5 components, see Fig. 5. Another difference is that
they maximize the score m(k)

j for the training images xr

w
(k)
j = xr + argmax∥δ∥2≤ϵm

(k)
j (xr + δ),

whereas we maximize our NPCA component α(k)
l (x) start-

ing from a gray image to introduce no bias. Thus, we check
if the classifier produces the spurious feature and not only
enhances it on an image showing it already.

The third difference is that [61] want to identify any spu-
rious feature while our goal is to find harmful ones. Thus,
they use weaker criteria for deciding if a neuron shows a
spurious feature: main criterion is if the neural activation

1The top-5 neurons do not change when using Ik instead of Jk .
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Figure 5: Comparison of top-5 NPCA and top-5 neurons
for class hummingbird for the robust model of [61]: Our
NPCA components identify diverse subpopulations in the
training set whereas the top neurons show similar ones and
the spurious bird feeder is not detected, see also App. A.

map based on m(k)
j is off the class object according to a

majority vote of 5 human labelers. The visualizations w(k)
j

are only used if the activation maps are inconclusive. In
contrast, we require i) our NFPV to show the spurious fea-
ture, ii) the GradCAM based on α(k)

l highlights mainly the
spurious feature, and iii) our human labelers have to agree
that the NPCA component is a harmful spurious feature.

As our criteria are more strict (in particular, that the
NFPV shows the spurious feature is a strong criterion), it
is not surprising that [61] find more spurious features (630
in 357 classes) than we do (322 in 233 classes). More-
over, the employed models are different and we examine
top-10 NPCA components whereas they check top-5 neu-
rons. Thus, the comparison is difficult and our novel dataset
“SpuriousImageNet” could be biased towards spurious fea-
tures which only we found. Hence, we compute our top-5
NPCA components for their robust ResNet50 for a direct
comparison to their top-5 neurons and their found spurious
features. In Fig. 5 we compare them for the class hum-
mingbird where they do not find the spurious feature “bird
feeder”. In general, we observe that our found subpopu-
lations are more diverse and thus we find more spurious
features than they do when using their weaker criteria. In
App. E we do an extensive comparison for all classes.

7. Experiments
In this section, we provide a qualitative and quantitative

evaluation of our 322 detected spurious features in Ima-

geNet, see Sec. 4. For the quantitative evaluation, we cre-
ate the dataset “Spurious ImageNet”, which allows check-
ing the reliance of a given ImageNet classifier on spurious
features. We also evaluate our mitigation strategy “SpuFix”
which does not require additional labels or retraining of the
classifier and can be transferred to other image classifiers.

7.1. Qualitative evaluation

For the qualitative evaluation, we visualize some of our
found 322 spurious features, see Fig. 4. For each class, we
show five random training images, the NPFV, and the four
most activating training images of the neural PCA compo-
nent labeled to be spurious. Additionally, we always show
ten images which only show the spurious feature but not
the actual class e.g., only the bird feeder (spurious) but no
hummingbird (class). All ten images are classified as the
corresponding class for the robust classifier we have used to
compute the NPCA components and three non-robust Im-
ageNet classifiers (ResNext101, Eff.Net B5, ConvNext-B,
see also Tab. 2). This shows that our spurious features gen-
eralize from the robust classifier to SOTA ImageNet classi-
fiers, indicating that the found spurious features are mainly
due to the design of the training set, rather than failures in
model training. Our novel validation by collecting real im-
ages with the spurious feature but without the class object
which are consistently classified as this class directly shows
the impact of harmful spurious features and has the advan-
tage that it does not introduce artifacts via masking nor re-
quires expensive pixel-wise segmentations.

Image Collection: The images showing only the spuri-
ous feature were obtained by sorting the 9 million images of
OpenImages [38] by the value α(k)

l (x) of the neural PCA
component. We check the top 625 retrieved images clas-
sified by the robust classifier as the corresponding class if
they are all classified as the same class by the additional
non-robust classifiers and do not show the corresponding
class. This is a quite strict criterion as spurious features
can be shared across classes, e.g., twigs for birds, and thus
agreement of classifiers is not granted and the images can
show the spurious feature and the true class. Neverthe-
less, this procedure yields between 77 (“hummingbird”)
and 179 (“freight car”) images of which we show a selec-
tion. For “hummingbird”, a lot of these images show red
flowers (without a hummingbird) which makes sense as the
NPFV displays features of red flowers and due to the bias
that OpenImages does not contain many images of hum-
mingbird feeders. In these cases, we additionally retrieve
Flickr images with appropriate text queries e.g., “humming-
bird feeder” and filter them.

Spurious Class Extension: For “hummingbird”,
“freight car”, and “koala” the spurious features signifi-
cantly extend the predictions beyond the actual class (see
Fig. 2). Bird feeders are classified as hummingbirds, graf-



hummingbird freight car koala fireboat flagpole gondola bookshop
0.00

0.25

0.50

0.75

1.00

Cl
as

s-
wi

se
 sp

ur
io

us
 A

UC Rob. ResNet50
Rob. ResNet50[61]
ViT-B AugReg 1k
ViT-B AugReg 1kFT21k
ViT-B AugReg 21k
SpuFix

Figure 6: Spurious Score: we plot the AUC of different models for 7 out of 100 classes in “Spurious ImageNet” (see Fig
13-15): hummingbird (bird feeder/red flowers), freight car (graffiti), koala (plants/trees), fireboat (water jet), flagpole (US
flag), gondola (house/river), and bookshop (storefront). The spurious features for hummingbird, freight car and koala which
were not detected in [61, 62] are also spurious for their robust ResNet50 [61]. Training on ImageNet 21k or Fine-tuning from
21k (1kFT21k) decreases dependence on harmful spurious features but classes like flagpole and bookshop remain strongly
affected. Our cheap mitigation strategy SpuFix improves the AUCs significantly for both robust ResNet50 but also improves
the ViT-B variants trained/fine-tuned on ImageNet1k, especially for the difficult classes flagpole and bookshop.
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Figure 7: Spurious ImageNet: sample images from the
dataset for 6 out of 100 classes showing the spurious feature
but not the class object, see also App. G.

fiti as freight cars, and (eucalyptus) plants as koalas. This
class extension cannot be detected by monitoring test per-
formance and thus is likely to be noticed only after deploy-
ment. For “hummingbird”, we see in Fig. 4 two images
with bees on the bird feeder where “bee” is an ImageNet
class (also a grasshopper for “koala”). Nevertheless, the
spurious “bird feeder” feature of “hummingbird” overrules
“bee” even though no hummingbird is present.

Spurious Shared Feature: The spurious feature “wa-
ter jet” is shared among the classes “fireboat” and “foun-
tain”. It appears more frequently for “fireboat” (see Fig. 2)
which leads to an in-distribution shift where now a large
number of images of the “fountain”-class with a water jet
are wrongly classified as “fireboat”. The spurious feature
“water jet” for “fireboat” has been found also in the Salient
ImageNet dataset [61, 62]. However, they did not find spu-
rious features for freight car and koala (in App. A we do a
comparison). More examples are in App. F.

7.2. The Spurious ImageNet dataset

A key contribution of this paper is our novel evaluation
of spurious features for image classifiers without requiring
pixel-wise annotations [48, 59] or having to rely on the va-
lidity of neural heatmaps [61]. Instead, we use images from
OpenImages to show that images only containing the spu-
rious feature but not the class object are classified as this
class. This has the advantage that we consider real images
and thus provide a realistic impression of the performance
of ImageNet classifiers in the wild. Adding noise [61] or
masking [48, 44] image regions requires pixel-wise accu-
rate annotations which are labor-expensive, masking only
the object still contains shape information, and using masks
avoiding this, e.g., a bounding box around the object, can
hide a significant portion of the image which is unrealistic.

To allow for a quantitative analysis of the influence of
spurious features on ImageNet classifiers, we collected im-
ages similar to the ones shown to illustrate the spurious
features in Fig. 4. The images are chosen such that they
show the spurious feature but not the class object. The only
difference is that we relax the classification condition and
only require two of the four classifiers (robust ResNet50,
ResNext101, EfficientNet-B5, ConvNext-B) to predict the
corresponding class. We select 100 of our spurious features
and for each collect 75 images from the top-ranked images
in OpenImages according to the value of α(k)

l for which two
human labelers agree that they contain the spurious feature
but not class k and two out of four classifiers predict class
k. We call the dataset Spurious ImageNet as it allows to
check the dependence on spurious features with real images
for ImageNet classifiers, see Fig. 7 and App. G for samples.

