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Abstract

This paper aims to re-assess scene text recognition (STR)
from a data-oriented perspective. We begin by revisiting
the six commonly used benchmarks in STR and observe a
trend of performance saturation, whereby only 2.91% of
the benchmark images cannot be accurately recognized by
an ensemble of 13 representative models. While these re-
sults are impressive and suggest that STR could be consid-
ered solved, however, we argue that this is primarily due
to the less challenging nature of the common benchmarks,
thus concealing the underlying issues that STR faces. To
this end, we consolidate a large-scale real STR dataset,
namely Union14M, which comprises 4 million labeled im-
ages and 10 million unlabeled images, to assess the per-
formance of STR models in more complex real-world sce-
narios. Our experiments demonstrate that the 13 models
can only achieve an average accuracy of 66.53% on the
4 million labeled images, indicating that STR still faces
numerous challenges in the real world. By analyzing the
error patterns of the 13 models, we identify seven open
challenges in STR and develop a challenge-driven bench-
mark consisting of eight distinct subsets to facilitate fur-
ther progress in the field. Our exploration demonstrates
that STR is far from being solved and leveraging data may
be a promising solution. In this regard, we find that utiliz-
ing the 10 million unlabeled images through self-supervised
pre-training can significantly improve the robustness of STR
model in real-world scenarios and leads to state-of-the-art
performance. Code and dataset is available at https:
//github.com/Mountchicken/Union14M .

1. Introduction
The success of deep learning in visual recognition tasks

heavily depends on expansive labeled data. A widely used
paradigm [2, 9, 10, 33, 63] in STR is training models on
large-scale synthetic datasets [17, 18, 12, 62] and evaluat-
ing on six real benchmarks [44, 43, 56, 39, 21, 20]. Promis-
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Figure 1. Average accuracy of STR models on six commonly
used benchmarks as reported in their original papers. Models are
trained with synthetic data.

ingly, current progress in STR has exhibited a trend of ac-
curacy saturation (depicted in Fig. 1). The challenges in the
common benchmarks seem “solved”, suggested by the nar-
row scope for improvement, and the slowdown step of per-
formance gain in recent SOTAs. This phenomenon inspires
us to raise questions of 1) whether the common benchmarks
remain sufficient to promote future progress, and 2) whether
this accuracy saturation implies that STR is solved.

For the first question, we start by selecting 13 representa-
tive models (listed in Tab. 3), including CTC-based [48, 9],
attention-based [49, 35, 25, 24, 47, 57, 64], and language
model-based [63, 10, 58, 40] models. We then evaluate
their performance on the six STR benchmarks to find their
joint errors. As depicted in Fig. 2, only 3.9% (298 images)
of the total 7672 benchmark images can not be correctly
recognized by any of the 13 models, among which 25.5%
of the images are incorrectly annotated, and 35.2% im-
ages are barely recognizable (human unrecognizable sam-
ples, shown in Appendix A.). This suggests that there might
be a maximum of 2.91% (222 images) and a minimum of
1.53% (117 images, excluding human unrecognizable sam-
ples) scope for accuracy improvement. Therefore, the com-
mon benchmarks give limited insight into future STR re-
search.

The accuracy saturation in common benchmarks can ob-
scure challenges that STR models still face. Therefore,
to bring more profound insights beyond these benchmarks
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Figure 2. Error analysis on the six STR benchmarks.
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Figure 3. An Overview of Union14M which is used to ana-
lyze STR models in real-world scenarios. Union14M contains
4M labeled images (Union14M-L) and 10M unlabeled images
(Union14M-U), which cover a wide range of real-world scenar-
ios with intense diversity and complexity.

and to benefit real-world STR applications, we consoli-
date a large-scale real dataset, namely Union14M (Fig. 3),
to carefully analyze the performance of STR models in a
broader range of real-world scenarios. Union14M consists
of 4 million Labeled images (Union14M-L) and 10 million
Unlabeled images (Union14M-U), obtained from 17 pub-
licly available datasets. Hence, it can be considered as a
comprehensive representation of text in the real world.

Equipped with Union14M-L, we conducted a quantita-
tive evaluation on the aforementioned 13 STR models from
multiple perspectives, thereby uncovering challenges that
remain in STR. Our initial observation is related to the
synthetic-to-real training paradigm. We discover that mod-
els trained on synthetic data perform poorly on Union14M-
L, with an average accuracy of only 66.53%, despite achiev-
ing an average accuracy of 87.03% on commonly used
benchmarks. This result indicates that such a paradigm
is not compatible with more complex real-world settings.
Subsequently, we analyze the error patterns of the 13 mod-
els and find that they are still less robust to four existing
challenges, namely curve text, multi-oriented text, context-
less text, and artistic text. Furthermore, we identify three

additional challenges that are prevalent in the real world but
have received less attention in the STR community, namely
multi-words text, salient text, and incomplete text.

To enable more thorough evaluations of STR models in
real-world scenarios and to encourage future research on the
seven aforementioned challenges, we construct a challenge-
driven benchmark, which comprises eight subsets with
400,000 generic samples and 9,383 challenge-specific sam-
ples sourced from Union14M-L. Extensive baseline exper-
iments are conducted on this new benchmark and we find
that despite utilizing real data for training, the current SOTA
model can only achieve an average accuracy of 74.6%. This
indicates that STR still faces numerous challenges in the
real world and also answers the second question that STR is
far from being solved.

Essentially, we infer that the sub-optimal performance
of STR models in the real world can be attributed to data
problems, e.g., the lack of sufficient real labeled data for
training. To solve STR from a data perspective, we pro-
pose a solution of utilizing unlabeled data. Specifically,
we investigate a Vision Transformer-based [8] STR model
(Fig. 5), which can leverage the 10M unlabeled images
in Union14M-U through self-supervised pre-training. The
pre-trained ViT model exhibits powerful textual representa-
tion capabilities, and after fine-tuning on real labeled data,
it achieves SOTA performance on both six common bench-
marks and the proposed challenge-driven benchmark. Our
contributions are summarized as follows:

• We analyze STR from a data perspective and arrive at
two macro findings. Firstly, the common benchmarks
are insufficient in presenting adequate challenges for
advancing the field of STR. Secondly, despite signif-
icant progress, STR models still struggle to perform
well in real-world scenarios. It is safe to say that STR
is still far from being solved.

• We consolidate a large-scale real STR dataset to in-
vestigate the performance of STR models in the real
world. Through quantitative analysis, we reveal that
current STR models fail to address seven open chal-
lenges. Therefore, we propose a challenge-driven
benchmark to facilitate future comprehensive and in-
depth studies in the field of STR.

• We exploit the potential of unlabeled data and observe
that they can lead to significant performance gains
through self-supervised pre-training, offering a prac-
tical solution for STR in the real world.

2. Related Works
2.1. Data Analysis in STR

In scene text recognition, some works have been pro-
posed to analyze several data issues. For instance, Baek
et al. [2] point out the inconsistency between the training
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data and benchmarks in STR approaches. They also con-
duct a comprehensive analysis on the common benchmarks
and find that 7.5% of the images can not be recognized by
their proposed four-stage framework. In this work, we fur-
ther refined it to 3.9% by using 13 distinctive STR models.
Baek et al. [3] explored the impact of real data on the per-
formance of STR models, in which they found that training
on fewer real data can lead to better performance than train-
ing on synthetic data, and several recent works [61, 4, 51]
have confirmed this finding by using real data for training.
We also observe in our subsequent experiments that training
models on real data can improve their generalization ability,
which is essential for real-world STR applications.

2.2. Data Shift in STR

Scene text recognition is a fine-grained task that requires
extensive amounts of training data. In the early time, due to
the lack of sufficient real annotated data, STR models were
trained on large-scale synthetic datasets, e.g., MJ [17, 18]
and ST [12].This training paradigm still prevails today as
state-of-the-art methods [10, 24, 40] continuously yield bet-
ter performance on the common benchmarks. Nevertheless,
models trained on synthetic data might suffer from gener-
alization problems, due to the large domain gap [68, 3] be-
tween synthetic data and real-world circumstances.

