
 

  

 
 

 

 

  

Figure 1. Face swap results by our method. Note that, the swapped images consistently preserve the identity of the source and the non- 

identity attributes(i.e., hair, expression, gaze, pose,.etc.) from a variety of target images. Best viewed with zoom-in and a colored version. 
 

Abstract 

The SOTA face swap models still suffer the problem of 

either target identity (i.e., shape) being leaked or the target 

non-identity attributes (i.e., background, hair) failing to be 

fully preserved in the final results. We show that this in- 

sufficient disentanglement is caused by two flawed designs 

that were commonly adopted in prior models: (1) count- 

ing on only one compressed encoder to represent both the 

semantic-level non-identity facial attributes(i.e., pose) and 

the pixel-level non-facial region details, which is contradic- 

tory to satisfy at the same time; (2) highly relying on long 

skip-connections [50] between the encoder and the final 

generator, leaking a certain amount of target face identity 

into the result. To fix them, we introduce a new face swap 

framework called “WSC-swap” that gets rid of skip connec- 

tions and uses two target encoders to respectively capture 

the pixel-level non-facial region attributes and the semantic 

non-identity attributes in the face region. To further rein- 

force the disentanglement learning for the target encoder, 

we employ both identity removal loss via adversarial train- 

ing (i.e., GAN [18]) and the non-identity preservation loss 

via prior 3DMM models like [11]. Extensive experiments 

on both FaceForensics++ and CelebA-HQ show that our 

results significantly outperform previous works on a rich set 

of metrics, including one novel metric for measuring iden- 

tity consistency that was completely neglected before. 

 
1. Introduction 

Deepfake [27] is a double-edged sword, despite the fact 

that various negative use cases are currently dominating the 

conversations to steer people’s attention to their social im- 

pact [21], it’s arguably true that AI-synthesized faces, bod- 

ies, and voices have huge potential for a variety of posi- 

tive applications, such as virtual instructor or health coun- 

seling as discussed in [48], or other content generations in 

movie/game industry (i.e., Paul Walker in “Fast and Fu- 

rious 7”) and etc.  Keep improving the generation qual-   

ity also inspires new ways to detect [7, 15, 20, 57] deep- 

fakes for negative use cases. Face swapping has been stud- 

ied intensively in both academia and industry, where the 

quality improvement is remarkable over the years thanks 

to the advances in deep generative learning.  As defined  

in [32], face swapping must achieve three goals simulta- 

neously (1) fully preserve the face identity from the source 

image (2) fully preserve everything else except the iden- 

tity (identity-irrelevant) from the target image, and (3) en- 

sure the final result is both artifacts-free and photo-realistic. 
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Besides, in real-world scenarios, a source image could be 

swapped to multiple targets, where cross-target consistency 

becomes fairly important. Therefore, we additionally ar- 

gue that the disentanglement of ID and non-ID properties 

is essential for cross-target consistent face swapping. Prior 

works [8, 17, 32, 35, 58] investigated various methodologies 

for face identity and non-identity attributes disentanglement 

as well as their fusions to synthesize the final swapped im- 

age. Despite the impressive progress, the above three goals 

are hardly achieved at the same time. One of the key chal- 

lenges is that those prior works are essentially playing the 

seesaw-style game, where improving on the identity preser- 

vation from the source is usually at the cost of sacrificing 

the non-identity preservation from the target, and vice ver- 

sus. Fundamentally, we argue that this is still caused by the 

insufficient disentanglement between face identity and non- 

identity representations. Specifically, on one hand, works 

that try to improve the source identity preservation through 

3D prior [58] or information compression [17] or smoothing 

regularization [32] on top of a pre-trained face recognition 

model [35] usually don’t provide sufficient forces to remove 

the target identity while preserving other non-identity at- 

tributes. On the other hand, work like Faceshifter [35] that 

tries to preserve the low-level non-identity details through 

attribute loss would also likely leak target identity infor- 

mation into the results. Such phenomena are evident from 

Fig. 3, where the target face silhouette is clearly leaked to 

the final swapped faces of works [8, 35]. 

By delving deep into the model structures, we noticed 

that most of the prior works [8, 17, 32, 35, 58] leverage a 

bottleneck encoder and decoder structure on the target im- 

age, where the encoder is expected to (1) fully remove the 

face identity (2) fully preserve everything else (i.e., pixel- 

level background appearance, hair, facial expression, head 

pose, eye gaze, and other non-identity facial attributes) from 

the target image. While the decoder (also called the gener- 

ator) is in charge of generating the final swapped result by 

fusing the source identity representation from a face recog- 

nition model as well as all the compressed representations 

from the target decoder. To restore more details, symmet- 

rical long skip connections are often employed by copying 

fine-grained low-level features from the encoder [8, 17, 35]. 