Spurious Score: A classifier f not relying on the spuri-
ous feature should predict a low probability for class k for
the Spurious ImageNet samples, especially compared to Im-
ageNet test set images of class k. Thus, for each class, we
measure the AUC (area under the curve) for the separation



of images with the spurious features but not showing class k
versus test set images of class k according to the predicted
probability for class k. A classifier not depending on the
spurious feature should attain a perfect AUC of 1, whereas
a value significantly below 1 shows strong reliance. We re-
port the mean AUC (mAUC) over all 100 classes in Tab. 1.
All ImageNet models trained only on ImageNet1k are heav-
ily influenced by spurious features. Thus, spurious features
are mainly a problem of the training set rather than the clas-
sifier, and spurious features found with an adversarially ro-
bust model transfer to other ImageNet classifiers.

Pre-training on larger datasets: Some spurious fea-
tures such as flag (flag pole), bird feeder (hummingbird),
and eucalyptus (koala) are classes in ImageNet21k. There-
fore, they should no longer be spurious for the other classes.
Thus, we test if ImageNet1k-classifiers fine-tuned from an
ImageNet21k model are less reliant on spurious features.
The results in Tab. 1 and Fig. 6 suggest that the influ-
ence of spurious features is damped but they are far from
being free of them. To check how much is lost due to
fine-tuning we evaluate a ViT-B trained on ImageNet21k
which has a mean AUC of 0.931 whereas the fine-tuned
model has 0.917. This shows that fine-tuning does not hurt
much. While finetuning from ImageNet21k improves the
mean AUC, for several classes the dependence on spuri-
ous features is still significant, see also Fig. 16 how one
has to be careful in the interpretation of higher AUC val-
ues. In addition to ImageNet21k, we also evaluate mod-
els trained on other large image datasets (JFT-300M[28],
YFFC-100M, 1B Instagram[84], MIM[24], LAION-2B and
LAION-400M[54]) using self-supervised learning or which
are based on CLIP [49]. However, these models also do
not achieve better spurious scores (Tab. 1 and Tab. 2). We
evaluate a large number of SOTA models in App. D.

7.3. Evaluation of mitigation technique SpuFix

Fixing spurious features is a non-trivial task and can re-
quire a substantial labeling effort. We evaluate our Spu-
Fix from Sec. 5 that does not require retraining or addi-
tional labels. The positive effect of this fix of spurious fea-
tures (SpuFix) can be seen in Tab. 1 and Fig. 6. Compared
to the original robust ResNet50 with a spurious mAUC of
0.630, the SpuFix version has a significantly better spurious
mAUC of 0.763. Test set accuracy reduces by 0.6% but this
is a rather positive effect, as several of the additional errors
arise since the robust ResNet50 uses spurious features for
its decision, e.g., for classes like “balance beam” or “puck”
the class object is often not visible in the cropped test set im-
ages. In Table 2 we provide a large scale evaluation of the
transfer of SpuFix to SOTA ImageNet models. We observe
a consistently better mAUC on Spurious ImageNet, even for
very large models fine-tuned from 21k or trained on other
large datasets, e.g. SpuFix improves the mAUC of VOLO-

Original SpuFix
INet SpurIN INet SpurIN

Model Acc. ↑ mAUC ↑ Acc. ↑ mAUC ↑
ImageNet1k

Rob. ResNet50 57.4% 0.630 56.8% 0.763
Rob. ResNet50[61] 57.9% 0.651 57.2% 0.764
ConvNeXt-L[41] 84.8% 0.803 84.8% 0.819
ViT-B AugReg[66] 81.1% 0.850 81.1% 0.859
VOLO-D5 512[85] 87.1% 0.882 87.1% 0.907

ImageNet21kFT1k
EfficientNetv2-L[70] 86.8% 0.893 86.8% 0.898
ConvNeXt-L[41] 87.0% 0.910 87.0% 0.913
ViT-B AugReg[66] 86.0% 0.917 85.9% 0.925
BEiT-L\16[8] 88.6% 0.921 88.6% 0.927

LAION-2B
CNeXt-L CLIP 384[49] 87.8% 0.879 87.9% 0.884
ViT-L\14 CLIP[49] 88.2% 0.912 88.2% 0.914

MIM
EVA-G\14 CLIP 560[24] 89.8% 0.919 89.8% 0.925

ImageNet21k
ConvNeXt-L[41] - 0.943 - 0.943
ViT-B AugReg[66] - 0.931 - 0.931

Table 1: Quantitative Evaluation on Spurious ImageNet:
ImageNet classifiers of different training modalities depend
on spurious features in varying strength. The mAUC is the
mean of AUCs for the separation of images containing the
spurious feature but not class k versus test images of class
k with the predicted probability of class k as score.

D5 (87.1% acc.) trained only on 1k by 2.5%, or by 0.6% for
EVA-G\14 CLIP 560 trained on MIM (91.9% acc.), as well
as BeiT-L\16 fine-tuned from 21k (88.6% acc.) by 0.6%.
Thus even SOTA models profit from our SpuFix with neg-
ligible difference in accuracy (≤ 0.1%) and thus the use of
SpuFix is recommended for any ImageNet model.

8. Conclusion

We have shown that large-scale identification of spuri-
ous features is feasible with our neural PCA components
and neural PCA feature visualizations. With “Spurious Ima-
geNet” we introduced a novel dataset to evaluate the depen-
dence of ImageNet classifiers on spurious features based on
real images. We demonstrated that our SpuFix method mit-
igates the dependence on harmful spurious features for any
ImageNet classifier without costly labeling or re-training.
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Overview of Appendix
In the following, we provide a brief overview of the ad-

ditional experiments reported in the Appendix.

• In App. A, we compare our top-5 Neural PCA compo-
nents for our robust model vs. the neural features of the
Top-5 neurons of [61] for their robust model for classes
“Koala”, “Indigo-Bunting”, and “Mountain Bike”, for
which [61] do not find spurious features and we do (see
App. E for a direct comparison of NPCA for their ro-
bust model to their found components as done in Fig.
5)

• In App. B, we explain our labeling setup to create the
dataset “Spurious ImageNet” in more detail.

• In App. C.1 and App. C.2, we present the details of
transferring SpuFix to other models. In particular, we
define the orthogonal projection P (k) onto the sub-
space spanned by non-orthogonal vectors and show
that the transfer recovers the original SpuFix method
when applied to the original model. We validate that
the SpuFix improvement is independent of the image
collection procedure in Fig. 12.

• In App. D, we use our “Spurious ImageNet” dataset
to quantitatively analyze the dependence of the classi-
fiers on spurious components. By doing so, we show
that pre-training on larger datasets like ImageNet21k
helps to reduce this dependence. We also discuss the
empirical results of the SpuFix method.

• In App. E we continue the comparison to [61] from
Section 6. As in Fig. 5. we do a direct comparison
to their found top-5 neurons by computing the top-5
NPCA components for their robust model. We observe
that their top-5 neurons are less diverse than our top-5
NPCA components, see Fig. 17 and Fig. 18.

• In App. F, we extend our qualitative evaluation of the
spurious components from Figure 4.

• In App. G, we show random samples from all 100 spu-
rious features in our “Spurious ImageNet” dataset.

• In App. H, we show how we change the predicted
class for an image by introducing only spurious fea-
tures of the target class. To do this automatically,
we adapt the Diffusion Visual Counterfactual Expla-
nations (DVCEs) of [5].

A. Neural PCA Components
We illustrate in Fig. 8 that our neural PCA components

capture the different subpopulations in the training set better

compared to the neural features of [61]. We find three spu-
rious features: eucalyptus/plants for the class koala, twigs
for the class indigo bunting, and forest for mountain bike,
which were not found by [61]. Please see the caption of
Fig. 8 for more details. Note that for this comparison, we
consider the NPCA components computed on our robust
ResNet50 which differs from the one used in [61]. See
Fig. 19,20 and App. E for a comparison using the same
model.