Meanwhile, a few annotated real datasets have emerged
in recent years [7, 22, 51, 42, 31]. Serval recent works have
endeavored to consolidate these datasets. For instance, the
OOV [11] dataset is a consolidation of seven real datasets
and is employed to investigate the out-of-vocabulary [55]
problem. Baek et al. [3], Yang et al. [61], and Darwin
et al. [4] use different amounts of real datasets to construct
the training set respectively, and achieved better results than
training on synthetic data. In this work, our aim is to ana-
lyze the performance of STR models in the real world and
the challenges they confront. Therefore, we consolidate
Union14M with more real datasets, thus it can be used as
a real-world mapping for our analysis.

2.3. Benchmarks in STR

In STR, there are six commonly used benchmarks, in-
cluding regular text benchmarks: IC13 [21], IIIT [39], SVT
[56] and irregular text benchmarks: IC15 [20], SVTP [43],
CUTE [44]. Some recent works [61, 4] attempt to use al-
ternative benchmarks [54, 29, 6, 7] for evaluation, and they
also observe performance degradation on these benchmarks
compared to the six benchmarks. This suggests that there
exists challenges that exceed the scope of common bench-
marks and an in-depth analysis is necessary.

3. Preliminary: A Real Dataset for Analysis
As previously discussed, the six STR benchmarks have

almost reached a point of saturation, and can be insufficient

Table 1. Composition of Union14M. † denotes that the dataset
overlaps with current benchmarks. ‡ denotes those datasets over-
lap with each other. #Original denotes the number of text instances
in the original dataset.

Dataset Year #Original #Refined Lang.

Union14M-L

KAIST [19] 2011 6K 2K EN, KR
NEOCR [41] 2011 5K 3K EN

Uber-Text [67] 2017 209K 208K EN
RCTW [50] 2017 44K 7K EN, CH

IIIT-ILST [38] 2017 6K 2K EN, IN
MTWI [15] 2018 139K 53K EN, CN

COCOTextV2 [54] 2018 201K 73K EN
LSVT [52, 53] 2019 382K 38K EN, CN
MLT19 [42] 2019 89K 56K Multi
ReCTS [66] 2019 109K 25K EN, CN

ArT† [7] 2019 50K 35K EN, CN
IntelOCR‡ [22] 2021 2.57M 2.01M EN
TextOCR‡] [51] 2021 822K 586K EN
HierText‡ [31] 2022 1.2M 945K EN

Union14M-U
Book32 [16] 2016 - 2.7M -

CC [46] 2018 - 5.6M -
OpenImages‡ [23] 2020 - 2.3M -

to facilitate our analysis across a broader spectrum of real-
world scenarios. Hence, we consolidate a large-scale real
STR dataset denoted as Union14M, comprising 4 million
labeled images (Union14M-L) and 10 million unlabeled im-
ages (Union14M-U), to support our subsequent analysis.

3.1. Dataset Consolidation

Union14M-L: 4M labeled images. Our data collec-
tion strategy is driven by the primary objective of encom-
passing a broad range of real scenarios. To this end, we
collect labeled images from 14 publicly available datasets
(Tab. 1) to compose Union14M-L. These datasets exhibit
diverse properties. For instance, ArT [7] dataset is focused
on curved text; ReCTS [66], RCTW [50], LSVT [52, 53],
KAIST [19], NEOCR [41] and IIIT-ILST [38] datasets are
designed for street views from different countries; MTWI
[15] is sourced from web pages and contains scene text im-
ages; COCOTextV2 [54] contains plenty of low-resolution
text images as well as vertical text images; IntelOCR [22],
TextOCR [51] and HierText [31] are all derived from Open-
Images [23], which is a vast dataset with nine million im-
ages covering an extensive range of real scenes. The con-
solidation of the 14 datasets can be viewed as a mapping of
the real world, enabling our analysis to be oriented toward
real-world scenarios.

Nevertheless, the simple concatenation of these 14
datasets is sub-optimal due to different annotation formats
and the existence of duplicate, Non-Latin, and corrupted
samples. Hence, we adopt the following strategies to refine.

• Crop text instances. Most datasets provide polygon
annotations for text instances, and directly using the
polygon for cropping is an intuitive choice. However,
we conjecture this could be sub-optimal. Instead, we
use the minimum axis-aligned rectangle for cropping,
which can result in additional background noise for
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Table 2. Statistics of Union14M and synthetic datasets MJ [17, 18]
and ST [12]. Vertical instances are text images with a height that
is at least twice their width and with more than one text character.

Dataset # Instances # Vocabularies # Vertical Instances

MJ+ST 17M 384K 7K
Union14M-L 4M 707K 110K
Union14M-U 10M - 39K

cropped text instances. This cropping strategy essen-
tially serves as a form of regularization, as it introduces
challenging samples (i.e., those with more background
noise) that enhance the robustness of the recognizer.
This is beneficial in an end-to-end system, as the rec-
ognizer can be less dependent on the performance of
the detector, and also allows us to focus our analysis
on the performance of the recognizer. We validate this
conjecture about cropping methods in Appendix B.2.

• Exclude duplicate samples. We first remove du-
plicate samples between Union14M-L and the com-
mon benchmarks. Next, we remove duplicate samples
among the 14 datasets. For instance, HierText, Tex-
tOCR, and IntelOCR are duplicated with each other
since they are all annotated from OpenImages [23].
We choose HierText as reference, and remove dupli-
cated samples from the remaining two datasets.

• Remove Non-Latin and ignored samples. In this
work, we focus on Latin characters which are widely
employed and possess a large amount of data. Conse-
quently, We only retained samples composed of letters,
numbers, and symbols. We also remove samples that
are annotated as ignored.

Union14M-U: 10M unlabeled images. Self-supervised
learning has enabled substantial development in computer
vision [60, 13, 14, 5], and several related works have also
emerged in the field of STR [34, 61, 37, 1]. The opti-
mal solution to improve the performance of STR in real-
world scenarios is to utilize more data for training. How-
ever, labeling text images is both costly and time-intensive,
given that it involves annotating sequences and needs spe-
cialized language expertise. Therefore, it would be desir-
able to investigate the potential of utilizing unlabeled data
via self-supervised learning for STR. To this end, we collect
10M unlabeled images from three large datasets, including
Book32 [16], OpenImages [23] and Conceptual Captions
(CC) [46] dataset. To obtain high-quality text instances,
we adopt a different collection method than previous works
[61, 3]. We use three text detectors [69, 27, 30] and an
IoU voting mechanism to get text instances (detailed in Ap-
pendix B.1). The unlabeled images collected from Open-
Images are also de-duplicated with the labeled images in
Union14M-L.

3.2. Characteristics of Real-World Data

Diverse text styles. As shown in Fig. 3, Union14M cov-
ers text images from a variety of real scenes. Real-world

Table 3. We use 13 publicly available models for evaluation. Acc-
CB represents the average accuracy on six commonly used bench-
marks. Acc-UL represents the accuracy on all Union14M-L data.

Method Type Venue Acc-CB Acc-UL

CRNN [48] CTC TPAMI’17 78.14 57.96 (-20.18)
SVTR [9] CTC IJCAI’22 90.00 69.46 (-20.54)

MORAN [35] Att. PR’17 80.61 57.73 (-22.88)
ASTER [49] Att. TPAMI’19 84.98 63.30 (-21.68)
NRTR [47] Att. ICDAR’19 86.82 66.96 (-19.86)
SAR [25] Att. AAAI’19 88.07 68.07 (-20.00)
DAN [57] Att. AAAI’20 83.96 64.16 (-19.80)
SATRN [24] Att. CVPRW’20 91.36 72.09 (-19.27)
RobustScanner [64] Att. ECCV’20 87.63 67.63 (-20.00)

SRN [63] LM CVPR’20 86.51 65.71 (-20.80)
ABINet [10] LM CVPR’21 91.97 70.73 (-21.24)
VisionLAN [58] LM ICCV’21 88.96 69.60 (-19.36)
MATRN [40] LM ECCV’22 92.48 71.49 (-20.99)

text images exhibit diverse layouts, e.g., curve, tilted and
vertical, as well as challenging distractions, including blur-
ring, complex background and occlusion, and also various
real-world applications of scene text, such as street scenes
and logos. Notably, Union14M contains a large number of
vertical text instances (last column in Tab. 2), which are
common in real world, yet are rare in synthetic datasets.

