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Figure 1. The left shows several scenes captured in HuCenLife, which covers diverse human-centric daily-life scenarios.
The right demonstrates rich annotations of HuCenLife, which can benefit many tasks for 3D scene understanding .

Abstract

Human-centric scene understanding is significant for
real-world applications, but it is extremely challenging
due to the existence of diverse human poses and ac-
tions, complex human-environment interactions, severe oc-
clusions in crowds, etc. In this paper, we present a large-
scale multi-modal dataset for human-centric scene under-
standing, dubbed HuCenLife, which is collected in diverse
daily-life scenarios with rich and fine-grained annotations.
Our HuCenLife can benefit many 3D perception tasks,
such as segmentation, detection, action recognition, etc.,
and we also provide benchmarks for these tasks to facili-
tate related research. In addition, we design novel mod-
ules for LiDAR-based segmentation and action recognition,
which are more applicable for large-scale human-centric

*Equal contribution. † Corresponding author. This work was sup-
ported by NSFC (No.62206173), Natural Science Foundation of Shang-
hai (No.22dz1201900), MoE Key Laboratory of Intelligent Perception
and Human-Machine Collaboration (ShanghaiTech University), Shang-
hai Frontiers Science Center of Human-centered Artificial Intelligence
(ShangHAI), Shanghai Engineering Research Center of Intelligent Vision
and Imaging.

scenarios and achieve state-of-the-art performance. The
dataset and code can be found at https://github.
com/4DVLab/HuCenLife.git.

1. Introduction

Human-centric scene understanding in 3D large-scale
scenarios is attracting increasing attention [13, 11, 42, 31],
which plays an indispensable role in human-centric ap-
plications, including assistive robotics, autonomous driv-
ing, surveillance, human-robot cooperation, etc. It is often
confronted with substantial difficulties since these human-
centric scenarios usually have the attributes of various sub-
jects with different poses, fine-grained human-object inter-
actions, and challenging localization and recognition with
occlusions. Moreover, current state-of-the-art perception
methods heavily rely on large-scale datasets to achieve good
performance. Therefore, to promote the research of human-
centric scene understanding, the collection of large-scale
datasets with rich and fine-grained annotations is required
urgently, which is difficult but of great significance.

In previous work, many studies target on the scene un-
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derstanding based on the input of image or video [2, 37, 17,
59], which are not applicable to real-world applications due
to the limited 2D visual representations. Afterward, some
works pay attention to the static indoor-scene understand-
ing [12, 1, 5] based on the pre-scanned RGB-D data, which
are not suitable for the research of real-time perception. Re-
cently, more and more outdoor multi-modal datasets [6, 49]
are released equipped with LiDAR point clouds. They pro-
vide detailed annotations under complex outdoor scenes,
while they often focus on the vehicle-dominated traffic en-
vironment and neglect the more challenging human-centric
daily-life scenarios. Although the dataset STCrowd [11] ap-
pears lately, it focuses on the detection task of dense pedes-
trian scenes, lacking varied human activities and diversi-
fied annotations. Consequently, the dataset with rich and
fine-grained annotations for human-centric understanding
in long-range 3D space is crucial and insufficient.

In this paper, to facilitate the research of human-centric
3D scene understanding, we collect a large-scale multi-
modal dataset, namely HuCenLife, by using calibrated and
synchronized camera and LiDAR. Specifically, the dataset
captures 32 multi-person involved daily-life scenes with
rich human activities and human-object interactions. Var-
ious indoor and outdoor scenarios are both included. For
the annotation, we provide fine-grained labels including in-
stance segmentation, 3D bounding box, action categories,
and continuous instance IDs, which can benefit various 3D
perception tasks, such as point cloud segmentation, detec-
tion, action recognition, Human-Object Interaction (HOI)
detection, tracking, motion prediction, etc. In this paper,
we provide benchmarks for the former three tasks by exe-
cuting current state-of-the-art methods on HuCenLife and
give discussions for other downstream tasks.

In particular, considering the specific characteristics of
human-centric scenarios, we propose effective modules to
improve the performance for point cloud-based segmenta-
tion and action recognition in the complex human-centric
environments. First, we model human-human interactions
and human-object interactions and leverage their mutual
relationships to benefit the classification of points and in-
stances. Second, to solve the problem of the big scale
span of objects in daily-life scenarios, we exploit multi-
resolution feature extraction strategy to aggregate global
features and local features hierarchically so that small ob-
jects can be better attended. We evaluate our methods and
conduct extensive experiments on HuCenLife. Several ab-
lation studies are also conducted to demonstrate the effec-
tiveness of each module and good generalization capability.
Our contributions are summarized as follows:

1. We introduce HuCenLife, the first large-scale multi-
modal dataset for human-centric 3D scene understand-
ing with rich human-environment interactions and
fine-grained annotations.

2. HuCenLife can benefit various human-centric 3D per-
ception tasks, including segmentation, detection, ac-
tion recognition, HOI, tracking, motion prediction, etc.
We provide baselines for three main tasks to facilitate
future research.

3. Several novel modules are designed by incorporating
fine-grained interactions and capturing features at var-
ious resolutions to promote more accurate perception
in human-centric scenes.