For 46 out of 100 classes in our “Spurious ImageNet”
dataset, no spurious feature is reported in [61]. The 46
classes are: tench, indigo bunting, American alligator, black
grouse, ptarmigan, ruffed grouse, s.-c. cockatoo, humming-
bird, koala, leopard, walking stick, gar, bakery, barber-
shop, barn, bathtub, beer bottle, bikini, bulletproof vest, bul-
let train, chain mail, cradle, dam, dumbbell, fountain pen,
freight car, hair spray, hamper, hard disc, mountain bike,
neck brace, nipple, obelisk, ocarina, pencil box, pill bottle,
plastic bag, plunger, pole, pop bottle, quill, radio telescope,
shoe shop, shovel, steel drum, cheeseburger. However, note
that even if for the same class their and our method report a
spurious feature, this need not be the same.

B. Labeling Setup for Spurious features

In our paper, we have two labeling tasks for two objec-
tives: i) identifying spurious components, and ii) creating
“Spurious Imagenet”.

Identifying spurious components. Fig. 9 illustrates the
information shown to the human labeler to identify neural
PCA components corresponding to spurious features. This
includes the NPFV, the 5 most activating training images,
and GradCAM heatmaps, as well as the corresponding class
probabilities and α(k)

l values. The decision, of whether a
neural PCA component corresponds to a spurious feature
has been made only based on the visualization as shown in
Fig. 9.

Creating “Spurious Imagenet”. To create our “Spuri-
ous ImageNet” dataset,

• we selected 100 (spurious component l, class k) pairs,
such that for each class we have only one selected spu-
rious component, and sorted all images from OpenIm-
ages for which at least two of our four classifiers pre-
dict class k according to the value α(k)

l of the respec-
tive neural PCA component l;

• we have used the open-source tool2 for labeling images
and created three labels “in” (the images that contain
the class features), “out” (the images that contain only
the spurious and no class features), “trash” (images
that are too far from the distribution of the spurious

2https://github.com/robertbrada/PyQt-image-annotation-tool
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Figure 8: Neural PCA feature components vs neural features of [61] for different classes (computed on our own
multiple-norm robust model vs. their l2-robust model): First row: NPCA feature visualization (NPFV) of our top-5
NPCA components (left), and the feature attacks of the top-5 neurons of [61] (right). Second row: four most activating
training images of the components/neurons. Last row: GradCAM for the NPCA components (left) and the neural activation
map of [61] (right). For these three classes [61] report no spurious feature. As in Figure 3 our NPCA components are
capturing different subpopulations in the training data. Our NPCA Component 3 of Koala shows prominent leaves in the
NPFV and neural PCA GradCAM heatmaps and is identified as spurious, similar for our component 3 of Indigo Bunting
showing twigs in the NPFV and in the heatmaps, and component 1 for mountain bike where the forest appears in the NPFV
and is active in the heatmap. The feature attack of [61] generates an image similar to the most activating training image which
adds less new information. In contrast, our NPFV allows to identify which features the component has picked up.



Figure 9: Illustration of the information shown for labeling neural PCA components: The illustration shows the visu-
alization of the first neural PCA component of the class “mountain bike”. The first image on the left shows the NPFV, the
prediction of the robust ResNet50, its probability for the class “mountain bike”, and the corresponding value of α(k)

l . The
other five images shown, along with the corresponding probabilities and α(k)

l , are the maximally activating training images of
this component. The second row shows GradCAM heatmaps with respect to the component α(k)

l (x). Below the visualization,
the labeler can select one of the two possible labels (spurious and not spurious) and navigate through the next or last neural
PCA component.

Figure 10: Illustration of the information shown for labeling images to create our “Spurious ImageNet”: This screen-
shot illustrates a tool that we used to create labels for our dataset and an example of the image that is chosen to be in our
dataset, in class “hummingbird”, as it contains the spurious feature bird feeder of the class “hummingbird” but no humming-
bird.

features and contain no class features) for each image
as can be seen in the Fig. 10;

• for each component, 75 images that are guaranteed to
contain the spurious feature but not the class object of
class k were selected by two human labelers. Images

were only accepted into the dataset if both labelers as-
signed the label “out”.



C. SpuFix

C.1. SpuFix - Orthogonal projection onto a non-
orthogonal basis

Let L = |Sk|. The projection can be written as a least
squares problem: Let b1, . . . , bL be the matched directions
and B ∈ RD̃×L the matrix containing them as columns.
Now, the projection onto the subspace spanned by the bl, l ∈
{1, . . . , L} is given by

min
P (k)∈RL

∥∥∥ψ̃k(x)− ¯̃
ψk −BP (k)

∥∥∥2
2

(13)

with closed-form solution

P (k)(x) = (BTB)−1BT
(
ψ̃k(x)− ¯̃

ψk

)
. (14)

C.2. SpuFix - Recovering the original method

When using our robust ResNet50, it holds f̃ = f . Then
the matched directions are

b∗l =

∑
s∈Ik

(
ψk(xs)− ψ̄k

)
α
(k)
l (xs)∥∥∥∥∑s∈Ik

(
ψk(xs)− ψ̄k

)
α
(k)
l (xs)

∥∥∥∥
2

(15)

=
Cvl ⟨1, vl⟩∥∥∥∥Cvl ⟨1, vl⟩∥∥∥∥

2

(16)

=
λlvl ⟨1, vl⟩∥∥∥∥λlvl ⟨1, vl⟩∥∥∥∥

2

= vl (17)

where λl is the eigenvalue corresponding to the eigenvector
vl and we have used:∑

s∈Ik

(
ψk(xs)− ψ̄k

)
α
(k)
l (xs)

=
∑
s∈Ik

(
ψk(xs)− ψ̄k

) 〈
ψk(xs)− ψ̄k, vl

〉
⟨vl,1⟩

=Cvl ⟨vl,1⟩

Thus, as the vl are an orthonormal basis it holds P (k)
l (x) =〈

vl, ψ̃k(x)− ¯̃
ψk

〉
and we get

f̃SpuFixk (x) (18)

=f̃k(x)−
∑
l∈Sk

max{⟨1, vl⟩P (k)
l (x), 0} (19)

=fk(x)−
∑
l∈Sk

max{α(k)
l , 0} = fSpuFixk (x). (20)

D. Quantitative Evaluation
In this section, we extend the quantitative results given

in the main paper in Tab. 1 for a large number of ImageNet
models. In Tab. 2 we show ILSVRC-2012 test accuracies
and the mean spurious AUC (mAUC) for a wide selection
of ImageNet models with different architectures and train-
ing configurations. Again, our spurious AUC is computed
classwise using the predicted probability for that class as a
score where we compare the images corresponding to this
class of “Spurious ImageNet” (not showing the class object,
but just the spurious feature) vs the ImageNet validation set
images of that class. Finally, we take the mean of all class-
wise AUCs to get the final mAUC. All models except for our
multiple-norm robust ResNet50 and the robust ResNet50
from [61] are taken from PyTorch Image Models [77].We
further distinguish between models trained on ImageNet1k
only (in1k), models pre-trained on ImageNet21k and then
fine-tuned on ImageNet1k (in1kFT21k), ImageNet21k clas-
sifiers (in21k) and models trained using semi-supervised
training techniques on large datasets containing 100M or
more images [81, 84] and multimodal CLIP [49] models
that are pre-trained on large datasets containing text and im-
age pairings [55, 54]. Note that we do not report accuracies
for ImageNet21k models as no test set for in21k is available.
All models pre-trained on other datasets than ImageNet21k
are Imagenet 1k models with a classification head contain-
ing 1000 classes after potential fine-tuning. In Fig. 11, we
also plot mean spurious AUC against ImageNet-1k test ac-
curacy and color code the models based on the dataset used
during training.

Pre-training and fine-tuning: Overall, the trend seems
to be that better models (in terms of accuracy) improve in
mAUC and are less vulnerable to spurious features. It is
also easily observable that pre-training on larger datasets
such as ImageNet-21k can help to decrease vulnerabil-
ity to spurious features, which can be seen best from the
EfficientNetv2-M/L, ViT-B/L AugReg and ConvNeXt-L
models for which we can evaluate the difference between
in1k, in1kFT21k, and in21k training. The in1k ViT-B\16
AugReg achieves an mAUC of 0.850 whereas the same
in21k model achieves an mAUC of 0.931 before and 0.917
after in1k fine-tuning. Similar trends are also visible for
the EfficientNetv2-M and ConvNeXt-L models, where all
ImageNet21k models (in1kFT21k and in21k) perform bet-
ter than pure in1k models, however, parts of the improve-
ment of the in21k models is lost during fine-tuning. While
we do not have pure in1k models for them to compare to,
other in21k pre-trained models such as the Big Transfer
models, as well as the standard ViT’s without AugReg, the
BEiT and Swin architecture-based models show the same
behavior and decrease spurious mAUC during fine-tuning.
It thus remains an open question how one can use the ben-
efits of pre-training on massive datasets with fine-grained



Original SpuFix Original SpuFix
Name Acc. Spu. Acc. Spu. Name Acc. Spu. Acc. Spu.