Large vocabularies. Text used in synthetic datasets are
obtained from commonly used corpus. However, in real-
world scenarios, there are plenty of text variations that are
not covered by corpus, such as random combinations of al-
phanumeric characters and symbols, for instance, license
plates, or multilingual alphabetical combinations like Chi-
nese Pinyin. In Tab. 2, we show that the number of vo-
cabularies in Union14M-L is nearly twice as larger as that
of synthetic datasets, demonstrating that Union14M-L can
encompass a broader spectrum of real-world situations and
thus can hold our further analysis.

4. Analysis of STR in Real World
In this section, we utilize the vast nature of Union14M-L

to conduct a comprehensive analysis of the performance of
13 STR models. The objective of this analysis is to evaluate
the robustness of STR models against numerous real-world
challenges, identify existing challenges, and stimulate fu-
ture research advances.

4.1. Overall Performance Evaluation

We begin by selecting 13 representative models trained
on synthetic datasets to evaluate on Union14M-L. As shown
in Tab. 3, compare to the performance on common bench-
marks, their performance degradation on Union14M-L is
significant, with an average accuracy drop of 20.50%. This
result suggests that models trained on synthetic data can
not well generalize to more complicated real-world scenar-
ios. Conversely, it also suggests that Union14M-L features
challenges that are not covered by common benchmarks and

4



Curve

POSTVERKET

ABINet

ASTER

SATRN

SVTR

POKKA WATCH

xoe okkk waate

or the simple

e o e

systems nonking batch

Multi-Oriented

GARDEN READER bottle

xrcilltee 144009

reader 21109the

garden reader 01140q

reallybelieve 01:14:0q

Artistic

REBEL CASTLE. ROMUNijO

cstllerebel pomunjo

astil pomunijorebel

bebel e romunjo

castlethe pmuno

Contextless

VGWS

vgws

vgas

vws

vgws

Salient

PURPESTRIDEPOPeYeS FREAKONOMICS

forge

reperce

topeyed

e

suppostiie

sirpestride

urpestride

proposition

antagonomies

pugeries

intercommics

theakdnomics

Incomplete

VILLAG Apri Convenienc UTHENTIC elcome ELEBRATE

aprivillage convenience

april conveniencevillag

villag apri

aprilvillag convenience

welcomeauthentic celebrate

elcome elebrateuthentic

uthentic elcome

from:uthentic elebrate

convenien elebrate

Multi-Words

LOUIS VUITTON

louisuitton

louisyulitton

louisvuitton

loon

liveroee

liverywomen

live

live-to-evalve

Live to Evolve

(a) (b) (c) (d)

(e) (f) (g)

NaraBMW

narallw

narability

narabliw

narabluw

YQJ

you

you

yqj

you

ABINet

ASTER

SATRN

SVTR

GT

GT

Figure 4. Error analysis of the 13 STR models. We select four representative models and show their prediction results (Text in green
represents correct prediction and red text vice versa). Blocks in blue (a, b, e, f) represent four unsolved challenges, and blocks in green (c,
d, g) represent three additional challenges that are rarely discussed. Best viewed in color.

worth a deeper investigation.

4.2. Challenge Mining

To identify the joint errors made by the 13 models, we
assign each sample in Union14M-L with a difficulty score
based on the number of correct predictions (detailed in Ap-
pendix B.3). We focus on the hard samples that the major-
ity of models fail to make correct predictions, and we sum-
marize four challenges that haven’t been adequately solved
(left side of Fig. 4). Furthermore, we introduce three addi-
tional challenges that are common in the real world, yet are
seldom discussed in previous works (right side of Fig. 4).

4.2.1 Unsolved Challenges

Curve Text. Curve text recognition has gained considerable
attention in recent years, with two mainstream approaches:
one that relies on rectification [35, 49] and the other that
employs 2D attention mechanism [24, 25, 64]. Both ap-
proaches yield promising results on the curve text bench-
mark CUTE [44]. However, the proportion of curve text in
the CUTE benchmark is limited, and the extent of curva-
ture is minor. For highly curved texts as shown in Fig. 4a,
current methods still exhibit limited performance.

Multi-Oriented Text. Text can appear on the surface of
any object in any orientation, including vertical, tilted, or
reversed cases (Fig. 4b). Multi-oriented text is common
in real-world scenarios, such as vertical text on billboards,
tilted text due to the shooting angle of the camera, and re-
versed text due to mirror reflection. However, this problem
is overlooked in most STR methods with a strong assump-

tion that text images are nearly horizontal. They followed a
similar procedure of scaling the height of text images to a
small size (e.g., 32 pixels), and then scaling the width while
keeping the ratio unchanged, causing vertical or tilted im-
ages to collapse in height and consequently impeding recog-
nition.

Artistic Text. In contrast to printed text, artistic text is
designed by artists or professional designers with diverse
text fonts, text effects, text layouts, and complex back-
grounds. Each instance of the artistic text is potentially
unique, making it a zero-shot or one-shot problem, and may
require specifically designed networks [59] for recognition.
Nevertheless, due to the lack of artistic text samples in the
synthetic datasets, current models are still less robust to the
artistic text shown in Fig. 4e.

Contextless Text. Contextless text refers to text that has
no semantic meaning and is not in the dictionary. It can be
abbreviations or random combinations of letters, digits, and
symbols. As shown in Fig. 4f, models may fail to recog-
nize contextless text even when it has a clear background
and minimal distortion. This issue can arise from the over-
introduction of semantic information in both the model de-
sign and dataset corpus, which is also known as vocabulary
reliance [55, 11]. Models will attempt to predict text that
appeared in the training set that follows syntax rules (e.g.,
mistaking “YQJ” for “you” in Fig. 4f). This behavior is
highly undesirable in applications where reliability is criti-
cal, e.g., license plate recognition, invoice recognition, and
card ID recognition, where most of the text are contextless
and their misrecognition can lead to enormous security risks
and property damages.

5



4.2.2 Additional Challenges

Salient Text. Salient text refers to the presence of extra
characters that coexist with the primary characters of inter-
est in a text image (Fig. 4c). Salient text can be inadver-
tently introduced in end-to-end text recognition when text
instances of different sizes are adjacent or overlapping with
each other. This problem has been discussed in the text de-
tection stage. For instance, Liao et al. [26] propose to use
a hard ROI masking strategy to eliminate the interference
of extra characters. Nevertheless, when the performance of
the detection model is poor, e.g., when it can only output
coarse text regions, it becomes crucial for recognition mod-
els to rapidly identify visually important regions. However,
as shown in Fig. 4c, models can be confused by additional
characters and fail to recognize the primary text.

Multi-Words Text. Text contains rich semantic infor-
mation that aids in the comprehension of scenes, and some-
times a single word may be insufficient. In certain cases, the
recognition of multiple words simultaneously is required to
fully interpret a text image, such as trademarks and short
phrases, as depicted in Fig. 4d. However, most STR models
are trained on synthetic datasets that comprise a single word
per text image, hence failing to recognize spaces that sep-
arate individual words. Moreover, We observe that models
tend to amalgamate multiple words into a single word, dis-
carding or altering visible characters based on syntax rules
(e.g., “Live to Evolve” being identified as “liveroee” as it
reads more like a single word).”