2. Related Work
2.1. Datasets for 3D Scene Understanding

The RGB-D datasets of indoor scenes dominate the
early scene understanding task. ScanNet [12, 1] focuses
on object surface reconstruction and semantic segmenta-
tion, providing dense and rich annotations for various in-
door objects. NTU RGB+D [44] is a human action recog-
nition dataset with corresponding skeleton and action la-
bels. Behave [5] concentrates on human-object interac-
tion with human SMPL models and interactive objects
annotations. It can be found that outdoor scenarios are
not well explored. Recently, the community has paid at-
tention to traffic scenes for autonomous driving and col-
lect several outdoor multi-modal datasets. KITTI [21],
nuScenes [6] and Waymo [50] provide 3D bounding boxes
for traffic participants and [6, 3] also offer point-wised se-
mantic segmentation labels. However, these datasets are
all vehicle-dominated and neglect human-centric scenarios.
STCrowd [11] mainly concentrates on the crowds on cam-
pus but lacks the fine-grained segmentation labels and com-
plex human-environment interactions. In order to facilitate
the research of human-centric 3D scene understanding, we
collect HuCenLife, a multi-modal dataset with various sce-
narios in human daily life.

2.2. Point Cloud-based Segmentation

Most outdoor point cloud segmentation methods mainly
focus on point cloud representations. Point-based meth-
ods [39, 40, 67, 52] make the operation on unordered point
cloud directly. Voxel-based methods [10, 22] utilize effi-
cient sparse convolution to reduce the time complexity. Po-
larNet [71] and Cylinder3D [76] further consider the non-
uniform LiDAR point clouds characteristics and point dis-
tribution, and divide the points under the polar coordinate
system. [26] adopts the cylinder convolution and proposes
a dynamic shifting network for instance prediction. These
methods are mainly focusing on automatic driving scenes,
while neglecting the counterpart in human-centric scenar-
ios with complex human-object interactions and challeng-
ing occlusions.

Another line of segmentation, namely point cloud in-
stance segmentation, also embraces great progress, which



can be mainly divided into proposal-based methods and
grouping-based methods. Previous proposal-based meth-
ods [64, 18, 61] regard the instance segmentation as a
top-down pipeline, which first generate proposals and then
segment the objects within the proposals. Grouping-based
methods [27, 55, 23, 8, 24, 58] adopt the bottom-up strat-
egy. PointGroup [27] aggregates points from original and
offset-shifted point sets. DyCo3D [8] and DKNet [58] en-
code instances into kernels and propose dynamic convolu-
tion kernels and then merge the candidates. Considering the
imprecise bounding box prediction in proposal-based meth-
ods for refinement and the time-consuming aggregation in
grouping methods, [43, 48] take each object instance as
an instance query and design a query decoder with trans-
formers. However, these methods are applied to structured
indoor instances without human involvement and human-
environment interactions. Our dataset and proposed method
target more on human-human and human-object interac-
tions in large-scale human-centric scenes.

2.3. LiDAR-based 3D Detection

As the mainstream of 3D perception task, 3D detection
task has been fully explored, which can be grouped via the
point encoding strategies. First, point-based methods [69,
7, 38, 46, 62] extract the geometry information from raw
points with sampling and grouping. [53, 56, 4, 51, 30, 19]
transform point cloud into range images for detection. Sec-
ond, voxel-based methods [74, 57, 29, 15, 14, 65, 60] con-
vert raw point clouds to regular volumetric or pillar repre-
sentations and adopt voxel-based feature encoding. Third,
hyper-fusion methods [36, 28, 45, 63, 9, 75] take advan-
tage of both voxels and points and fuse them together to
model the hyper encoding. In this paper, we test them on
the proposed HuCenLife dataset to provide the benchmark
and offer the comprehensive analyses and comparison.

2.4. Action Recognition

Recently, transformer-based methods have dominated
the field of action recognition [32, 20]. Many variants based
on ViT [17] have been proposed to explore the potential
of transformer in video classification, where ViViT [2] ex-
tends the two-dimensional patch to three-dimensional tube
to model the temporal relation, MTV [59] divides the tube
with different time scales to extract the action features with
different amplitude of change over time, and TubeViT [37]
further samples various sized 3D space-time tubes from the
video to generate learnable tokens. However, the common
action recognition [47, 44] is annotated in image-level and
lacks of instance-level labels, causing these methods hard
to be applicable in complex 3D scenarios. In this paper,
we introduce point cloud-based instance action recognition
task in large-scale scenes and collect the HuCenLife dataset
equipped with various instances with different poses and

Figure 2. Sensor setup for data collection.

motions, to make the basis for research community.

3. HuCenLife Dataset
HuCenLife is the first dataset that emphasizes human-

centric 3D scene understanding, containing indoor and out-
door daily-life scenes with rich annotations of human ac-
tivities, human-human interactions, and human-object in-
teractions, which facilitates the development of intelligent
security, assistive robots, human-machine cooperation, etc.
In this section, we first introduce the data acquisition in
Sec.3.1, and then provide important annotation statistics in
Sec.3.2, and finally highlight the novelties of HuCenLife by
comparing with existing influential datasets in Sec.3.3.

3.1. Data Acquisition

To collect the dataset, we built a Visual-LiDAR Capture
System, which mainly consists of one 128-beam Ouster-
OS1 LiDAR and six industrial cameras in a circle, as Fig 2
shows. All sensors are tied in fixed positions on the bracket
with mechanical synchronization. The LiDAR has a 360◦

horizon field of view (FOV) ×45◦ vertical FOV, and each
camera has a 75◦ × 51.6◦ FOV with 1920 × 1200 image
resolution. For our equipment, LiDAR captures raw point
cloud in 10Hz and camera takes pictures in 32Hz.