ImageNet1k 1B Instagram[84]
Rob. ResNet50 57.4% 0.630 56.8% 0.763 ResNeXt101 SSL [84] 83.3% 0.872 83.3% 0.875

Rob. ResNet50[61] 57.9% 0.651 57.2% 0.764 ResNeXt50 SSL [84] 82.2% 0.857 82.1% 0.862
ResNet50[29] 81.2% 0.851 81.2% 0.860 ResNet50 SSL [84] 81.2% 0.850 80.8% 0.865
ResNet101[29] 82.8% 0.748 82.8% 0.795 ImageNet21kFT1k

ResNeXt50 32x4d[82] 82.0% 0.783 82.0% 0.808 ResNetV2-152 BiT[36] 84.9% 0.895 84.9% 0.900
ResNeXt101 32x8d[82] 79.3% 0.797 79.2% 0.811 ResNetV2-50 BiT[36] 84.0% 0.887 84.0% 0.895
ResNeXt101 64x4d[82] 83.2% 0.779 83.2% 0.786 EfficientNetV2-M[70] 86.0% 0.892 86.0% 0.897
EfficientNet B5 RA[17] 83.8% 0.829 83.8% 0.833 EfficientNetV2-L[70] 86.8% 0.893 86.8% 0.898
EfficientNet B5 AP[83] 84.3% 0.828 84.2% 0.832 ConvNeXt-B[41] 86.3% 0.892 86.3% 0.895
EfficientNet B6 AA[69] 84.1% 0.830 84.1% 0.836 ConvNeXt-L[41] 87.0% 0.910 87.0% 0.913
EfficientNet B6 AP[83] 84.8% 0.831 84.8% 0.838 ConvNeXt-XL[41] 87.3% 0.908 87.3% 0.913
EfficientNet B7 RA[17] 84.9% 0.834 84.9% 0.839 ConvNeXtV2-B[79] 87.6% 0.907 87.6% 0.911
EfficientNet B7 AP[83] 85.1% 0.826 85.1% 0.831 ConvNeXtV2-L[79] 88.2% 0.905 88.2% 0.907
EfficientNetV2-M[70] 85.2% 0.846 85.2% 0.856 ConvNeXtV2-H[79] 88.7% 0.919 88.7% 0.923
EfficientNetV2-L[70] 85.7% 0.851 85.7% 0.860 DeiT3-S\16[72] 83.1% 0.845 83.1% 0.860

ConvNeXt-B[41] 84.4% 0.802 84.4% 0.816 DeiT3-L\16[72] 87.7% 0.895 87.7% 0.901
ConvNeXt-L[41] 84.8% 0.803 84.8% 0.819 Swin-B 224[40] 85.3% 0.877 85.3% 0.883

ConvNeXtV2-B[79] 85.5% 0.848 85.5% 0.856 Swin-L 384[40] 87.1% 0.898 87.1% 0.901
ConvNeXtV2-L[79] 86.1% 0.845 86.1% 0.858 SwinV2-L[39] 87.5% 0.889 87.5% 0.891
ConvNeXtV2-H[79] 86.6% 0.867 86.6% 0.879 ViT-B\16 224 81.8% 0.881 81.7% 0.889
DeiT3-S\16 224[72] 81.4% 0.851 81.4% 0.859 ViT-B\16 384[20] 84.2% 0.905 84.2% 0.912
DeiT3-L\16 384[72] 85.8% 0.863 85.8% 0.877 ViT-L\16 † 85.8% 0.914 85.8% 0.923

ViT-B\16 † 81.1% 0.850 81.1% 0.859 ViT-B\16 † 86.0% 0.917 85.9% 0.925
VOLO-D5 512[85] 87.1% 0.882 87.1% 0.907 BEiT-B\16 224[8] 85.2% 0.890 85.2% 0.897
VOLO-D5 224[85] 85.4% 0.863 85.3% 0.890 BEiT-L\16[8] 88.6% 0.921 88.6% 0.927

JFT-300M[28] BEiTV2-L\16 224[46] 88.4% 0.921 88.4% 0.925
EfficientNet B5 NS [81] 86.1% 0.924 86.1% 0.924 ImageNet21k
EfficientNet B6 NS [81] 86.5% 0.875 86.5% 0.880 ResNetV2-152 BiT[36] - 0.908 - 0.908
EfficientNet B7 NS [81] 86.8% 0.907 86.9% 0.912 ResNetV2-50 BiT[36] - 0.910 - 0.910
EfficientNet L2 NS [81] 88.4% 0.914 88.3% 0.917 EfficientNetV2-M[70] - 0.919 - 0.919

YFFC-100M EfficientNetV2-L[70] - 0.929 - 0.929
ResNeXt101 SSL [84] 81.8% 0.833 81.8% 0.841 ConvNeXt-B[41] - 0.939 - 0.939
ResNeXt50 SSL [84] 80.3% 0.821 80.2% 0.831 ConvNeXt-L[41] - 0.943 - 0.943
ResNet50 SSL [84] 79.2% 0.804 78.8% 0.828 ConvNeXt-XL[41] - 0.945 - 0.945

LAION-2B[54] Swin-B 224[40] - 0.808 - 0.808
CNeXt-B CLIP[49] † 86.2% 0.859 86.2% 0.865 Swin-L 384[40] - 0.820 - 0.820

CNeXt-L CLIP[49] † 224 87.3% 0.858 87.3% 0.865 ViT-L\16 † - 0.931 - 0.931
CNeXt-L CLIP[49] † 384 87.8% 0.879 87.9% 0.884 ViT-B\8 † - 0.931 - 0.931
ViT-L\14 CLIP[49] 336 88.2% 0.912 88.2% 0.914 BEiT-B\16 224[8] - 0.935 - 0.935

LAION-400M[55] BEiT-L\16 224[8] - 0.940 - 0.940
EVA-G\14 CLIP 336[24] 89.5% 0.911 89.4% 0.915 BEiTV2-L\16 224[46] - 0.951 - 0.951

MIM[24]
EVA-G\14 CLIP 560[24] 89.8% 0.919 89.8% 0.925

Table 2: Extended version of Tab. 1 from the main paper. We show ImageNet1k Accuracy (Acc.) and mean spurious AUC
(Spu.) for the original model and the SpuFix version for a wide selection of state-of-the-art ImageNet classifiers, trained on:
either ImageNet1k only (ImageNet1k), pre-trained on ImageNet21k and then fine-tuned on ImageNet1k (ImageNet21kFT1k),
full ImageNet21k classifiers (ImageNet21k) or pre-training on a range of other datasets (JFT-300M, YFFC-100M, LAION-
2B, LAION-400M, MIM, 1B Instagram). For models commonly used with different input resolutions, we state the used one
at the end of the name. Models using AugReg[66] are marked with †. The ResNext50 and ResNext101 trained with SSL [84]
have cardinality 32 and group width 4 and 16, respectively.
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Figure 11: We plot Accuracy versus mean spurious AUC for a wide variety of SOTA ImageNet classifiers. Models that
use the same architecture family use the same marker and we use color coding for the (pre-taining) datasets. For example,
all models that are pre-trained on ImageNet21k and then fine-tuned are marked in yellow whereas standard ImageNet1k
models are marked green. As can be observed, the addition of larger datasets like ImageNet21k, JFT-300M or LAION
does decrease vulnerability to spurious features over ImageNet1k models with comparable accuracy. The arrows show the
consistent improvement of mean spurious AUC after applying SpuFix while the change of accuracy is negligible for most of
the models.



class structures to preserve or even improve mAUC during
fine-tuning to smaller datasets such as ImageNet1k.