Incomplete Text. Text images can be incomplete, with
missing characters due to occlusion or inaccurate detection
boxes that truncate the text. In Fig. 4g, when a text image
is cropped with the first or the last letter, models may pro-
duce completed predictions, even though the missing letter
is invisible. Moreover, we observe that this behavior oc-
curs more frequently in language models (Sec. 6.2) that
rely heavily on linguistic priors. This feature may reduce
the reliability of models in text analysis applications. For
instance, a fragmented text image with “ight” written on it
may be completed as “might” or “light”, while it would be
optimal for the recognition model to output what it actually
sees, i.e. “ight”, thus allowing anomaly detection. There-
fore, it is crucial to thoroughly evaluate the performance of
the automatic completion feature and consider the potential
impact on downstream applications.

5. A Challenge-Driven Benchmark

To facilitate the evaluation of STR models in more com-
prehensive real-world scenarios and to support future re-
search on the aforementioned seven challenges, we con-
struct a challenge-driven benchmark, namely Union14M-
Benchmark. It consists of eight subsets and a total of
409,393 images with both complexity and versatility.

Table 4. Dataset partion of Union14M-L. Union14M-Benchmark
is a split from Union14M-L.

Dataset #Images
Train Val Benchmark

Union14M-L 3,230,742 400,000 409,383

General - - 400,000
Artistic - - 900
Curve - - 2426
Multi-Orinted - - 1369
Multi-Words - - 829
Salient - - 1585
Incomplete - - 1495
Contextless - - 779

5.1. Benchmark Construction

Challenge-specific subsets. We collected subsets for
each of the seven challenges presented in Sec. 4.2. Candi-
date images are manually selected from Union14M-L based
on some reference samples of these seven text types, except
for the incomplete text. For the incomplete text subset, we
sample 1,495 images that the majority of the 13 models can
make correct predictions from Union14M-L since we aim
to investigate the auto-completion feature of STR models
and therefore we shall not introduce other factors that might
lead to false recognition. Then we randomly crop out either
the first or the last letter of the text image. To ensure that
there are no duplicate images between Union14M-L and the
proposed benchmark, we counted the remaining samples in
Union14M-L that have the same text label as the benchmark
images, and then we manually reviewed each sample to re-
move the duplicate images in Union14M-L.

General subset. In addition to these seven specific chal-
lenges, STR poses several other difficulties, such as blur-
ring, chromatic distortion [65], and complex background
[36]. Therefore, to enhance the diversity of this bench-
mark, we also construct a general subset with 400,000 im-
ages sampled from Union14M-L.

We also emphasize the significance of the validation set.
It follows the same construction methodology as the general
subset, which also includes 400,000 samples. The statistics
are shown in Tab. 4.

6. Experiments and Analysis
In this section, we benchmark the aforementioned 13

STR models (Tab. 3) on Union14M-L to provide more
quantitative analysis. In addition, we also introduce a so-
lution for STR from a data perspective by proposing a ViT-
based model [8], namely MAERec (Sec. 6.3), which can
utilize the 10M unlabeled images in Union14M-U through
self-supervised pre-training.

6.1. Experiment Settings

Training settings. For the 13 STR models, we use their
default hyperparameters described in the original papers for
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Table 5. Performance (WAICS) of models trained on synthetic datasets (MJ and ST). For the incomplete text subset, we measure the
margin of accuracy before and after image cropping, which is the lower the better.

Type Method
Common Benchmarks Union14M-Benchmark

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Curve
Multi-

Oriented
Artistic Contextless Salient

Multi-
Words

General Avg Incomplete ↓

CTC
CRNN [48] 89.7 88.3 82.2 69.3 67.8 71.2 78.1 7.5 0.9 20.7 25.6 13.9 25.6 32.0 18.0 6.4
SVTR [9] 94.4 96.3 91.6 84.1 85.4 88.2 90.0 63.0 32.1 37.9 44.2 67.5 49.1 52.8 49.5 4.8

Attention

MORAN [35] 91.0 91.3 83.9 68.4 73.3 75.7 80.6 8.9 0.7 29.4 20.7 17.9 23.8 35.2 19.5 6.8
ASTER [49] 93.3 90.8 90.0 74.7 80.2 80.9 85.0 34.0 10.2 27.7 33.0 48.2 27.6 39.8 31.5 5.8
NRTR [47] 95.2 94.0 90.0 74.1 79.4 88.2 86.8 31.7 4.4 36.6 37.3 30.6 54.9 48.0 34.8 7.3
SAR [25] 95.0 93.7 89.6 79.0 82.2 88.9 88.1 44.3 7.7 42.6 44.2 44.0 51.2 50.5 40.6 4.5
DAN [57] 93.4 92.1 87.5 71.6 78.0 81.3 84.0 26.7 1.5 35.0 40.3 36.5 42.2 42.1 37.4 6.7

SATRN [24] 96.1 95.7 93.5 84.1 88.5 90.3 91.4 51.1 15.8 48.0 45.3 62.7 52.5 58.5 47.7 5.6
RobustScanner [64] 95.1 93.1 89.2 77.8 80.3 90.3 87.6 43.6 7.9 41.2 42.6 44.9 46.9 39.5 38.1 4.5

LM

SRN [63] 91.5 93.9 88.9 76.0 84.0 84.8 86.5 63.4 25.3 34.1 28.7 56.5 26.7 46.3 39.6 7.6
ABINet [10] 95.7 95.7 94.6 85.1 90.4 90.3 92.0 59.5 12.7 43.3 38.3 62.0 50.8 55.6 46.0 17.9

VisionLAN [58] 95.9 94.4 90.7 80.1 85.3 88.9 89.2 57.7 14.2 47.8 48.0 64.0 47.9 52.1 47.4 6.9
MATRN [40] 96.7 95.8 94.9 82.9 90.5 94.1 92.5 63.1 13.4 43.8 41.9 66.4 53.2 57.0 48.4 8.2

Table 6. Performance (WAICS) of models trained on the training set of Union14M-L. For MAERec, S and B represent the use of ViT-Small
and ViT-Base as the backbone, respectively. PT denotes pre-training.

Type Method
Common Benchmarks Union14M-Benchmark

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Curve
Multi-

Oriented
Artistic Contextless Salient

Multi-
Words

General Avg Incomplete ↓

CTC
CRNN [48] 90.8 91.8 83.8 71.8 70.4 80.9 81.6 19.4 4.5 34.2 44.0 16.7 35.7 60.4 30.7 0.9
SVTR [9] 95.9 95.5 92.4 83.9 85.7 93.1 91.1 72.4 68.2 54.1 68.0 71.4 67.7 77.0 68.4 2.0

Attention

MORAN [35] 94.7 94.3 89.0 78.8 83.4 87.2 87.9 43.8 12.8 47.3 55.1 45.7 54.6 44.7 43.4 1.9
ASTER [49] 94.3 92.6 88.9 77.7 80.5 86.5 86.7 38.4 13.0 41.8 52.9 31.9 49.8 66.7 42.1 1.3
NRTR [47] 96.2 96.9 94.0 80.9 84.8 92.0 90.8 49.3 40.6 54.3 69.6 42.9 75.5 75.2 58.2 1.5
SAR [25] 96.6 96.0 92.4 82.0 85.7 92.7 90.9 68.9 56.9 60.6 73.3 60.1 74.6 76.0 67.2 2.1
DAN [24] 95.5 95.2 88.6 78.3 79.9 86.1 87.3 46.0 22.8 49.3 61.6 44.6 61.2 67.0 50.4 2.3

SATRN [57] 97.0 97.9 95.2 87.1 91.0 96.2 93.9 74.8 64.7 67.1 76.1 72.2 74.1 75.8 72.1 0.9
RobustScanner [64] 96.8 95.7 92.4 86.4 83.9 93.8 91.2 66.2 54.2 61.4 72.7 60.1 74.2 75.7 66.4 1.9

LM

SRN [63] 95.5 94.7 89.5 79.1 83.9 91.3 89.0 49.7 20.0 50.7 61.0 43.9 51.5 62.7 48.5 2.2
ABINet [10] 97.2 97.2 95.7 87.6 92.1 94.4 94.0 75.0 61.5 65.3 71.1 72.9 59.1 79.4 69.2 2.6

VisionLAN [58] 96.3 95.1 91.3 83.6 85.4 92.4 91.3 70.7 57.2 56.7 63.8 67.6 47.3 74.2 62.5 1.3
MATRN [40] 98.2 97.9 96.9 88.2 94.1 97.9 95.5 80.5 64.7 71.1 74.8 79.4 67.6 77.9 74.6 1.7

Ours

MAERec-S w/o PT 97.4 97.3 95.7 86.7 91.0 96.2 94.1 75.4 66.5 66.0 76.1 72.6 77.0 80.8 73.5 3.5
MAERec-S 98.0 97.6 96.8 87.1 93.2 97.9 95.1 81.4 71.4 72.0 82.0 78.5 82.4 82.5 78.6 2.7

MAERec-B w/o PT 97.3 97.8 96.6 87.1 92.6 95.8 94.5 76.5 67.5 65.7 75.5 74.6 77.7 81.8 74.2 3.2
MAERec-B 98.5 98.1 97.8 89.5 94.4 98.6 96.2 88.8 83.9 80.0 85.5 84.9 87.5 85.8 85.2 2.6

a fair comparison, except that the number of the predicted
character classes is unified to 91 (including digits, upper and
lower case letters, symbols, and space).