3.2. Annotation

We manually annotated all humans and these objects
with interactions with humans in LiDAR point cloud by re-
ferring to the synchronized image. We select one frame per
second for labeling and finally obtain 6, 185 frames (103
minutes) of annotated LiDAR point cloud. For each target,
we provide four kinds of annotations, i.e., point cloud-based
instance segmentation, 3D bounding box, human action
classification, and tracking ID across consecutive frames,
like Fig 1 shows. In HuCenLife, there are 65, 265 hu-
man instances in total, including 58, 354 adults and 6, 911
children, and 31, 303 human-interacted objects. There are
20 categories of objects and 12 kinds of human actions.
Specifically, the HuCenLife dataset is collected in 15 distin-
guished locations with 32 human-centric daily-life scenes,
including playground, shopping mall, campus, park, gym,
meeting room, express station, etc. For each scene, there are
11 persons on average with multiple interacted objects, and



Table 1. Comparison with related datasets for 3D scene understanding. There are some abbreviations, where “pc” denotes LiDAR point
cloud, “ins. seg.” means instance segmentation, “bbx” is bounding box, and “inter. obj.” denotes objects having interactions with humans.

Dataset Data LiDAR Point Cloud Person Person Scenes Annotation Content Annotation Targets
Modality Beam Frame Number Per Frame indoor outdoor ins. seg. 3D bbx action multi-person inter. obj.

ScanNet[12] RGBD - - - - ! % ! ! % % %

S3DIS[1] RGBD - - - - ! % ! ! % % %

SUN RGB-D[47] RGBD - - - - ! % % ! % % %

NTU RGB+D[44] RGBD - - - - ! % % % ! % %

BEHAVE[5] RGBD - 15.8k 15.8k 1 ! % ! % ! % !

SemanticKITTI[3] pc 64 43k 9.7k 0.2 % ! ! % % ! %

KITTI[21] image&pc 64 15k 4.5k 0.3 % ! ! ! % ! %

Waymo[50] image&pc 64 230k 2.8M 12 % ! ! ! % ! %

nuScenes[6] image&pc 32 40k 208k 5 % ! ! ! % ! %

STCrowd[11] image&pc 128 11k 219k 20 % ! % ! % ! %

HuCenLife image&pc 128 6.1k 65k 11 ! ! ! ! ! ! !

for some complex scenes, there are about 70 persons. The
diverse density distributions in HuCenLife bring challenges
for related research. More detailed annotation introductions
are in the supplementary material.

3.3. Characteristics

We introduce the basic information of HuCenLife and
compare it with related popular datasets in Table 1. In par-
ticular, we conclude four highlights of our dataset below.

Large-scale Dynamic Scenarios. Benefiting from
the long-range-sensing and light-independent properties of
LiDAR, HuCenLife contains data of diverse large-scale
scenes day and night. Unlike indoor datasets [12] where
the scene is pre-scanned and has only static objects, Hu-
CenLife provides online captured multi-modal visual data
of dynamically changing scenes with dynamic people, ob-
jects, and background. Furthermore, the density of humans
and objects is changing from a few to dozens in distinct
scenes. The visual data in such diverse dynamic scenarios
has huge significance for developing mobile robots.

Abundant Human Poses. Different from current traf-
fic or crowd datasets [50, 6, 11], where people only act as
pedestrians walking or standing on the road, HuCenLife
pays attention to daily-life scenarios, where people have
rich actions, such as doing exercise, crouching down, danc-
ing, running, riding, etc. In particular, HuCenLife contains
thousands of children samples, which are never concerned
in previous datasets. Such complex scenarios with high-
degree freedom of human poses bring challenges for accu-
rate perception and recognition.

Diverse Human-centric Interactions. Apart from
abundant self-actions of humans, HuCenLife also includes
rich human-human interactions (hugging, holding hands,
holding a baby, etc.) and human-object interactions (riding
a bike, opening the door, carrying a box, etc.). What’s more,
there are some extremely complex human-human-object in-
teractions, such as playing basketball, having a meeting in a
room, etc., which require the participation of multiple per-
sons and objects. HuCenLife is unique for containing di-

versified interaction data in a variety of scenes, which is
significant for the research of human-machine cooperation
and boosts the development of service robots.

Rich Annotations. HuCenLife provides rich fine-
grained annotations, which can benefit many perception
tasks, such as point cloud segmentation, 3D detection, 3D
tracking, action recognition, HOI, motion prediction, etc.
In particular, due to complex scene contents, the annotation
process of HuCenLife is much more difficult than others. A
well-trained annotator usually spends 25min on average for
labeling one frame of LiDAR point cloud in our dataset.

3.4. Privacy Preservation

We strictly obey the privacy-preserving rules. We mask
all sensitive information, such as the faces of humans and
locations, in RGB images. LiDAR point clouds without any
texture and facial information naturally protect the privacy.

4. Various Downstream Tasks

As mentioned above, our dataset can benefit numer-
ous human-centric 3D perception tasks. We conduct three
main tasks on HuCenLife based on the LiDAR point cloud,
including human-centric instance segmentation, human-
centric 3D detection, and human-centric action recogni-
tion, and provide the baseline methods. Particularly, novel
methods are proposed for instance segmentation and action
recognition, respectively, to tackle the difficulties of large-
scale human-centric scenarios. In what follows, we present
details of these tasks with extensive experiments in order.

5. Human-centric Instance Segmentation

For LiDAR point cloud-based semantic instance seg-
mentation, the input is expressed as P ∈ RN×4, which
involves N points with the 3D location and reflection in-
tensity (x, y, z, r). The task is to assign each point to a cat-
egory and then output a set of object instances with their
corresponding semantic labels.