However, we argue that it is very difficult, if not impossi- 

ble, to simultaneously achieve the above two goals using 

only one single compressed bottleneck encoder(see Znid in 

Fig. 2 (a)). In addition, the skip connections used in the de- 

coder would inevitably bring the target identity information 

into the results together with other non-identity attributes, 

therefore, further hurting the disentanglement learning. 

To encourage thorough disentanglement, in this paper, 

we designed a new framework that gets rid of the skip con- 

nections in our entire model structure. Specifically, we 

proposed two separate encoders that respectively capture 

the pixel-level attributes outside the face region and the 

semantic-level non-identity facial attributes inside the face 

region.  Each of which is tailored to dedicated capturing  

its own desired representation without compromising with 

each other. Meanwhile, a target identity removal loss and  

a few non-identity attribute preservation losses are explic- 

itly employed to compensate for the missing details due to 

the lack of skip connections. To be specific, we leverage 

adversarial training techniques to penalize the target repre- 

sentation if it contains any target identity, meanwhile, we 

use prior models like 3DMM predictor [14] to explicitly 

preserve facial expression and head pose, in addition to the 

attribute loss proposed in Faceshifter [35]. 

To summarize, our contributions are (1) we analyzed that 

prior works are still suffering poor disentanglement where 

improving one goal may hurt other goals; (2) we unveiled 

that the skip connection is one root cause for such insuf- 

ficient disentanglement in prior model architecture; (3) we 

proposed new network structures, as well as new training 

strategies to reinforce the identity disentanglement while 

preserving more identity-irrelevant attributes to compensate 

the lack of skip connections; lastly (4) we introduced a new 

evaluation metric and conducted extensive experiments, the 

results validated the effectiveness of our method. 

 

2. Related works 

Face Swap. Early face swap works [3, 10, 37, 44] mainly 

leverage the 3D facial model to transfer facial identity from 

the source into target images/videos. Recent works heavily 

rely on Generative Adversarial Networks (GAN) to improve 

the face swap visual quality. Korshunova et al. [33] design 

a person-specific network for face swapping, in which each 

source identity model is trained separately. Deepfakes [1] 

shares a similar idea of training a face-swapping GAN with 

paired source video and the target video.  Naruniec et al. 

[41] introduce the first approach that can swap facial iden- 

tity at the megapixel resolution, again with the help of GAN. 

RSGAN [42] makes an early attempt of extracting facial 

identity and non-identity attributes separately for face swap- 

ping by the face and hair latent extractors. FSGAN [43] im- 

proves its previous work [44] by replacing the 3DMM fit- 

ting and re-rendering with a GAN-based face reenactment 

network. Although rapid progress has been made, there is 

still much room to improve in order to get realistic and high- 

fidelity results. StyleGAN [29] based works [59, 60, 62, 64] 

can generate high-fidelity swapped images, but they suffer 

from the limited representation space of StyleGAN which 

results in unsatisfied identity and non-identity preserving. 

FaceInpainter [34] explores face swap in heterogeneous do- 

mains based on StyleGAN [29] and 3DMM [4]. On the 

other hand, FaceShifter [35] introduces an adaptive frame- 

work that can integrate more faithful non-identity attributes 

from the target with the identity embedding of the source 
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Figure 2. Framework comparison between (a) prior face swap methods w/ skip connections and (b) our method w/o skip connections. 

from a pre-trained face recognition model. This framework 

shows strong generalization and therefore many subsequent 

works [8, 17, 32, 58] follow a similar design. Simswap [8] 

designs Weak Feature Matching (weak FM) loss to preserve 

more detailed target attributes. However, it hurts the identity 

similarity between the source and the final swapped face. 

MobileFaceSwap [61] proposes a lightweight face swap 

model based on both Faceshifter [35] and Simswap [8]. Hi- 

fiFace [58] improves identity similarity by adding 3DMM 

shape parameters into the facial identity feature, but the tar- 

get facial identity still leaks into the resulting image. InfoS- 

wap [17] tries to remove the target facial identity by mask- 

ing out the identity-relevant features in all the convolution 

stages of the pre-trained face recognition model, but other 

target attributes such as background and expression can’t be 

fully preserved, because, by definition, any face recognition 

model is trained to be invariant to all the non-identity at- 

tributes(i.e., pose, expression). In Smooth-swap [32], the 

face recognition model is further trained for face swapping 

by contrastive learning to smooth the identity representa- 

tion space. Although the source identity preservation is im- 

proved, the preservation of non-identity attributes from the 

target also gets hurt. Xu et al. [6] propose a unified frame- 

work for face reenactment and face swapping, which shows 

that pixel-level and semantic attribute disentanglement can 

both help remove target facial identity and preserve non- 

identity attributes. In contrast, we delve into the U-net of 

encoder-decoder structure which is commonly used in pre- 

vious works [17, 35], and unveil that skip-connection is one 

root cause for entanglement of the target identity and its 

non-identity attributes, we then propose novel regulariza- 

tion to encourage further disentanglement learning after re- 

moving the skip connections. 