Metrics. We use three evaluation metrics: word accu-
racy (WA), word accuracy ignoring case (WAIC) and word
accuracy ignoring case and symbols (WAICS, most com-
monly used). For the incomplete text subset, we measure
the margin of accuracy before and after the letter cropping.

6.2. Experiment Results

Real-world data is challenging. As shown in Tab. 5 and
Tab. 6, compared to the performance on common bench-
marks, models exhibit an average accuracy degradation of
48.5% and 33.0% on Union14M-Benchmark, when trained
on synthetic datasets and Union14M-L respectively. This
indicates that the text images in real-world scenarios is far
more complex than the six commonly used benchmarks.

Real-world data is effective. Models trained on
Union14M-L can gain an average accuracy improvement of

3.9% and 19.6% on common benchmarks and Union14M-
Benchmark, respectively. The large performance boost
on Union14M-Benchmark suggests that synthetic training
data can hardly accommodate complex real-world demands,
while using real data for training can largely overcome this
generalization problem. Additionally, the relatively small
performance gains on common benchmarks also imply their
saturation.

STR is far from being solved. When trained only on
Union14M-L, we observe that the maximum average accu-
racy on Union14M-Benchmark (excluding incomplete text
subset) is only 74.6% (by MATRN [40] in Tab .6). This
indicates that STR is far from being solved. Although rely-
ing on large-scale real data can bring a certain performance
improvement, future efforts are still needed.

Vocabulary reliance is ubiquitous. When trained on
synthetic datasets, all models exhibit a large performance
drop on incomplete text subset (last column of Tab. 5). In
particular, we observe that language models have a larger
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Figure 5. An overview of MAERec. It consists of a ViT [8] as the
backbone and an auto-regressive Transformer decoder [24].

Figure 6. Reconstruction results on Union14M-L images (images
that are not used during pre-training). For each triplet, we show
the ground truth (top), the masked image (middle), and the recon-
structed image (bottom). The mask ratio is 75%.

performance degradation (10.2% vs. 5.6% in CTC-based
and 5.9% in attention-based models). We speculate that
the performance drop in language models can be related to
their error correction behavior, i.e., models complete the in-
complete text which is viewed as a character missing error.
This problem can be significantly alleviated when trained
on Union14M-L. We attribute this to the larger vocabulary
size in Union14M-L that models will not overfit the train-
ing corpus. However, this problem still exists and requires
further investigation.

6.3. Exploration of Unlabeled Data

To further explore the potential of leveraging self-
supervised pre-training to solve STR from a data perspec-
tive, we introduce a ViT-based model, namely MAERec.

Architecture of MAERec. In Fig. 5, we show the brief
architecture of MAERec. We choose Vision Transformer
(ViT) [8] as the default backbone for its effortless applica-
bility in masked image modeling [13]. The input image is
first fed into the ViT backbone with a patch size of 4 × 4.
The output sequence is then passed to a Transformer de-
coder used in SATRN [24] for auto-regressive decoding to
generate the predicted text. Details are in Appendix C.

Pre-training. To utilize the 10M unlabeled images in
Union14M-U, we pre-train the ViT backbone in MAERec
through a masked image modeling task. We adopt the
framework of MAE [13] with minor modifications. The
reconstruction results are shown in Fig. 6. The ViT back-
bone pre-trained on Union14-U can yield convincing recon-
structed text images, despite the mask ratio being high up to
75%. This indicates that the pre-trained ViT backbone can
effectively capture the text structure in text images and can

Table 7. Comparison between MAERec and other self-supervised
learning-based STR models with different pre-training and fine-
tuning data. R stands for real data, and S stands for synthetic data.
We report the average accuracy on six common benchmarks.

Method Pre-train Fine-tune Avg.
PerSec [28] 100M R 17M S 82.2

MaskOCR [37] 4.2M R, 100M S 17M S 92.6
DiG-S [61] 15.8M R, 17M S 2.8M R 94.6
DiG-B [61] 15.8M R, 17M S 2.8M R 95.0

MAERec-S (ours) 10.6M R 3.2M R 95.1
MAERec-B (ours) 10.6M R 3.2M R 96.2

learn useful textual representations.
Fine-tuning. After pre-training, we initialize MAERec

with the pre-trained ViT weight and fine-tune the whole
model on Union14M-L. The results are shown in Tab. 6
(last four rows). The performance of MAERec can be sub-
stantially improved after pre-training, with an average ac-
curacy gain of 1.0% on common benchmarks and 5.1%
on the Union14M-Benchmark, when using ViT-Small as
the backbone. Moreover, when scaling the backbone to
ViT-Base, we can observe significant performance improve-
ments and MAERec can achieve an average accuracy of
85.2% on Union14M-Benchmark. This promising result
demonstrates that utilizing massive unlabeled data can sub-
stantially improve the performance of STR models in real-
world scenarios, and it is worth further exploration.

Comparison with SOTA SSL methods. We also com-
pare our proposed MAERec with other self-supervised
learning-based methods in STR, as shown in Table 7. De-
spite the varying amounts of data used by different meth-
ods, MAERec outperforms its counterparts with a smaller
data scale. It is noteworthy that MAERec utilizes a similar
fine-tuning architecture with DiG [61] and a simpler pre-
training framework, yet still achieves better results. This
implies that the selection of data plays an even more critical
role in self-supervised pre-training and fine-tuning.

7. Conclusion

In this paper, we revisit scene text recognition from a
data perspective. Despite the current benchmarks being
close to saturation, we argue that the problem of STR re-
mains unsolved, especially in real-world scenarios where
current models struggle with numerous challenges. To ex-
plore the challenges that STR models still face, we con-
solidate a large-scale STR dataset for analysis and iden-
tified seven open challenges. Furthermore, we propose a
challenge-driven benchmark to facilitate the future devel-
opment of STR. Additionally, we reveal that the utiliza-
tion of massive unlabeled data through self-supervised pre-
training can remarkably enhance the performance of the
STR model in real-world scenarios, suggesting a practical
solution for STR from a data perspective. We hope this
work can spark future research beyond the realm of exist-
ing data paradigms.
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Appendix

A. Unrecognized Samples in Common Bench-
marks

In Fig. 8, we show four types of images in the six com-
mon benchmarks that are not correctly recognized by the
ensemble of 13 STR models. Specifically, for human un-
recognizable images, we adopt the following criteria for ad-
judication: We recruit five human experts, and each of them
submits three possible predictions for each text image. If
all five experts failed to recognize a text image (i.e., 15
predictions in total are incorrect), we regard it as a human
unrecognizable sample. The majority of these human un-
recognizable samples exhibit high levels of blurriness and
low resolution. Furthermore, upon further examination of
the 16.8% of samples that are classified as “other”, we can
observe that many of them fall under the categories of the
seven challenges that we have discussed before, such as
curve text, multi-words text, and artistic text.