Table 2. Instance segmentation results on HuCenLife dataset.
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Voxel-DSNet [26] 66.9 16.1 20.7 22.6 16.3 12.6 5.4 11.9 1.1 25.7 58.3 8.5 72.7 33.3 24.6 20.7 1.6 8.6 3.1 97.9 26.4 2.6 7.1

Cylinder-DSNet [26] 72.3 12.9 23.8 28.6 18.9 25.2 5.8 4.7 6.8 23.4 90.2 21.4 67.9 37.2 15.5 23.9 3.5 14.1 2.8 97.9 29.8 1.2 7.6
DKNet [58] 75.6 52.7 5.3 26.3 35.8 65.6 0.0 14.6 0.6 39.7 93.9 0.0 95.1 48.5 13.1 9.8 14.6 8.1 3.4 98.0 35.0 11.1 14.0

SoftGroup [55] 80.0 32.6 4.4 38.2 20.6 60.7 8.3 25.2 3.2 42.5 95.5 1.0 95.8 24.6 27.5 34.0 7.1 7.6 29.0 96.2 36.7 32.5 38.2
Ours 82.7 46.4 6.4 39.7 51.1 69.4 15.3 29.6 3.0 40.0 89.4 1.2 96.8 35.6 29.2 28.4 6.8 10.6 32.3 96.9 40.5 35.6 40.4

Ours + PointPainting 79.8 30.7 16.2 42.5 47.6 53.4 8.1 21.7 3.9 32.8 82.3 0.0 95.6 34.2 19.6 25.3 11.9 19.7 30.0 96.4 37.6 28.9 34.8
w/o HHIO 79.5 15.2 17.4 32.9 31.6 56.6 7.1 26.1 1.8 35.0 92.8 0.6 95.8 22.0 26.7 30.2 9.5 19.0 29.0 97.1 36.3 25.0 31.6

Ours + LocalFusion 81.8 46.8 2.0 46.2 36.8 74.7 13.2 28.5 0.4 37.3 93.8 2.3 96.5 35.2 37.0 27.8 8.6 9.9 26.0 96.5 40.1 36.9 42.0
w/o HHIO 80.7 39.3 2.3 41.9 26.6 73.1 13.9 23.2 2.2 35.4 92.2 0.0 94.4 24.5 29.7 31.4 7.3 13.6 36.1 95.9 38.2 36.6 41.6

Table 3. Semantic segmentation results on BEHAVE dataset.
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SoftGroup[55] 96.8 71.8 54.9 83.7 54.4 56.3 40.4 21.9 85.6 82.4 27.1 67.3 71.7 83.5 77.7 82.5 90.5 44.5 64.7 89.0 70.5 67.5

Ours 97.0 72.4 61.3 86.6 62.2 57.3 45.6 33.4 87.7 83.3 30.8 72.1 73.8 84.2 76.0 86.6 91.9 49.2 66.9 89.0 76.4 70.7

5.1. Method

For human-centric scenes, people have diverse pose
types and may stay together with occlusions. Moreover,
some objects are relatively small and closely located to the
person, causing overlapping or stitching points with humans
and bringing difficulties in distinguishing from the person.
To tackle these problems, we propose a Human-Human-
Object Interaction(HHOI) module, shown in Figure 3. The
model first extracts the human-human interaction feature
with attention strategy so that humans can be more accu-
rately recognized even with partial point cloud in occluded
scenes. Then, it uses human-centric features to guide the
network automatically to learn a weighted feature to pay at-
tention to interactive objects, which can benefit capturing
fine-grained semantic information.

5.1.1 Human-Human-Object-Interaction Module

As shown in Figure 3, we utilize a sparse 3D Unet to
get D dimensional point feature Fp ∈ RN×D. Then,
human-human interacted features are extracted through a
transformer mechanism. We get the semantic score Y =
softmax(MLP (Fp)) = {yi,c}N×C for each point, where
C is the class number. And then we select M points with
the confidence of belonging to person class higher than the
threshold τ . We further apply the triplet Q, K, V attention
layer to extract correlations among different sampled person
features Fs and obtain the final human-guided feature:

fattention = softmax(
QKT

√
D

)V,

Fg = LN(fattention + FFN(fattention)),

where LN is layer normalization and FFN is the feed-
forward neural network [54]. Then, we use human-guided
feature to extract human-object interaction for fine-grained
object segmentation. The similarity weighted matrix W =

offset branch

Point Feature

Sampled Feature

Self Attentaion

KQ V

Add & Norm Guided Feature

Similarity Matrix

semantic branch Group 






Cluster

classification

mask score

Instance
Results

HHOI Point Cloud

segmentation

Weighted Matrix
Sparse 3D Unet

Tiny Unet

Figure 3. The architecture of our segmentation method. Espe-
cially, the HHOI module extracts the correlation within different
persons and the human-object relationships, which can benefit the
point-wise and instance-wise classification.

softmax(FpF
T
g ) is computed to enhance the features of

objects that people interact with. We multiply the weighted
matrix with point features to obtain the final weighted fea-
tures. In this way, the model adaptively learns human-
related representations and enhances the object feature with
the guidance of high-confidence human features.