Face Disentanglement. One mainstream face disentangle- 

ment idea is to leverage a geometry prior model, such as 

3DMM [4], to disentangle identity, facial expression, head 

pose as well as lighting. Given a 2D face image, the goal  

is to estimate the 3DMM parameters either through direct 

optimization or deep learning models [11, 13, 14, 16, 63], 

then based upon the estimated parametric model, subse- 

quent facial attributes editing may become easier. How- 

ever, those prior models [36, 49] usually generalize poorly 

for wild images due to their limited capacity. Moreover, 

 

the fitting process also contains inevitable errors and ambi- 

guities (i.e., between face identity and expression), limiting 

many applications that require precisely controllable edit- 

ing. Therefore, a new line of work starts to learn disentan- 

gled facial attributes directly from 2D image-sets [9,23,31]. 

These generative approaches typically build latent represen- 

tations for each specific facial attribute (i.e. pose, glass, 

hairstyle, elevation, etc.). Recent works [2, 5, 26, 45] focus 

more on identity and non-identity disentanglement. Specif- 

ically, Nitzen et al. [45] propose a latent space mapping net- 

work to map both the identity and attribute representations 

into StyleGAN latent code. Likewise, because of the lim- 

ited information contained in StyleGAN latent code, this 

approach cannot preserve all the non-identity attributes, es- 

pecially in hair and background. To better preserve the non- 

identity attributes, FICGAN [26] uses a much larger latent 

code to better restore expression and pose. However, the 

facial identity is not fully disentangled, meanwhile, the hair 

and background details are not totally preserved either. 

Skip Connection. Skip connection is widely adopted in 

modern neural-net architectures, such as Highway [53], 

ResNet [22], DenseNet [24] and U-net [50] etc. It was ini- 

tially designed to address the vanishing gradient issue when 

training very deep neural nets for classification tasks (i.e., 

image recognition [22]), but later extended to more broad 

applications including segmentation [19], optical flow pre- 

diction [46] and image synthesis [25, 35, 40]. Compared 

with short skip connections used in ResNet [22](via sum- 

mation) and DenseNet [24](via concatenation), the sym- 

metrical long skip connections used in U-net [50] directly 

copy fine-grained low-level details from the encoder to the 

decoder, results in more accurate and sharper dense predic- 

tions. However, we discover that even though skip connec- 

tion benefits faster convergence, stable training, and fined- 

grained details preservation, it is one root cause for identity 

leaking and face attributes entanglement in the state-of-the- 

art face swap models [35]. 

3. Method 

Our method aims to swap the facial identity of a source 

image Xs to a target image Xt. The face-swapped result 

Ys,t is a seamlessly blended version of the  facial  iden- 

tity of Xs and all other identity-irrelevant(also called “non- 

connections 
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Figure 3. The effect of skip connection for Faceshifer [35]. Note 

that, removing the skip connection reduces the leakage of the tar- 

get face identity but hurts the preservation of its non-identity at- 

tributes (i.e., facial expression, hair details, etc.). Our work is de- 

signed to fix this issue. 

identity”) properties (e.g., background, hair, pose, expres- 

sion, and illumination) of Xt. As discussed in Sec. 1, 

previous works commonly employ skip connections (see 

Fig. 2(a)), where shallow convolution embedding is fed to 

the swap image decoder. As shown in Fig. 2(b),  instead  

of using skip connections, we propose a novel framework 

consisting of a Facial Non-ID (FNID) network and a Non- 

Facial attributes (NFA) network to perform face swapping. 

The skip-connection-free framework exhaustively preserves 

target non-identity information, while at the same time pre- 

venting the target facial identity from leaking into the swap 

image decoder. In the following, we first analyze the ID vs. 

Non-ID disentanglement of prior works through a perfor- 

mance calibration based on consolidated metrics. Then we 

dissect the effect of skip connections to motivate our new 

designs (Sec. 3.1). Finally, we introduce our proposed net- 

work structure and training strategies (Sec. 3.2) in detail. 

ID vs. Non-ID disentanglement. Although face swap has 

been vigorously studied for years, the evaluation meth-  

ods for non-ID performance are distinct in previous re- 

ports [8, 17, 35, 58]. To consolidate the evaluations and per- 

form fair comparisons, we employ off-the-shelf pose and 

expression estimations from the state-of-the-art 3D face re- 

construction model [39] to serve as the non-ID metrics. And 

run their publicly released face swap results/models to ob- 

tain a quantitative ID/non-ID comparison, and finally, cal- 

ibrate all results by treating Faceshifter [35] as a baseline. 