Different architectures: In terms of architecture, there
is no easily observable trend. On pure in1k models, VOLO
D5 achieves the best mAUC of 0.882, however, it is also
the most accurate model. The best overall model in terms
of mAUC is the BEiTV2-L in21k with an mAUC of 0.951,
however, after fine-tuning, the mAUC decreases to 0.921
where it achieves similar values as some other models
like the ViT-B Augreg (0.917), ConvNextV2-H (0.919) and
BEiT-L (0.921) which are the best models with ImageNet-
1k classification head in terms of mAUC. In summary,
attention-based transformers do not seem to yield strong
benefits over convolutional neural networks in terms of vul-
nerability to spurious features. From Table 2, we also see
that semi-supervised training approaches like Noisy Stu-
dent self-training[81] can help to improve mAUC over pure
ImageNet-1k training. However, there the smallest Effi-
cientNet B5 actually achieves better mAUC than all other
models, even the EfficientNet L2 which achieves much bet-
ter clean accuracy. Pre-training using CLIP on large im-
age/text datasets can also yield models with mAUC above
0.9 and is comparable to in21k pre-training. For example,
the ViT-L achieves an mAUC of 0.914 (with AugReg) af-
ter in21k pre-training and 0.912 after CLIP pre-training on
LAION-2B (without AugReg).

SpuFix on the robust ResNet50: The robust ResNet50
shows a substantial improvement in mAUC from 0.630 to
0.763. Fig. 13 to 15 show the class-wise values. In par-
ticular, it raises the class-wise spurious AUC from 0.332
to 0.932 for bookshop (+60.0%), from 0.279 to 0.819 for
flagpole (+54.0%) and from 0.246 to 0.778 for Band Aid
(+53.3%). Overall, the mAUC increases for 95 of 100
classes and achieves an improvement of at least 0.1 for 49
of them. Both the SpuFix method and the image collec-
tion procedure for the Spurious ImageNet benchmark are
based on the values α(k)

l for spurious NPCA components l.
Thus, to further validate the benefit of SpuFix, we collected
10 images each for the classes hummingbird, gondola and
flagpole containing only the spurious feature (bird feeder,
building/canal, US flag) without any automated filtering,
i.e. neither model predictions nor NPCA components were
used. Fig. 12 shows the predictions as well as the class
probability for the spuriously correlated class of the orig-
inal model and the SpuFix version for these images. The
harmful predictions, i.e. predictions of the spuriously cor-
related class, are reduced from 6 to 3 for hummingbird, 8 to
4 for gondola and 7 to 0 for flagpole. SpuFix also decreases
the mean class probability over the 10 images: from 0.57
to 0.13 (hummingbird), 0.61 to 0.13 (gondola), and 0.70 to
0.05 (flagpole). The actual improvements for the individ-
ual images are even larger due to the fact that the original
model already does not predict the corresponding class or

shows a low class probability for some of them. This shows
that SpuFix indeed mitigates the reliance on these spurious
features independent of the image collection procedure.

SpuFix on other ImageNet classifiers: In addition to
the values for the original models, Tab. 2 also contains the
mAUC and accuracies for the SpuFix versions of all evalu-
ated models. Furthermore, the improvements are depicted
as arrows in Fig. 11. One can see that SpuFix consistently
improves the mAUC consistently for all models that were
trained or fine-tuned on ImageNet1k. Even the top perform-
ing models still benefit significantly, e.g. 0.919 to 0.925
(+0.6%) for the EVA-Giant\14 CLIP 560 (MIM) or 0.921
to 0.927 (+0.6%) for the BEiT-L\16 pre-trained on Ima-
geNet21k. On the other hand, the effect of SpuFix on the
validation accuracy is negligible. Only the different vari-
ants of the ResNet50 architecture show a decrease of more
than 0.1%. However, these models also achieve the largest
improvements in spurious mAUC, e.g. the ResNet50 SSL
(1B Instagram) loses 0.4% accuracy but also has a signif-
icant gain of +1.5% in spurious mAUC. We want to stress
again that SpuFix can be applied to any ImageNet classifier
with minimal effort and the code for doing so is part of the
github repo (no retraining, labels etc required).

Models with high mAUC still rely on harmful spu-
rious features: While the general trend of accuracy ver-
sus mAUC validates the progress of recent vision models, it
does not mean that spurious features are no longer a prob-
lem for those models, especially since the worst-performing
classes are still severe modes of failure. To better un-
derstand this behavior on individual classes, we plot the
class-wise AUC for all 100 classes and a selection of mod-
els in Fig. 13 to 15. While both robust ResNet50 models
are overall worse than the much larger comparison mod-
els ViT-B AugReg, we highlight that our SpuFix method
(see Section 7.3) does significantly improve the mean spu-
rious AUC of both ResNets50 models without requiring re-
training. The ViT-AugReg also benefits from SpuFix but
due to the transfer to smaller extent - nevertheless one can
observe improvements by more than 5% in AUC for the
classes flagpole, pole, puck, bookshop, lighter. On aver-
age, it is again observable that ImageNet-21k pre-training
does improve spurious AUC. However, in terms of the final
ImageNet-1k classifier after fine-tuning, classes like bakery,
flagpole, wing, or pole remain challenging and can have
a class-wise AUC as low as 0.5. Thus the improvements
seem to depend heavily on the structure of the dataset used
for pretraining and whether or not this dataset contains the
spurious feature as an individually labeled class that allows
the model to distinguish the class object from the spurious
feature. For example, ImageNet-21k contains both flag-
pole and flag as separate classes, thus in21k ViT-B model
achieves much better spurious AUC for these class (Spuri-
ous ImageNet contains flag images without flagpoles) than



Hummingbird
Predicted class original/SpuFix (class prob. hummingbird original/SpuFix)

hummingbird/ bee/ lycaenid/ pop bottle/ hummingbird/
hummingbird bee lycaenid pop bottle hummingbird

1.00/0.84 0.00/0.00 0.00/0.00 0.02/0.01 0.99/0.10
hummingbird/ hummingbird/ hummingbird/ hummingbird/ fox squirrel

red wine lipstick hummingbird vase fox squirrel

0.91/0.07 0.90/0.03 0.99/0.18 0.89/0.02 0.00/0.00
Gondola

Predicted class original/SpuFix (class prob. gondola original/SpuFix)
gondola/ prison/ gondola/ gondola/ gondola/
gondola prison prison gondola palace

0.85/0.16 0.04/0.04 0.32/0.06 0.99/0.10 0.99/0.12
gondola/ gondola/ gondola/ gondola/ palace/
streetcar gondola gondola palace palace

0.93/0.01 0.96/0.16 0.65/0.16 0.34/0.01 0.01/0.01
Flagpole

Predicted class original/SpuFix (class prob. flagpole original/SpuFix)
flagpole/ flagpole/ flagpole/ flagpole/ flagpole/

Windsor tie parachute parachute parachute parachute

0.97/0.01 0.99/0.02 1.00/0.12 1.00/0.04 1.00/0.01
park bench/ flagpole/ flagpole/ Windsor tie/ Christmas st./
park bench bow tie parachute Windsor tie Christmas st.

0.03/0.03 0.81/0.00 1.00/0.17 0.01/0.01 0.14/0.00

Figure 12: Validation of SpuFix independent of Spurious ImageNet: We collected 10 images each for the classes hum-
mingbird/gondola/flagpole containing only the spurious feature (bird feeder/building/US flag) without filtering by model
predictions or α(k)

l . Our robust ResNet50 classifies 6/8/7 as the corresponding class (mean class probability 0.57/0.61/0.70),
the SpuFix version only 3/4/0 (mean class probability 0.13/0.13/0.05). Therefore, SpuFix reduces the reliance on these harm-
ful spurious features independent of the image collection procedure.



the ViT-B with a ImageNet-1k classification head. Never-
theless, even the in21k models still show a low AUC for
flag pole and thus have problems distinguishing between
flags (spurious feature) and flag pole. It also has to be no-
ticed that the seemingly high AUC values are sometimes
misleading. First of all, we stress again that the images
of Spurious ImageNet do not contain the class object and
thus an AUC of one should be easily obtainable for a clas-
sifier. Second, even if the AUC is one, it only means that
the predicted probability for the validation set images (con-
taining the class object) is always higher than the predicted
probability for images from Spurious ImageNet (not con-
taining the class object). However, still, a large fraction
of the Spurious ImageNet images can be classified as the
corresponding class, e.g. the ConvNext-L-1kFT21k has a
class-wise AUC of 0.93 for “quill”, but still 71% of all Im-
ages from Spurious ImageNet are classified as “quill”, see
Fig. 16 where we show for each image from “Spurious Im-
ageNet” the top-3 predictions with their predicted probabil-
ities. Thus the class extension can still be significant even
for such a strong model. There are also classes which are
completely broken like puck with an AUC of 0.69, where
100% of all images in “Spurious ImageNet” are classified
as puck. The reason is that the puck is simply too small in
the image (or sometimes even not visible at all), whereas the
ice hockey players and also part of the playing field bound-
ary are the main objects in the image. Thus the classification
is only based on spurious features and the object “puck” has
never been learned at all.