B. More Details of Union14M
B.1. Construction of Union14M-U

In order to gather a vast number of high-quality unla-
beled text images, we utilize three scene text detectors:
DBNet++1 [27], BDN2 [30], and EAST3 [69]. We ap-
ply these detectors to three large datasets: Book32[16],
OpenImages[23], and Conceptual Captions (CC)[46].
However, directly using the results of these detectors is sub-
optimal due to the presence of many false positive results
produced by different detectors (e.g., in Fig. 7, the rear
tire of the police car is detected as a text region by two de-
tectors). While missing detections can be tolerated given
a large amount of data, false detections are undesirable as
they may introduce noise for subsequent self-supervised
learning. To address this issue, we adopt a simple Inter-
section over Union (IoU) voting strategy to filter out false
detections. Specifically, we identify regions where the de-
tected polygons of the three detectors have an IoU larger
than 0.7 with respect to each other, and then we use the min-
imum axis-aligned rectangle of the three detected polygons
as the final prediction. Additionally, when selecting images
from OpenImages to construct Union14M-U, we exclude
images with the same image ID in HierText [31], TextOCR
[51], and InterOCR [22] since they have already been used
in Union14M-L. Using this strategy, we obtain 10.6 million
high-quality text instances in Union14M-U. It is noteworthy
that all three detectors are trained on a singular dataset (DB-

1https://github.com/open-mmlab/mmocr/tree/main/
configs/textdet/dbnetpp

2https://github.com/Yuliang-Liu/Box_
Discretization_Network

3https://github.com/SakuraRiven/EAST

IoU Voting

Crop

Crop

Noise

Figure 7. An illustration of our IoU voting strategy for collecting
text instances.

Net++ and EAST are trained on ICDAR2015 [20], BDN is
trained on MLT17 [?]), which may contain inherent biases
and lead to a lack of diversity in the detected text instances.
Therefore, investigating the usage of detectors trained on
larger datasets to obtain a larger number of text instances is
a potential direction for future research.

Table 8. Comparison of different cropping ways. Settings remain
the same as in Tab .3.

Method Training Data Crop method Acc-UL
SATRN [24] MJ, ST axis-aligned 72.09
SATRN [24] MJ, ST rotated 73.12
ABINet [10] MJ, ST axis-aligned 70.73
ABINet [10] MJ, ST rotated 71.19

Table 9. Comparison of different cropping ways. Settings remain
the same as in Tab .6.

Method Training Data Crop method Acc-CB
SATRN [24] Union14M-L axis-aligned 91.40
SATRN [24] Union14M-L rotated 89.03 (-2.37)
ABINet [10] Union14M-L axis-aligned 92.02
ABINet [10] Union14M-L rotated 90.13 (-1.89)

B.2. Comparison of Different Cropping Methods

We validate whether the large performance gap in Tab.
3 is caused by axis-aligned crop. As shown in Tab .8,
STR models still perform poorly when using rotated crop,
suggesting that the challenges inside Union14M-L are not
caused by axis-aligned crops. Moreover, when training with
rotated crop images, models exhibit inferior performance as
shown in Tab .9, verifying our conjecture in that STR mod-
els will gain more robustness when training with a more
noised text image. The inconsistency between STR and
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Figure 8. Examples of unrecognized samples in six common benchmarks.

challenging hard normalmedium easy

Figure 9. Examples of five difficulty levels in Union14M-L.

STD has been a less explored problem (E.g., The STR com-
munity used to focus on curve text recognition despite arbi-
trary shape text detectors being famous).

B.3. Difficulty Assignment in Union14M-L

Our focus is on analyzing the challenges that existing
STR models encounter in real-world scenarios. Therefore,
we are interested in analyzing the samples that present dif-
ficulties. As shown in Fig. 9, we categorize the images in
Union14M-L into five difficulty levels using an error vot-
ing method. Specifically, given an image I and its corre-
sponding ground truth Y , we conduct forward inference on
I using the 13 STR models, and the prediction results are
denoted as [Y1, Y2, · · · , Y13]. The voting list is defined as
V = [v1, v2, · · · , v13], where vi is defined as:

vi =

{
1, if Yi = Y

0, otherwise
(1)

Then each image is empirically assigned to a difficulty level
according to the number of correct predictions:

level =



challenging, if sum(V) = 0

hard, if sum(V) ∈ [1, 4]

medium, if sum(V) ∈ [5, 7]

normal, if sum(V) ∈ [8, 10]

easy, if sum(V) ∈ [11, 13]

(2)

The subsets exhibit distinct characteristics based on their re-
spective difficulty levels. For instance, the challenging set
comprises a substantial number of images containing curve
and vertical text, while the easy set primarily features clear
samples and a clear background. The proportion of the im-
ages in each difficulty level is illustrated in Fig. 11

B.4. Consolidation of Union14M-Benchmark

In this section, we provide more information on how
we consolidate the Union14M-Benchmark. For each of
the seven challenges, excluding incomplete text, we ini-
tially collect several reference images from Union14M-L
that aligned with the definition of each of the seven chal-
lenges. We then recruit five human experts to identify can-
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Figure 10. Examples of Union14M-Benchmark.
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Figure 11. The proportion of samples with different difficulty lev-
els in Union14M-L.
didate images that shared similarities with the reference im-
ages. Subsequently, we manually examined each candidate
image and eliminated images that did not meet the specified
challenge criteria. Additionally, we also thoroughly recheck
the annotations of all images, including digits, cases, and
symbols to ensure the quality of the benchmark. For the
incomplete text subset, all 1495 images are randomly sam-
pled from the easy set of Union14M-L, and we cropped the
first or last letter of each text image.

For the general subset, we sample 20% of the images
from each of the five difficulty levels evenly to form the
general subset with 400,000 images. With such uniform
sampling, the images in the general subset will be more uni-
formly distributed and more representative. Since the sam-
pling is random, the general subset may have some annota-
tion errors and human unrecognizable samples, as in the six
common benchmarks. However, due to a large amount of
data, it will take much manual effort to correct these errors,

Table 10. Vision Transformer variants used in MAERec.

Model Layers Hidden size MLP size Heads
ViT-Small 12 384 1536 6
ViT-Base 12 768 3072 12

and we also hope that the academic community can work
together to correct the errors. In Fig. 10, we show more
samples of Union14M-Benchmark.

C. Inplementation Details of MAERec

C.1. Vision Transformer

We use vallina Vision Transformer (ViT) [8] as the back-
bone of MAERec, since it can be easily adapted to masked-
image-modeling pre-training. A ViT is composed of a patch
embedding layer, position embedding, and a sequence of
Transformer blocks.

Patch Embedding: Since a ViT takes a sequence as in-
put, the patch embedding layer is used to convert the in-
put image into a sequence of patches. Specifically, given
a text image of size x ∈ RH×W×C , we first resize it to
xr ∈ RHr×Wr×C , where Hr = 32 and Wr = 128 fol-
lowing the common practice in STR. We then use a patch
embedding layer with a patch size of 4 × 4 to split the im-
age into non-overlapping patches, in this case, there are 256
patches in total. Each patch is linearly projected to a d-
dimensional vector, where d is the embedding dimension of
the patch embedding layer.

Position Embedding: To retain positional information
in the image, patch embeddings are added with positional
embeddings. Specifically, we use sinusoidal positional em-
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beddings in the original ViT [8] as follows:

PosEnc(pos, 2i) = sin
( pos

100002i/d

)
PosEnc(pos, 2i+ 1) = cos

( pos

100002i/d

) (3)

where PosEnc(pos, 2i) and PosEnc(pos, 2i + 1) repre-
sent the 2i-th and (2i + 1)-th dimensions of the positional
encoding for a given position pos. d represents the embed-
ding dimension, and i ranges from 0 to ⌊(d/2)⌋ − 1.