5.1.2 Point-wise Prediction and Refinement

Taking the weighted features as input, the semantic branch
and offset branch apply two-layer MLP and output the se-
mantic scores S ∈ RN×K and offset vectors O ∈ RN×K

from the point to the instance center, respectively. The
weighted cross-entropy loss Lsemantic and L1 regression loss
Loffset are used to train the semantic and offset branches. Af-
ter that, we follow the refinement stage in SoftGroup [55],
where point-level proposals are fed into a tiny-unet to pre-
dict classification scores, instance masks, and mask scores
to generate the final instance results. Specifically, the clas-



Figure 4. The visualization of semantic (first row) and instance
(second row) segmentation results of our method on HuCenLife.

sification branch predicts the category scores ck for each in-
stance. The segmentation branch utilizes a point-wise MLP
to predict an instance mask mk for each instance proposal.
Mask scoring branch estimates the IoU between the pre-
dicted mask and the ground truth for each instance. We train
each branch with cross-entropy loss Lclass, binary cross-
entropy loss Lmask, and l2 regression loss Lmask score. And
the total loss is the sum of all above losses.

5.2. Experiments

5.2.1 Baselines and Evaluation Metrics

Previous 3D instance segmentation works can be divided
into LiDAR-based methods and RGB-D-based methods.
For the former, we compare with current SOTA method
DSNet [26] of both voxel-division version and cylinder-
division version. For the latter, we select current SOTA ap-
proaches DKnet [58] and SoftGroup [55] for comparison.

We utilize mean IoU (mIoU) to evaluate the quality of
the semantic segmentation. For instance segmentation, we
report AP50 and AP25 which denote the scores with IoU
thresholds of 50% and 25%, respectively.

5.2.2 Results

Comparison on HuCenLife dataset. We compare the
results of our proposed method with baseline methods in
Table 2. DSNet does not get satisfactory results, mainly be-
cause it focuses on traffic scenarios, while the span of object
scale is much larger in human-centric scenarios. SoftGroup
is better than outdoor methods because it has a refinement
stage for recognizing small objects. Our method performs
best due to the use of interaction information.
Comparison on BEHAVE dataset. To further evalu-
ate the generalization capability of human-object interac-
tion scenes, we also conduct experiments for semantic seg-
mentation on BEHAVE [5] dataset in Table 3. BEHAVE
dataset is a human-object interaction dataset, which is col-
lected in indoor scenarios and provides RGB-D frames and
3D SMPL. To adapt it to our task, we generate the point
cloud and segmentation label from RGB-D images and seg-
mented masks. There is only single person with single ob-
ject per frame and the total number of the object categories
is 20. We follow the official protocol of dataset splitting.

Our method still outperforms the best baseline method Soft-
Group by 2.8% in mIOU.
Sensor-fusion-based 3D segmentation. Because our
dataset also contains image data, we also provide LiDAR-
Camera sensor-fusion baselines based on our method in Ta-
ble 2 to facilitate further research. PointPainting appends
the raw LiDAR point with corresponding RGB color ac-
cording to calibration matrix. LocalFusion concatenates
high-dimensional image feature to the corresponding high
dimensional point semantic feature. And our HHOI mod-
ule has consistently improved the performance on various
fusion strategies, validating its generalization ability.

Table 4. Person-only 3D detection results on HuCenLife.
Methods AP(0.25) AP(0.5) AP(1.0) mAP
CenterPoint[65] 61.8 68.7 70.3 66.9
STCrowd[11] 61.8 71.6 73.4 68.9
TED[57] 51.0 53.3 54.1 52.8
CenterFormer[75] 73.0 80.1 81.4 78.2

Table 5. Full-category 3D detection results (AP) on HuCenLife.
We only select six types of objects for demonstration.

Methods motorbike box cart scooter backpack object in hand
CenterPoint[65] 13.4 17.1 20.9 43.4 4.2 8.4
STCrowd[11] 5.4 14.4 25.3 48.7 4.5 13.5
CenterFormer[75] 3.8 16.2 24.2 44.4 2.6 12.5

6. Human-centric 3D Detection
LiDAR point cloud-based 3D detection is well-studied

in recent years, driven by autonomous driving. It provides
critical information of obstacles for the motion planning of
robots to guarantee the safety. Specifically, the input for 3D
detection is the point cloud P and the output is predicted
bounding boxes with 7 dimensions (x,y,z,w,l,h,r), consist-
ing of the 3D position in LiDAR coordinate system, the size
of bounding box, and the rotation. In this section, we pro-
vide benchmarks for the 3D detection task on HuCenLife
by evaluating current state-of-the-art methods and give dis-
cussion on the research of human-centric 3D detection.

6.1. Baselines and Evaluation Metrics

We choose four representative works and test their per-
formance on our dataset. CenterPoint [65] is a popu-
lar anchor-free detector and based on it, STCrowd [11]
aims at solving dense crowd scenarios. By means of the
transformer mechanism, TED [57] and CenterFormer [75]
achieve impressive performance recently. Following [11,
6], we use Average Precision (AP) with 3D center distance
thresholds D = {0.25, 0.5, 1} meters as the evaluation met-
ric. Then mean Average Precision (mAP) is obtained by
averaging AP.

6.2. Results and Discussion

We conduct experiments on two settings, including
person-only 3D detection in Table 4 and full-category 3D
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Figure 5. Pipeline of our method for human-centric action recognition. We first utilize 3D detector to obtain a set of bounding boxes of
persons. Then, for each person, we extract multi-resolution features and get a hierarchical fusion feature FHF . Next, we leverage the
relationship with neighbors to enhance the ego-feature and obtain a comprehensive feature FIE for the final action classification.

detection in Table 5. These baseline methods are designed
for large-scale traffic scenarios, which perform limited on
human-centric scenarios, especially for detecting small ob-
jects. We conclude with three main challenges for conduct-
ing 3D detection in human-centric scenarios. First, peo-
ple usually have different poses in different actions, such
as crouching, sitting, waving, etc., and such diverse body
poses cause distinct sizes of bounding box. Second, there
are many relatively small objects in scenes, bringing diffi-
culties to balance the accuracy of fine-grained detection and
the efficiency of large-scale scene data processing. Third,
multi-objects may locate at different heights in the same
place, such as in complex scenarios of escalator and slide,
leading to larger dimension of feature recognition. Pre-
vious methods using BEV feature map will miss details
and transformer-based methods have horrible cost. There-
fore, there is a lot of room for the 3D detection research in
human-centric scenes, while our dataset can offer a good
platform for it.