E. Comparison to Neural Features of [61]
In this section, we quantitatively and qualitatively evalu-

ate the diversity of the subpopulations detected by our top-5
NPCA components and the top-5 neurons of [61], respec-
tively, on all 1000 classes. To enable a direct comparison,
we consider the NPCA components computed on their ro-
bust ResNet-50 [61] and compare them to the top-5 neurons
detected in [61] for the same model.

A larger variety of subpopulations increases annotation
efficiency as duplicates of the same semantic feature do not
add more information. Moreover, the probability of miss-
ing a (harmful) spurious feature is higher when several of
the top components/neurons correspond to the same feature
because it might drop out of the set selected for human su-
pervision.

For the quantitative evaluation, we measure the percep-
tual similarity of the subpopulations based on the matched
distances of the maximally activating training images:
Let I(k)i be the set of the maximally activating images of
component i for class k and let d be a perceptual metric.
We define the matched distance dm

(
x, I

(k)
j

)
of an image

x ∈ I
(k)
i to a component I(k)j , j ̸= i, as the minimal (per-

ceptual) distance between x and the five images in I(k)j :

dm

(
x, I

(k)
j

)
:= min

x′∈I(k)j

d(x, x′).

For every class k, we consider the top-5 compo-
nents/neurons, each represented by the 5 maximally acti-
vating training images of the corresponding class k. We
compute the matched distances of every image to the other
four components, resulting in a total of 100000 matched dis-
tances. Fig. 17 shows histograms for the perceptual metrics
LPIPS [87], l2-distance of the CLIP embeddings [23], and
the SSCD distance [47]. In all three of them, the distribu-
tion corresponding to the NPCA components is shifted to
the right compared to the one of the neural features which
supports the hypothesis that NPCA detects more diverse
subpopulations. However, as the purpose of the available
perceptual metrics is to measure perturbations of the same
image [87] or to detect (close) copies [47], there is no guar-
antee that these distances are still meaningful for larger val-
ues. Nevertheless, the maximally activating training images
of the top-5 neurons of [61] also have a larger amount of
distances equal to zero which corresponds to identical im-
ages. The histogram in Fig. 18 shows how many of these
identical pairs occur per class. For the NPCA, identical
maximally training images occur less often and for most
of the cases there is only one per class. The method of [61]
produces several identical images per class much more fre-
quently which confirms that single neurons do not neces-
sarily capture different concepts. Due to the orthogonality
constraint of PCA, the NPCA components explore different
directions in feature space and detect subpopulations with
less overlap.

To visualize these results, Fig. 19 and Fig. 20 show the
three worst classes with respect to identical maximally acti-
vating training images for [61] and NPCA, respectively. In
both figures, we show the 5 maximally training images to-
gether with their GradCam images per top-5 neuron of [61]
on the left resp. top-5 NPCA component on the right.

Worst three classes – [61] – (28/24/24 identical pairs):
Considering the classes ”badger” and ”king snake”, the five
neurons capture almost equivalent semantic features which
are all labeled as ”core”. For ”badger”, three neurons have
exactly the same 5 maximally activating images. A similar
pattern holds for the class ”groom”. Here, four of the sub-
populations found by [61] are very similar. Note that three
of those were labeled as ”spurious feature” and one as ”core
feature”. This is a consequence of the use of a majority vote
of the human labelers as a selection criterium. Our stricter
criterium (unanimous vote) prevents such inconsistencies.
While, in all three cases, one of the NPCA components
(”badger”: first comp., ”king snake”: first comp., ”groom”:
third comp.) resembles the features detected by the neu-
rons, the remaining components capture a much more di-
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Figure 13: Extended version of Fig. 6 from the main paper for the first 35 classes in our dataset. We plot class-wise spurious
AUC for our robust ResNet50, the robust ResNet50 from [61], and a ViT-B, both trained on ImageNet1k with and without pre-
training on ImageNet21k as well as pure ImageNet21k training. Additionally, we show the corresponding SpuFix versions
of the five models.
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Figure 14: Continued from Fig. 13 for classes 36-70.
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Figure 15: Continued from Fig. 13 for classes 71-100.
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Figure 16: We show all images of class “quill” (spurious feature: handwritten text) in Spurious ImageNet together with the
top-3 predicted probablities of the ConvNext-L-1kFT21k. Despite a class-wise AUC of 0.93 which seemingly suggests that
the spurious feature is not playing a big role anymore, we observe that 76% of the images are classified as “quill” despite
no “quill” being present. Thus the spurious class extension is still present but the classifier produces slightly less confident
predictions on these images.



Figure 17: Histograms of matched distances: We consider the 5 maximally activating training images for each of the
top-5 NPCA components resp. top-5 neurons of [61]. For each of these images (and each of the components/neurons) we
find the best matching maximally activating training image of a different component/neuron. We call the distances of the
corresponding images “matched distance” and plot these for three different metrics: the neural perceptual metric [87], the
l2-distance of clip embeddings [23], the SSCD distance used for image copy detection [47].

Figure 18: Histogram of identical maximal activating
training images for the top-5 NPCA components resp.
the top-5 neurons of [61] for the robust model used by
[61] We observe that for NPCA only a few components have
identical maximally activating training images and if it hap-
pens in the majority of cases only a single maximal activat-
ing training image of two components is identical. In con-
trast, [61] has a long tail, meaning that several maximal ac-
tivating training images of top-5 neurons are identical. This
confirms that maximally activated neurons do not necessar-
ily capture different semantic concepts. This is different for
NPCA as the orthogonality constraint of PCA enforces to
explore different directions/regions in feature space.

verse set of features. In the case of ”king snake”, the fourth
NPCA components detects, with respect to the criteria of
[61], a spurious feature (hands). For ”groom”, we even
have three NPCA components corresponding to spurious
features (bride, ceiling/lights, trees/bushes). This illustrates
how a lack of diversity in the subpopulations of [61] for

some classes can hinder the detection of spurious features.
Worst three classes – NPCA – (10/8/5 identical pairs):

First, we note that regarding the number of identical pairs
for the “worst cases” of NPCA, there exist many classes for
the top-5 neurons which have similar number of identical
pairs.

The class ”lumbermill” is the worst class for NPCA. One
can see two pairs of duplicate subpopulations (trunks and
trunks/planks) that overlap to large extent with each other
(which is an absolute outlier for NPCA). However, inter-
estingly this subpopulation which is clearly spurious for
“lumbermill” as there are no particular features for ”lum-
bermill” is not present in the top-5 neurons of [61]. The sec-
ond worst class for NPCA is ”barbershop” with two largely
overlapping components showing store/house fronts. How-
ever, there are also three neurons that capture this semantic
feature. In fact the number of identical pairs, NPCA 8, [61]
6, is not so different. In the case of ”English foxhound”,
two NPCA components correspond to a white fence which
is a spurious feature. While the neurons’ subpopulations are
unique for this class, they do not detect the spurious fence
as GradCam for the neuron mainly activates on the dog.

Overall, these examples demonstrate that the problem of
identical maximally activating images is a lot less severe for
the NPCA components.

F. Extended Qualitative Evaluation
Here, we extend our qualitative evaluation of the found

harmful spurious components from Figure 4. Concretely,
for each such pair (class k, component l) we show in Fig. 21
and 22: i) random training images from class k, ii) NPFV
of the component l together with the most activating images
of α(k)

l , and iii) examples of images that display only the
spurious feature but no class features and are incorrectly
classified by four ImageNet classifiers as class k.