Transformer blocks: A Transformer block consists of
alternating layers of multi-head self-attention (MHSA) and
MLP blocks. Given an input sequence of embeddings
X ∈ RL×d, where L is the sequence length and d is the
embedding dimension, the transformer block can be com-
puted as follows:

Block(X) = LN(X + LN(FFN(LN(MHSA(X))))) (4)

where LN is the layer normalization layer, FFN is the
feed-forward network, and MHSA is the multi-head self-
attention layer. We show the configuration of the ViT vari-
ants used in MAERec in Table 1.

C.2. Masked Image Modeling Pre-training

We adopt MAE [13] framework to pre-train the ViT
backbone in MAERec.

Encoder in MAE. We use ViT described in Section
C.1 as the encoder in MAE. Specifically, given patches
x ∈ RN×d, where N is the number of patches and d is
the embedding dimension of the patch embedding layer, we
randomly mask 75% of the input patches and only send the
remaining 25% visible patches to the ViT encoder. The
mask size is set to 4 × 4 to be consistent with the patch
size.

Decoder in MAE. The decoder in MAE is input with the
full set of tokens including patch-wise representations from
the ViT encoder and learnable mask tokens put in the posi-
tions of masked patches. By adding positional embeddings
to all the input tokens, the decoder is able to reconstruct the
original image from the masked patches. Specifically, we
adopt the original decoder used in MAE, which is 8 layers
of Transformer blocks and a linear layer to reconstruct the
text images from input tokens. The embedding dimension
of Transformer blocks is 512 and the number of heads is set
to 16. The expanding factor of the MLP layer is set to 4.

Reconstruct target. The decoder in MAE is trained to
reconstruct the normalized pixel values of the original im-
age, supervised by MSE loss.

Optimization. We adapt AdamW [32] optimizer to pre-
train the model on the 10.6M images of Union14M-U for
20 epochs with an initial learning rate of 1.5e-4. The co-
sine learning rate scheduler is used with 2 epochs of linear
warm-up. The pre-training image size is set to 32×128,

Table 11. The sources of the 13 publicly available STR models.
Method Link Official ?
CRNN https://github.com/Mountchicken/Text-Recognition-on-Cross-Domain-Datasets No
SVTR https://github.com/PaddlePaddle/PaddleOCR Yes

MORAN https://github.com/Canjie-Luo/MORAN_v2 Yes
ASTER https://github.com/Mountchicken/Text-Recognition-on-Cross-Domain-Datasets No
NRTR https://github.com/open-mmlab/mmocr/tree/main No
SAR https://github.com/open-mmlab/mmocr/tree/main No
DAN https://github.com/Wang-Tianwei/Decoupled-attention-network Yes

SATRN https://github.com/open-mmlab/mmocr/tree/main No
RobustScanner https://github.com/open-mmlab/mmocr/tree/main Yes

SRN https://github.com/PaddlePaddle/PaddleOCR No
ABINet https://github.com/open-mmlab/mmocr/tree/main No

VisionLAN https://github.com/wangyuxin87/VisionLAN Yes
MATRN https://github.com/byeonghu-na/MATRN Yes

and we use no data augmentation. The batch size is set
to 256. Pre-training is conducted with 4 NVIDIA A6000
(48GB RAM) GPUs.

C.3. Fine-tuning for Scene Text Recognition

Auto-Regressive Transformer decoder. We use the
Transformer decoder in [40] for its superior performance
in scene text recognition . Specifically, we use six layers
of Transformer decoder to predict text sequence in an auto-
regressive manner. The embedding dimension of the Trans-
former decoder is set to 384 and 768 for the small and base
models respectively. The number of heads is set to 8.

Optimization. To be consistent with the pre-training
process, we still employ the AdamW optimizer with a
weight decay of 0.01, and the cosine learning rate sched-
uler without warm-up to train the model for 10 epochs. The
batch size is set to 64, and the initial learning rate is set to
1e-4. We also adopt the same data augmentation strategy
in [10]. Fine-tuning is conducted with 4 NVIDIA 2080Ti
(11GB RAM) GPUs.

D. More Experiment Analysis
D.1. Sources of the 13 STR Models

In Tab. 11, we list the sources of the 13 publicly available
STR models.

D.2. WA and WAIC Metrics

In Tab. 12 and Tab. 13, we report the performance of
models trained with Union14M-L in terms of WA (word ac-
curacy) and WAIC (word accuracy ignore case) metrics, re-
spectively. While most recent works evaluate STR methods
solely on the WAICS (word accuracy ignores case and sym-
bols) metric, which ignores symbols and is case-insensitive,
some specific applications require the recognition of sym-
bols and cases, such as captcha recognition and license plate
recognition. Compared to models evaluated on the WAICS
metric, we can observe a notable decrease in performance
when evaluated on both the WA and WAIC metrics. This
phenomenon can be attributed to the following reason:

Incorrect case annotation. The performance gap be-
tween WA and WAIC is substantial in several common
benchmarks, e.g., 50.3% vs. 85.89% in IIIT [39] dataset
(average accuracy of the 13 STR models). This is primar-
ily due to inconsistent case annotation. As shown in Fig.
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Table 12. Performance (WA) of models trained on the training set of Union14M. In WA and WAIC metrics, it is impractical to measure
the performance of the model on incomplete text set, because the performance is affected by whether the model can correctly predict the
case and symbols. For instance, if the model is wrong in case prediction, it will be considered as a false prediction in WA metric, and the
error of incomplete text will be ignored.

Type Method
Common Benchmarks Union4M Benchmarks

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Curve
Multi-

Oriented
Artistic Contextless Salient

Multi-
Words

General Avg

CTC
CRNN [48] 48.0 44.4 60.9 68.2 70.4 78.5 61.7 18.8 4.2 28.3 37.9 14.4 21.4 56.7 26.0
SVTR [9] 50.5 46.4 66.3 79.9 61.7 89.9 65.8 69.9 66.2 45.1 61.9 66.4 40.9 73.1 60.5

Attention

MORAN [35] 50.2 45.4 63.5 75.2 59.2 85.8 63.2 41.9 12.0 39.3 49.7 39.4 35.5 41.4 37.0
ASTER [49] 49.1 45.0 64.8 73.8 58.0 83.7 62.4 36.9 12.1 35.6 46.9 29.0 33.4 62.9 36.7
NRTR [47] 50.5 47.1 67.7 77.1 60.3 90.3 65.5 47.3 38.6 47.8 64.3 38.7 49.5 71.4 51.1
SAR [25] 50.5 46.7 67.1 83.5 62.6 90.6 66.8 66.1 53.4 53.3 66.6 55.4 49.8 72.1 59.5
DAN [24] 49.6 46.3 64.8 74.4 57.7 84.7 62.9 43.9 21.9 43.7 55.1 39.8 38.4 65.1 44.0

SATRN [57] 50.7 47.3 69.4 83.5 65.0 93.4 68.8 72.0 63.8 58.9 69.5 67.6 45.8 77.2 65.2
RobustScanner [64] 50.2 46.4 67.4 79.0 61.6 91.0 65.9 63.3 51.0 54.0 72.7 54.7 46.7 71.9 59.2

LM

SRN [63] 50.1 45.5 64.3 74.3 58.8 87.8 63.5 48.0 19.3 43.2 54.9 39.9 27.7 42.9 39.4
ABINet [10] 50.5 47.0 69.2 83.5 65.6 90.6 67.7 72.2 58.7 57.4 66.0 67.6 41.5 75.6 62.7

VisionLAN [58] 50.4 45.8 66.0 75.6 60.3 90.6 64.8 68.0 54.7 50.1 58.8 62.5 36.9 70.5 57.4
MATRN [40] 50.9 47.2 69.6 84.0 65.9 94.1 68.6 78.4 65.0 61.7 69.7 73.0 52.6 76.6 68.1

Ours

MAERec-S w/o PT 51.0 47.7 68.6 82.6 64.7 93.4 68.0 72.7 63.7 57.7 70.4 67.9 48.6 77.1 65.4
MAERec-S 51.0 47.7 69.4 82.9 66.8 94.1 68.7 78.2 68.8 63.7 76.5 73.2 50.1 78.7 69.9

MAERec-B w/o PT 50.9 47.6 69.7 83.0 66.1 93.1 68.4 73.7 65.2 57.6 69.7 69.7 48.1 78.1 66.0
MARec-B 51.3 48.0 70.9 85.2 67.1 95.1 69.6 85.3 81.4 70.9 79.2 80.1 54.6 82.1 76.2

Table 13. Performance (WAIC) of models trained on the training set of Union14M.