7. Human-centric Action Recognition
Previous works for action recognition are based on 2D

images or videos and they only need to give one label for
one scene. We introduce the 3D action recognition task in
large-scale human-centric scenarios, which aims to detect
all persons in the scene and provide corresponding action
types. 3D action recognition task is significant for fine-
grained scene understanding and can benefit the develop-
ment of intelligent surveillance and collaborative robots. To
our knowledge, we are the first to propose the related dataset
and solutions for the new task.

7.1. Method

Our 3D action recognition method is in a two-stage man-
ner based on the input of LiDAR point cloud, as shown in
Figure 5. Considering that some human actions are re-
lated to adjacent interactive objects, after obtaining indi-
vidual bounding box by 3D detector, we enlarge the box
to crop more points related to the person for the follow-
ing fine-grained feature extraction. Especially, we leverage

a Hierarchical Point Feature Extraction module to pay at-
tention to multi-scale objects and get multi-level features.
Moreover, we design an Ego-Neighbour Feature Interaction
(ENFI) module to make use of the relationship among the
ego-person and neighbors to help forecast social actions.

7.1.1 Hierarchical Point Feature Extraction

To capture both global features and local features with
dynamically changing receptive fields, we use R parallel
branches to extract multi-resolution features. Serial Set Ab-
stractions [39] are applied to process the features of dif-
ferent scales, where each branch undergoes L times with
fixed sampling cores and branch-specific sampling range.
Finally, these features are up-sampled to the same dimen-
sion and fused together with pooling to generate the hierar-
chical fusion feature FHF .

7.1.2 Ego-Neighbour Feature Interaction

Like Figure 5 shows, we first enhance the ego person
feature by self-attention and get Fego. Then, we se-
lect features of k neighbours around the target as Kneigh

and Vneigh and take the ego-feature as queries Qego.
The distances from neighbours to the target are used
for position encoding. We apply cross-attention to ex-
tract the ego-neighbour interaction information and gain
the final interaction enhanced ego feature by FIE =
Fego

⊕
CrossAttention(Qego,Kneigh, Vneigh), where

⊕
denotes concatenation. In this way, we model the relation-
ships of a group to benefit the social action recognition.

7.2. Experiments

7.2.1 Baselines and Evaluation Metrics

We take pre-trained CenterPoint as the 3D Detector for all
the experiments for fair comparison in this section. Because
no existing methods can be directly used for solving the new
3D action recognition task. As Table 6 shows, we provide
benchmarks and comparisons from four aspects. The first is



Table 6. Comparison results of action recognition on HuCenLife.
All methods are based on the same 3D detector for fair evaluation.

Methods mAP mRecall mPrecision
Baseline 7.3 14.6 19.9
+ ViT[17] 9.4 23.1 19.9
+ PVT[68] 13.2 30.5 19.8
+ PointNet[39] 8.4 26.3 15.5
+ PointNet++[40] 15.6 34.2 22.7
+ PointMLP[34] 11.3 28.0 19.4
+ PointNeXt[41] 15.0 33.0 21.2
Ours 21.0 40.0 26.9
Ours(w/o ENFI) 15.4 37.1 24.7

to directly adapt the 3D detector to predict multi-class per-
sons with different action labels, which is the “Baseline”
in Table 6. The second is to add a feature extractor for
cropped individual point cloud for the second-stage action
classification, and we tried several popular point-feature ex-
tractors, including PVT, PointNet, PointNet++, PointMLP,
and PointNext. In particular, to verify the performance of
input modalities, we also use ViT to extract image features
for image-based action recognition by projecting the 3D
bounding box to calibrated images. At last, we provide the
results of our solution with ablation for ENFI module.

We use the mean Average Precision (mAP) obtained by
averaging AP through thresholds D = {0.25, 0.5, 1} and
classes to evaluate the performance.

mAP =
1

|C||D|
∑
c∈C

∑
d∈D

APc,d

where |C| is the number of action category. In addition,
we also utilize Mean Recall (mRecall) and Mean Preci-
sion (mPrecision) by averaging recall and precision through
thresholds and classes.

7.2.2 Results and Discussion

We show the overall performance in Table 6, and detailed
evaluation values of all categories of actions and visual-
ization results are in the supplementary material. It can
be seen from the results that our method outperforms oth-
ers with an obvious margin, mainly due to the multi-level
feature extraction and multi-person interaction modeling,
which are more suitable for understanding human-centric
complex scenarios. However, our method has its own limi-
tations and there are several potential improvement direc-
tions. First, current two-stage framework strongly relies
on the detector performance and the one-stage method for
action recognition in large-scale scenes is worth exploring.
Moreover, human action is time-dependent and how to ex-
tract valuable temporal information in consecutive data to
eliminate the ambiguity of actions is also promising.

8. More Tasks on HuCenLife
In this paper, we provide benchmarks on HuCenLife for

three main tasks, including 3D segmentation, 3D detection,
and action recognition in human-centric scenarios. How-
ever, benefiting from the rich annotations in HuCenLife
dataset, there are many other tasks deserving explored.