Badger
Top-5 max. act. images of [61](28 identical pairs) Top-5 max. act. images of NPCA (ours) (0 identical pairs)

King snake
Top-5 max. act. images of [61] (24 identical pairs) Top-5 max. act. images of NPCA (ours) (1 identical pair)

Groom
Top-5 max. act. images of [61] (24 identical pairs) Top-5 max. act. images of NPCA (ours) (1 identical pair)

Figure 19: Classes, where [61] has the most identical pairs among the top-5 maximally activating images across dif-
ferent neurons (NPCA and neurons computed on the same model, Rob. ResNet50[61]). For each method we provide
the number of identical pairs of images across different neurons for [61] resp. different components for NPCA as described
in App. E. Each row shows the 5 maximally activating images together with the corresponding GradCAM heatmaps for the
top-5 neurons of [61] (left) and the top-5 NPCA components (right), respectively. As in Fig. 5, our NPCA components are
capturing different subpopulations in the training data for these classes, while the different neurons of [61] are finding many
identical pairs, see App. E for more details.
Note: for these components, where [61] fails to find different subpopulations, our NPCA components find more diverse and
even several spurious features: “hands” for the class “king snake” and “bride”, “ceiling/lamps”, and “trees/bushes” for the
class “groom”. The top-5 neurons of [61] for class “groom” identify three of the first four neurons as spurious and one as core
even though the images are semantically the same and GradCAM activations are also similar. Semantically similar neurons
are labeled differently due to their majority vote (for three of the neurons we have a 3:2 decision among the human labelers,
for one a 4:1 decision), whereas we require that the two human labelers need to agree.



Lumbermill
Top-5 max. act. images of [61] (0 identical pairs) Top-5 max. act. images of NPCA (ours) (10 identical pairs)

Barbershop
Top-5 max. act. images of [61] (6 identical pairs) Top-5 max. act. images of NPCA (ours) (8 identical pairs)

English foxhound
Top-5 max. act. images of [61] (1 identical pair) Top-5 max. act. images of NPCA (ours) (5 identical pairs)

Figure 20: Classes where NPCA has the most identical pairs among the top-5 maximally activating images across
different NPCA components (NPCA and neurons computed on the same model, Rob. ResNet50[61]). For each method
we provide the number of identical pairs of images across different neurons for [61] resp. different components for NPCA
as described in App. E. Each row shows the 5 maximally activating images together with the corresponding GradCAM
heatmaps for the top-5 neurons of [61] (left) and the top-5 NPCA components (right), respectively. While some of our NPCA
components have identical pairs, the highest number of them (10) is almost three times smaller than the largest number of
identical pairs of [61] (28). These examples show that even the worst classes for the NPCA components only contain a few
overlapping subpopulations. This aligns with the observations in Fig. 18. Therefore, the problem of a lack of diversity in the
detected features is much less severe for the NPCA components than for the neurons of [61].



G. Random samples from our “Spurious Ima-
geNet” dataset

To visualize our “Spurious ImageNet” dataset, for each
of the 100 classes in our dataset, we show 4 randomly drawn
images (out of the 75 in total) in Fig. 23 and 24. We also
provide a label for the spurious feature shown in brackets.
We again highlight that none of the images contains the ac-
tual class object.

H. Generating the spurious feature to change
predictions

In this section we show how one can adapt the recent
method “Diffusion Visual Counterfactual Explanations” [5]
to generate the spurious feature on a given image without
changing the overall structure of the image. We first intro-
duce the necessary notation. We denote by n(x) = x

∥x∥2
for

x ̸= 0, the normalization of a vector by its l2 norm and the
confidence of the robust ResNet50 classifier in a target class
k as

probust,ψ : [0, 1]d → (0, 1), x 7→ efrobust,ψ,k(x)∑K
i=1 e

frobust,ψ,i(x)
.

Here, frobust,ψ : [0, 1]d → RK are the logits of the robust
classifier, and frobust,ψ,k(x) denotes the logit of class k.

To automatically add spurious features to any given im-
age, we adapt a recently proposed method Diffusion Visual
Counterfactual Explanations (DVCEs) [5], where at a step t
the shifted mean µt is of the form

gupdate = Ccgc − Cdgd + Caga,

µt = µθ(xt, t)

+ Σθ(xt, t) ∥µθ(xt, t)∥2 gupdate,
p(xt−1|xt, x̂, k) = N (µt,Σθ(xt, t)),

where gc := n(∇xt log probust,ψ
(
k|fdn(xt, t)

)
) is the nor-

malized gradient of the adversarially robust classifier,
gd := n(∇xtd(x̂, fdn(xt, t))) - normalized gradient of
the distance term. We add as additional guidance ga :=

n(∇xtα
(k)
j (fdn(xt, t))) - the normalized gradient of the

contribution α(k)
j of the j-th neural PCA component to the

logit of class k. As the derivative of the diffusion mod-
els, relies on noisy updates, and the classifier has not been
trained on such inputs, [5] propose to use the denoised sam-
ple x̂0 = fdn(x, t) of the noisy input xt as an input to the
classifier. Intuitively, at every step t of the generative de-
noising process, the method of [5] follows i) the direction
ga that increases the contribution of neural PCA component
j (corresponding to a desired spurious feature) of class k to
the logit fk(x) of this class, ii) the direction gc that increases
the confidence of the classifier in the class k, and iii) the di-
rection gd that decreases the distance to the original image
x̂.

In our experiments, we set d(x, y) := ∥x− y∥1 fol-
lowing [5] and coefficients as follows: Cc = 0.1, Cd =
0.35, Ca = 0.05. With these parameters, we generate the
desired DVCEs in Fig. 27. There, using minimal realistic
perturbations to the original image we can change the pre-
diction of the classifier in the target class k with high confi-
dence. Moreover, these perturbations introduce only harm-
ful spurious features to the image and not class-specific fea-
tures e.g. for freight car the DVCE generates graffiti but no
features of a freight car.

This happens, because, as has been shown qualitatively
in Fig. 4 and quantitatively in Fig. 6, this classifier has
learned to associate class “fireboat” with the spurious fea-
ture “water jet”, “freight car” - with “graffiti”, “flagpole”
with a flag without the pole and mostly with “US flag”, and
“hard disc” - with “label”, and therefore introducing only
these harmful spurious features is enough to increase the
confidence in the target class k significantly.



Gondola - Random train. images (confidence /αk) Images with spurious houses/river but no gondola

1.00 / 3.2 1.00 / 0.6 0.98 /−3.8 1.00 / 1.2 0.98 /−2.0 0.92 / 6.4 0.82 / 4.4 0.73 / 3.1 0.85 / 4.9 0.82 / 4.1
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as gondola by four ImageNet models

1.00 / 6.9 1.00 / 7.7 1.00 / 6.9 0.96 / 6.9 1.00 / 6.9 0.88 / 4.5 0.90 / 5.7 0.74 / 5.4 0.79 / 5.6 0.90 / 5.6
Racket - Random train. images (confidence /αk) Images with spurious tennis court/player but no racket

0.93 / 0.7 0.38 /−3.0 0.62 /−2.4 0.12 /−3.1 0.97 / 2.1 0.82 / 6.2 0.94 / 4.3 0.90 / 3.8 0.97 / 3.7 0.76 / 5.9
NPFV-5 Max. activating train. images - NPCA Comp. 5 all classified as racket by four ImageNet models

1.00 / 17.8 0.78 / 7.5 1.00 / 7.2 1.00 / 7.0 1.00 / 7.0 0.94 / 5.7 0.83 / 4.7 0.76 / 4.2 0.90 / 3.8 0.56 / 3.8
Dam - Random train. images (confidence /αk) Images with spurious waterfall but no dam

0.44 / 0.1 0.52 / 0.1 0.28 / 0.0 1.00 /−0.0 0.85 /−0.0 0.30 / 0.1 0.99 / 0.1 0.67 / 0.1 0.55 / 0.1 0.99 / 0.1
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as dam by four ImageNet models

1.00 / 0.2 1.00 / 0.1 0.97 / 0.1 1.00 / 0.1 0.70 / 0.1 0.55 / 0.1 0.63 / 0.1 0.62 / 0.1 0.76 / 0.1 0.77 / 0.1
Flagpole - Random train. images (confidence /αk) Images with spurious US flag but no flag pole

1.00 / 4.9 0.25 /−3.9 1.00 / 5.4 0.86 /−0.4 0.99 /−1.3 1.00 / 8.3 0.98 / 3.6 0.96 / 6.6 0.38 / 3.4 0.99 / 5.4
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as flag pole by four ImageNet models

1.00 / 16.1 1.00 / 11.6 1.00 / 11.1 1.00 / 10.8 1.00 / 10.8 0.94 / 5.1 1.00 / 6.6 0.99 / 5.1 1.00 / 8.8 0.75 / 4.2

Figure 21: Spurious features (ImageNet): found by human labeling of our neural PCA components. For each class we
show 5 random train. images (top left), the neural PCA Feature Visual. (NPFV) and 4 most activating train. images for the
spurious feature component (bottom left). Right: four ImageNet models classify images showing only the spurious feature
but no class object as this class.