Type Method
Common Benchmarks Union4M Benchmarks

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Curve
Multi-

Oriented
Artistic Contextless Salient

Multi-
Words

General Avg

CTC
CRNN [48] 81.5 91.3 82.4 69.9 69.8 79.2 79.0 18.9 4.3 31.9 39.3 15.1 21.5 58.1 27.0
SVTR [9] 85.8 94.7 92.4 82.1 85.1 91.0 88.5 70.5 66.6 50.2 63.0 71.4 42.6 74.7 62.7

Attention

MORAN [35] 85.6 93.6 87.3 77.1 82.6 86.1 85.4 42.4 12.4 44.3 51.1 41.0 36.8 42.9 38.7
ASTER [49] 84.1 92.0 87.6 75.5 79.5 84.0 83.8 37.4 12.5 39.2 47.9 30.2 34.5 64.4 38.0
NRTR [47] 85.7 96.2 92.3 78.8 83.9 90.3 87.9 47.9 39.1 51.8 65.1 40.1 51.4 72.9 52.6
SAR [25] 86.5 95.3 90.7 81.6 86.1 91.0 88.5 66.9 54.7 58.0 69.0 57.0 51.2 73.7 61.5
DAN [24] 84.8 94.6 86.7 76.6 78.5 84.7 84.3 44.6 22.1 47.0 56.6 41.5 39.8 66.7 45.5

SATRN [57] 86.6 96.2 93.5 85.5 89.9 93.4 90.9 73.0 64.7 64.3 71.1 69.2 47.4 78.8 66.7
RobustScanner [64] 85.8 95.1 90.4 80.8 85.6 92.0 88.3 64.2 52.8 58.7 72.7 56.9 47.8 73.5 60.9

LM

SRN [63] 85.6 94.2 88.6 76.8 82.9 88.5 86.1 48.7 20.0 47.6 57.9 41.6 27.9 60.7 42.5
ABINet [10] 86.5 96.8 94.1 85.8 90.9 91.7 91.0 73.0 59.6 62.2 66.3 69.5 43.1 75.6 65.5

VisionLAN [58] 86.1 94.6 89.3 82.1 84.3 91.3 88.0 68.8 55.2 54.4 60.1 64.7 37.9 72.1 57.4
MATRN [40] 87.0 97.1 94.4 86.3 92.1 94.4 91.9 79.3 66.0 67.3 71.0 74.9 53.8 78.4 70.0

Ours

MAERec-S w/o PT 86.8 96.9 93.7 84.9 89.6 93.8 91.0 73.7 64.4 62.1 71.5 69.5 49.3 78.7 67.0
MAERec-S 87.3 97.0 95.1 85.3 92.1 95.1 92.0 79.3 69.5 68.9 77.8 75.1 51.9 80.4 71.8

MAERec-B w/o PT 86.8 97.2 85.5 95.4 91.6 94.1 91.8 74.8 65.7 62.1 80.0 71.6 50.2 79.7 69.2
MARec-B 87.9 97.8 96.5 87.7 93.8 95.8 93.2 86.6 82.1 75.9 80.7 82.2 56.2 83.8 78.2

13, common benchmarks lack a unified annotation stan-
dard for the case. For example, in the IIIT dataset, the let-
ters are all annotated in upper case, whereas in Union14M-
Benchmark, we manually check the case annotation of all
the 9383 samples in challenge-specific subsets, and correct
any case errors. Therefore, the performance gap between
WA and WAIC metric in Union14M-Benchmark is much
smaller (55.5% vs. 57.4%).

Lack of symbols. Additionally, we note that there ex-
ists a performance gap between WAIC and WAICS for STR
models (88.3% v.s 91.2% in common benchmarks; 57.4%
v.s 62.7% in Union14M-Benchmark). We suggest that this

may be due to the infrequent appearance of symbols in the
training set in comparison to letters and digits. This can be
interpreted as a class imbalance issue, which requires fur-
ther investigation.

D.3. Data Saturation

We conducted a data ablation study to demonstrate the
sufficiency of data in Union14M-L. We select ABINet[10]
and SATRN[24], and train them on the increasing fractions
of the Union14M-L dataset. As depicted in Fig. 14a, the
accuracy increases sharply in the beginning and eventually
levels out. This indicates that the real data in Union14M-
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Figure 12. Recognition results on Union14M-Benchmark. GT stands for ground truth. ABINet-S stands for ABINet[10] trained on
synthetic datasets (MJ and ST). ABINet-U stands for ABINet trained on Union14M-L. The green text stands for correct recognition and
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Figure 14. (a) Performance of models trained on increasing frac-
tions of Union14M-L. CB denotes the six common benchmarks;
UB denotes Union14M-Benchmark. (b) Performance evolution
curves of models trained with Union14M-L or MJ [18, 17] and ST
[12] under the same configurations (number of epochs, optimizer,
etc.), evaluated on the six common benchmarks.

L are sufficient, and adding more real data may not lead to
significant performance gain. Moreover, as shown in Fig.
14b, even though the data in Union14M-L are only 1/4 of
the synthetic data, training on Union14M-L requires much
fewer iterations (four times less) to achieve higher accuracy,
which aligns with the Green AI[45] philosophy.

Table 14. Compare the performance of MAERec-S with different
pre-training and fine-tuning datasets. Acc-CB denotes the average
accuracy on six common benchmarks. Acc-UB denotes the aver-
age accuracy on Union14M-Benchmark (Exclude incomplete text
subset).

No. Pre-train Fine-tune Acc-CB Acc-UB
1 - MJ, ST 89.9 46.0
2 - Union14M-L 94.1 73.5
3 MJ, ST MJ, ST 89.9 46.1
4 MJ, ST Union14M-L 94.0 75.0
5 Union14M-U Union14M-L 95.1 78.6

D.4. Data Matters in Self-Supervised Pretraining

In Tab. 14, we compare different dataset combinations
used in pre-training and fine-tuning. When pre-training
and fine-tuning are both performed on synthetic datasets,
MAERec can barely gain a performance boost (89.9 →
89.9 for CB, 46.0% → 46.1% for UB). However, when
fine-tuning is performed on Union14M-L, MAERec can ex-
hibit a performance boost when either pre-trained on syn-
thetic datasets (73.5% → 75.0% for UB) or on Union14M-
U (73.5% → 78.6% for UB). This indicates that fine-
tuning on real data is vital for self-supervised learning, and
Union14M-U is preferable to synthetic datasets for pre-
training (78.6% vs. 75.0%).

D.5. Visualize Recognition Results

We show some recognition results on Union14M-
Benchmark in Fig. 12. Compared with models trained on
synthetic data, training on Union14M can empower STR
models to cope with various complex real-world scenarios,
thus significantly improving their robustness.

17



Figure 15. More reconstruction samples. For each triplet, we show the ground truth (top), the masked image (middle), and the reconstructed
image (bottom). Images are from artistic text, multi-words text, and contextless text in Union14M-Benchmark.
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D.6. Why MIM Pre-training Works for STR

When MAERec is pre-trained using MAE on
Union14M-U, it shows significant improvement in the
STR downstream task. The reason behind this improve-
ment could be attributed to the pre-training process of
MIM, where a large portion of the text image (75%) is cov-
ered, resulting in only a few patches of each character being
visible to the ViT backbone. As a result, if the decoder
needs to reconstruct the original image, the ViT backbone
must learn to recognize the smallest part of a character
to infer the whole character, as shown in Fig. 15. After
pre-training, the ViT backbone has learned to differentiate
between different characters during pre-training, and the
downstream recognition task is essentially a classification
task. Hence, the model’s performance is significantly
enhanced.
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