8.1. Human-Object Interaction Detection

Recently, the task of Human-Object Interaction (HOI)
detection [70, 66] attracts more and more attention, which
targets for detecting the person and the interacted object
and meanwhile classifying the interaction category. Cur-
rent studies and datasets are limited to the interaction be-
tween single person and single object in one scene and they
are all based on the image modality. 3D HOI tasks in large-
scale free environments with multiple persons and multiple
objects can be formulated and evaluated on HuCenLife.

8.2. Tracking and Trajectory Prediction

HuCenLife contains sequential frames of data with the
tracking ID annotation for all instances, which can facili-
tate the time-related tasks, such as 3D tracking [73, 72] and
trajectory prediction [35, 16]. It is challenging for these
tasks due to the occlusions in crowded scenes, but it is sig-
nificant to study consecutive behaviors and interactions in
real world to provide valuable guidance for robots.

8.3. 3D Scene Generation

With the success of Diffusion model [25] in image gener-
ation, many works try to achieve high-quality 3D data gen-
eration for single objects [33] or scenes [77]. HuCenLife
provides rich material for daily-life scenarios, and it is in-
teresting to generate more human-centric scene data with
semantic information to facilitate learning-based methods.

8.4. Multi-modal Feature Fusion

Apart from point cloud, HuCenLife also provides cor-
responding images. The complementary information of
multi-modal features will definitely benefit all tasks men-
tioned above, which deserves in-depth research.

9. Conclusion
We fully discuss the challenges, significance, and

potential research directions of 3D human-centric scene
understanding in this paper. Specifically, we propose
the first related large-scale dataset with rich fine-grained
annotations, which can facilitate the research for many
3D tasks and has the potential to boost the development
of assistive robots, surveillance, etc. Moreover, we pro-
vide benchmarks for various tasks and propose novel
methods for human-centric 3D segmentation and human-
centric action recognition to facilitate further research.
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A. Implement details
A.1. Human-centric Instance Segmentation

In HHOI module, the threshold τ for sampling high
confidence features is set to 0.8 and the number of sam-
pled points M = 256. In Point-wise Prediction and Re-
finement process, the loss can be formulated as following:
L = Lsemantic + Loffset + Lclass + Lmask + Lmask score.

Lsemantic =
1

N

N∑
i=1

CE (si, s
∗
i ) ,

Loffset =
1∑N

i=1 I{pi}

N∑
i=1

I{pi} ∥oi − o∗
i ∥1 ,

Lclass =
1

K

K∑
k=1

CE (ck, c
∗
k) ,

Lmask =
1∑K

k=1 I{mk}

K∑
k=1

I{mk}BCE (mk,m
∗
k) ,

Lmask score =
1∑Ngt

k=1 I{iouk}

Ngt∑
k=1

I{iouk} ∥iouk − iou∗
k∥2

where ∗ denotes the ground truth.

A.2. Human-centric Action Recognition

The input for action recognition is frames of large scene
point cloud P ∈ RN×4 with the 3D location and reflec-
tion intensity (x, y, z, r). We extend the length and width
of bounding box obtained from human detector by ∆h and
∆w respectively, where ∆h and ∆w are both set to 0.2
meters. After cropping point clouds with bounding boxes,
we use clustering algorithm to find k(k=3) nearest neigh-
bors of the ego point cloud with their relative distances.
Next, the point cloud of every single person will be nor-
malized, and sampled by farthest point sample algorithm to
n points(n=512). The features of k neighbours and ego will
be extracted by HPFE simultaneously to get features of di-
mension (k+1)×c, which will be input to ENFI afterwards.

In HPFE, we use set abstractions(SA) to down-sample R
times on origin point clouds to fork R branches with differ-
ent resolutions. R is set to 5 by default.

Pi ∈ R(n/2r)×(32∗2r)r ∈ [1, ..., R], i ∈ [1, ..., L]

where Pi is the feature dimension of R branches. Then we
use different sampling radius for the R resolution branches,
which are 0.05 ∗ (r+1), r ∈ [1, ..., R], so that the receptive
field of SA will expand with the improving of resolution.
After that, we apply equal sampling for L times(L is set to
2) for all branches simultaneously. Finally, we down sam-
ple the features of the low-resolution channels to get five
features of the same size, which will be fused together to
get hierarchical fusion feature.

Figure 6. The number of the object for each object.

B. Dataset details

B.1. Object category for segmentation and detection

We merge several categories which have low frequency
of occurrence and similar geometry shapes in our dataset
into a new class, and we also drop some category which
only appear in training or testing set with low frequency.
The merging list is shown in Table 7. The categories of
objects after merging is 17 and the number of objects in
each category is illustrated in Figure. 6.

Table 7. Object merging list. We merge the categories on the left
into the category on the right.
banner,plank,paper,door,dog,megaphone,guitar othertoy car,merry go round,car,tricycle,umbrella,

printer,podium cabinet
bicycle motorbike

(two-wheeled) ( self-)balancing car scooter
flat car,stroller,perambulator cart

rockery slide
stool chair

suitcase box
eraser,phone,cup,food,cellphone,red flag,

obj in handcap,camera,sponge,projector,balloon,
plush toy,toy wings,clothes,flower,

badminton rocket,handbag,plastic bag,

B.2. Action category for recognition and detection

It is common for a person to perform multiple actions
simultaneously. To prioritize these actions, we assign each
action to a numerical priority value. We then merge these
prioritized actions into 12 categories based on their simi-
larity and frequency of occurrence. Actions with low fre-
quency are dropped to ensure a manageable number of cat-
egories. To illustrate this process, we provide a merging
Table 8 that maps each prioritized action to its correspond-
ing category. The number of each action after the merging
process is shown in Figure. 7.