Hard disc - Random train. images (confidence /αk) Images with spurious (serial) labels but no hard disc

0.93 / 0.3 0.03 /−3.3 1.00 / 0.7 0.04 /−0.32 0.97 /−0.3 0.74 / 6.6 0.66 / 6.5 0.68 / 5.75 0.62 / 5.4 0.65 / 5.3
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as hard disc by four ImageNet models

1.00 / 14.0 1.00 / 9.8 1.00 / 8.8 1.00 / 8.3 1.00 / 8.3 0.85 / 4.9 0.59 / 4.6 0.72 / 4.3 0.83 / 3.9 0.53 / 3.9
Snorkel - Random train. images (confidence /αk) Images with spurious diver/human but no snorkel

0.67 /−0.1 0.01 /−3.8 1.00 / 2.4 0.17 /−2.3 0.84 / 1.8 0.90 / 5.0 0.64 / 4.3 0.83 / 3.8 0.64 / 3.8 0.74 / 3.3
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as snorkel by four ImageNet models

1.00 / 9.6 1.00 / 6.9 1.00 / 5.9 1.00 / 5.9 0.97 / 5.8 0.71 / 3.1 0.61 / 3.1 0.59 / 3.0 0.59 / 2.8 0.55 / 2.8
Mountain bike - Random train. images (confidence /αk) Images with spurious forest but no mountain bike

0.46 /−0.2 0.70 / 0.1 0.99 / 0.1 0.00 / 0.0 0.55 /−0.1 0.31 / 0.3 0.60 / 0.3 0.33 / 0.3 0.36 / 0.3 0.35 / 0.3
NPFV-1 Max. activating train. images - NPCA Comp. 1 all classified as mountain bike by four ImageNet models

0.93 / 0.5 0.96 / 0.3 0.31 / 0.3 0.24 / 0.3 0.42 / 0.3 0.45 / 0.3 0.37 / 0.3 0.34 / 0.3 0.52 / 0.3 0.53 / 0.3
Indigo Bunting - Random train. images (confidence /αk) Images with spurious twigs but no indigo bunting

1.00 / 2.1 0.00 /−2.1 1.00 /−1.1 1.00 / 1.2 1.00 / 0.4 0.56 / 2.8 0.49 / 2.4 0.30 / 2.4 0.16 / 2.3 0.35 / 2.2
NPFV-3 Max. activating train. images - NPCA Comp. 3 all classified as indigo bunting by four ImageNet models

1.00 / 7.7 1.00 / 3.8 0.98 / 3.6 1.00 / 3.6 0.98 / 3.5 0.36 / 2.2 0.37 / 2.1 0.50 / 1.8 0.44 / 1.8 0.55 / 1.7

Figure 22: Spurious features (ImageNet): found by human labeling of our neural PCA components. For each class we
show 5 random train. images (top left), the neural PCA Feature Visual. (NPFV) and 4 most activating train. images for the
spurious feature component (bottom left). Right: four ImageNet models classify images showing only the spurious feature
but no class object as this class.



tench (humans,1) g. white shark (water/foam, 2) indigo bunting (twigs, 3) agama (bark, 8) a. alligator (vegetation, 10)

water snake (water veg., 5) black grouse (steppe/twigs, 6) ptarmigan (snow, 2) ruffed grouse (twigs/snow, 5) s.-c. cockatoo (branches 3)

coucal (branches/bush, 8) hummingbird (red feeder/flower, 2) platypus (water surface, 4) koala (eucalyptus plants, 3) grey whale (open sea, 6)

leopard (tree/bark, 9) sloth bear (stones/trunks, 3) bee (violet flowers, 2) walking stick (leaves, 3) cabbage butterfly (flowers, 3)

sulphur butterfly (flowers, 2) fox squirrel (tree/branches, 7) hartebeest (steppe/straw, 9) t.-t. sloth (branches/leaves, 6) howler monkey (branches, 2)

Figure 23: Random selection of 4 images for classes 1-25 of our “Spurious ImageNet” dataset with class label (spuri-
ous feature, NPCA component). Note that the labels of spurious features are coarse and thus overlap e.g. several are
leaves/branches/fowers. We are not able to identify if these are special trees or flowers which might be more specific.



indri (branches/leaves, 6) barracouta (humans/hands, 8) sturgeon (humans, 2) gar (humans in white shirts, 5) academic gown (woman, 7)

bakery (storefront, 6) balance beam (gymnasts, 1) Band Aid (labels, 1) barbershop (store front, 1) barn (trees, 7)

bathing cap (humans/pool, 1) bath towel (baby, 2) bathtub (baby/children, 4) beer bottle (colorful label, 1) bikini (black-white images, 3)

bookshop (storefront, 1) bulletproof vest (text, 5) bullet train (train station, 7) chain mail (face, 5) chain saw (human worker, 2)

cowboy hat (human/face, 4) cradle (baby, 7) dam (waterfall, 1) dogsled (snow, 7) dumbbell (athlete, 5)

Figure 24: Random selection of 4 images for classes 26-50 of our “Spurious ImageNet” dataset with class label (spurious
feature, NPCA component).



fireboat (water jet, 2) flagpole (US flag, 1) fountain pen (hand-written text, 10) freight car (graffiti, 1) gondola (houses, 1)

hair spray (bend arms, 1) hamper (flowers, 1) hard disc (label, 1) horizontal bar (gymnast, 8) lighter (fire, 5)

miniskirt (woman, 5) mortarboard (humans in suits, 3) mountain bike (forest 1) neck brace (humans, 3) nipple (baby, 7)

obelisk (sky/clouds, 9) ocarina (humans, 6) padlock (wooden door, 2) parallel bars (gymnasts, 3) pencil box (pink/comic, 8)

pill bottle (pills, 1) ping-pong ball (human/faces, 7) plastic bag (twig/tree, 9) plunger (humans with stick, 2) pole (humans, bare arms/legs, 1)

Figure 25: Random selection of four images for classes 51-75 of our “Spurious ImageNet” dataset with class label (spurious
feature, NPCA component).



pop bottle (colorful label, 3) pot (tree/bush, 8) potter’s wheel (humans/bare arms, 5) puck (ice-hockey player, 1) quill (hand-written text, 5)

racket (athlete/court, 5) radio telescope (sky/hill, 4) rain barrel (wooden wall, 4) rotisserie (baking oven, 2) rubber eraser (pen, 10)

safe (text, 8) sax (face/dark background, 2) seat belt (humans in car, 2) shoe shop (humans indoor, 7) shovel (wall/ground, 8)

shower cap (baby/humans, 4) sleeping bag (text, 9) snorkel (humans underwater, 1) snowmobile (snowy forest, 1) snowplow (snowy landscape 6)

steel drum (humans, 8) stove (fire, 2) trailer truck (sky/clouds, 5) wing (clouds from above, 4) cheeseburger (fries, 9)

Figure 26: Random selection of 4 images for classes 76-100 of our “Spurious ImageNet” dataset with class label (spurious
feature, NPCA component).



Original DVCE Original DVCE Original DVCE Original DVCE Original DVCE

fountain:
0.36

fireboat:
0.53

fountain:
0.99

fireboat:
0.86

fountain:
0.82

fireboat:
0.98

fountain:
0.92

fireboat:
0.98

seashore:
0.42

fireboat:
1.0

stone wall:
0.93

freight car:
0.84

stone wall:
0.92

freight car:
1.0

stone wall:
0.93

freight car:
0.95

moving van:
0.17

freight car:
0.99

shopping cart:
0.95

freight car:
1.0

geyser:
0.99

flagpole:
1.0

alp:
0.33

flagpole:
1.00

mosque:
0.19

flagpole:
1.0

paddle:
0.14

flagpole:
0.99

stone wall:
0.21

flagpole:
1.0

car mirror:
1.0

hard disc:
0.92

gas pump:
0.42

hard disc:
0.99

stone wall:
0.93

hard disc:
0.93

comic book:
0.43

hard disc:
1.0

monitor:
0.57

hard disc:
0.97

Figure 27: Adding spurious features automatically with an adaptation of DVCEs [5] changes the prediction of the classifier
robust ResNet50. This happens, because, as has been shown qualitatively in Fig. 4 and quantitatively in Fig. 6, this classifier
has learned to associate class “fireboat” with the spurious feature “water jet”, “freight car” - with “graffiti”, “flagpole” with
a flag without the pole and mostly with “US flag”, and “hard disc” - with “label”. This again confirms that they are harmful
spurious features.