Figure 7. The number of instance in each merged action category.

C. More Experiment
We take pre-trained CenterPoint as the 3D Detector and

add a feature extractor for cropped individual point cloud
for the second-stage action recognition comparison, the de-
tailed comparison result is shown in Table 9. Our method
outperforms others in most of categories. The comparison
result which uses 3D bounding boxes from ground truth is
shown in Table 10. We further provide action visualization
in Figure C.

Table 8. Detailed action priority and merge information.
Merged Action priority Original Action

Lift 0

taking clothes
lifting a plastic bag
lifting a bag
taking things/exchanging items
lifting things
lifting something
moving planks

Carry 1
carrying other things
carrying a bag
carrying bags

Move 2 moving boxes

Pull Push 3

pulling a suitcase
pulling a chair
pulling a flatcar
pushing a cart
pushing a stroller
pushing a flatcar
pushing a table
holding a spring car
pushing something
pushing something

Sit

4

riding a bicycle
riding an electric bicycle
riding a tricycle
riding on the carousel
sitting in a spring car

13

crouching
sitting on the ground
crouching or sitting on the ground
sitting on the ground
sitting
sitting on a trunk
sitting in a chair
sitting on the stool
squatting

Scooter-BalanceBike 5

riding a two-wheel balance car
riding a balance car
riding an electric skateboard
riding a skateboard
standing on a trolley

Hum-Inter 6

hugging
pulling a baby
being hold by someone else
taking a baby
holding the baby
Being held by someone else
carrying a baby
being carry by someone else

Fitness 7
fitness with a twister
fitness with a elliptical trainer
fitness with a stepper

Entertain 8

climbing the swing
climbing slide
holding the slide
sliding
playing seesaw
sitting in a cavern

Sports 9 playing basketball
10 playing badminton

Standing

11 taking the escalator
14 running

15
walking
standing
leaning

Bending Over 12 bending over

Other 16

cabinet interaction
standing on the stool
getting in the car
getting out of the car
driving a toy car
lying
writing on the blackboard
. . .



Table 9. Detailed comparison results of action recognition on HuCenLife. All methods are based on the same 3D detector (centerpoint) for
fair evaluation.

Method Lift Carry Move Pull Push Sit Scooter-BalanceBike Hum-Inter Fitness Entertain Sports Bend-Over Standing mAP mRecall mPrec
Baseline 0.5 1.6 0.2 13.8 2.2 21.8 0 0 2.4 6.9 0.1 38.3 7.3 14.6 19.9

ViT 4.1 1.6 5.1 8.2 0.6 4.7 0.1 27.3 6 46.6 0.1 8.3 9.4 23.1 19.9
PVT 1.4 10.5 8.9 21 16.8 56.8 5.9 1.7 1 25.1 4.3 5.2 13.2 30.5 19.8

PointNet 1.6 3.1 4.6 20.1 24.4 22.3 0.7 0.6 0.6 17.1 1.5 4.2 8.4 26.3 15.5
PointNet++ 3.6 25.3 10.6 21 25.5 51 3.5 2.7 3.3 30.3 4.1 6.5 15.6 34.2 22.7
PointMLP 2.9 4.1 7.6 24.6 23.6 34.4 2.8 1.8 2.7 25.4 1.6 3.9 11.3 28 19.4
PointNeXt 2 13.3 15.2 26.1 12.8 61.1 5.4 4.7 1.7 26.6 3.2 8.4 15 33 21.2

Ours 5 26.5 20.1 35.8 26.5 68.5 6.8 6.2 11.2 30.4 4.5 10.8 21 40 26.9
Ours(w/o ENFI) 6.1 16.7 16.8 31 18.4 55.8 7.8 3.9 1.3 11.7 4.6 10.9 15.4 37.1 24.7

Table 10. Detailed comparison results of action recognition on HuCenLife. All methods are based on the ground truth bounding boxes.
mAcc stands for mean accuracy.

Method Lift Carry Move Pull Push Sit Scooter-BalanceBike Hum-Inter Fitness Entertain Sports Bend-Over Standing mAcc
ViT 9.1 10.7 26.2 36.3 25.3 15.2 1.9 51.6 50.9 65.5 13.5 16.0 26.9
PVT 4.5 42.8 31.2 35.6 40.0 74.7 7.2 36.4 0.4 16.2 54.4 31.6 31.3

PointNet 7.8 29.1 32.8 33.2 47.2 53.1 7.5 46.9 19.1 20.1 57.4 20.9 31.3
PointNet++ 11.1 41.1 37.7 23.5 66.7 80.3 15.5 39.3 55.4 11.4 30.3 8.6 35.1
PointMLP 25.6 46.4 35.4 57.2 55.2 79.7 4.9 54.5 27.8 15.3 29.1 32.8 38.7
PointNext 11.8 46.7 24.0 49.4 50.1 76.1 21.6 46.9 36.5 10.2 36.2 53.0 38.5

Ours 19.8 38.9 30.0 59.8 62.5 86.6 62.5 61.8 32.4 18.2 35.0 24.8 44.4
Ours(w/o ENFI) 18.9 49.5 47.6 57.2 53.3 83.1 28.8 31.5 31.2 19.2 53.6 33.8 42.3