As shown in Tab. 1, after calibration, we discover that exist- 

ing works still suffer from insufficient disentanglement be- 

tween ID-relevant and ID-irrelevant representations, caus- 

ing the improvement of a single metric always comes with 

the performance drop of others. 

3.1. Dissection of Skip Connections 
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Table 1. Calibrated results among different prior works under the 

same evaluation method. * represents a version of Faceshifter after 

removing skip connections. 

role in preserving non-identity attributes. Hence, we delve 

deep into this design. After diagnostic evaluations, we re- 

alized that because shallow convolutional features contain 

both ID and non-ID information, the skip connection that 

introduces shallow features to image decoding could be the 

“reason” behind such entanglement. By directly feeding the 

shallow convolutional features into the swap image decoder 

through skip connections, the detailed non-ID information 

(e.g., background, hair, and expression) can be easily pre- 

served. However, as shown in Fig. 3, we observe that the 

swapped facial identities of Faceshifter are noticeably af- 

fected by the target face shape, resulting in very low iden- 

tity similarity to the source image. Alternatively, If we re- 

move the skip connections in Faceshifter, surprisingly, the 

swapped facial identities are much closer to the source im- 

age, indicating less identity information from the target be- 

ing leaked into the result. Nevertheless, it’s also clear from 

Fig. 3 that such improvement comes with the cost of worse 

non-ID preservation (e.g., hair). That is, image details out 

of the face region are inconsistent with target images. This 

phenomenon is also statistically confirmed in Tab. 1. As 

shown, removing the skip connection brings a better iden- 

tity score but worse non-identity performance. Therefore, 

we conclude that the skip connection is at least one cause1 

that leads to the entangled representation. 

3.2. Network Designs and Training Strategies 

As we argued in Sec. 1, Znid alone (see Fig. 2 (a)) is 

not sufficient to preserve target non-ID properties without 

skip connections. In our method, we define two types of 

non-ID properties based on the relation with face ID, i.e., 

face-relevant or face-irrelevant properties. Then, we design 

two encoders to extract the two-fold non-ID features, re- 

spectively. One is the FNID encoder that derives Zfnid and 

the other is NFA encoder for generating Znfa. 

Facial Non-ID (FNID) Encoder. Facial Non-ID attributes 

(e.g., expression, pose) are spatially coupled with the fa- 

cial identity, thus we need deep convolution layers to re- 

move the identity and preserve Non-ID attributes. Follow- 

ing this motivation, our FNID encoder only outputs the 
We  noticed that in Faceshifter [35] and most follow-    

up works [17, 32, 58], skip connections play an important 
1For those works that employ skip connections 

 connections ID-ret pose expression 

Faceshifter [35] ✓ / / / 

Hififace [58] ✓ + 5% - 7% +0.3% 

InfoSwap [17] ✓ +10% -77% -11% 

Simswap [8] ✗ -19% + 9% +23% 

Faceshifter* ✗ + 8% -24% -48% 
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inference complexity, instead of masking out face region 

from Xt, we encourage our NFA encoder to process full 

attr i,Xt i,Ys,t 2 j,Xt i,Ys,t 2 

deepest representation Zfnid without shallow features. We 

design training strategies tailored for FNID encoder. As 

shown in Fig. 4(a), to encourage the FNID encoder to ex- 

tract facial Non-ID features and remove facial identities, we 

design two additional heads to regularize Zfnid, namely 

regularization head (RegHead) and adversarial head (Ad- 

vHead). RegHead maps Zfnid into a vector that represents 

pose and expression information. In addition, a pre-trained 

3DMM parameter predictor [14] is also used to predict pose 

and expression vectors vpose, vexp. Then, we use l2 loss to 

regularize the mapped vector with the predicted pose and 

expression vectors: 

Xt 
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(b)  

AdvHead is to map Zfnid into facial identity code, which 

is used to remove facial identities from Zfnid. In detail, 
 

Figure 4. Details of network structure in our method. (a) Training 

AdvHead attempts to extract ID feature Zid of Xt from heads for Facial Non-ID encoder. (b) Swap image decoder. 

Zfnid and we use an adversary loss to prevent Zfnid from 

containing the ID information: 
 

Fig.4(b)). FNID decoder decodes Zfnid into Nf feature 

L = CSim(AdvHead(Z ), Z ) maps { Ffnid } N f
 for fusion network. NFA decoder has 

Lah = 1 − CSim(AdvHead(Z 

 
fnid ), Z

id
 ), 

(2) similar structure that decodes Znfa into Na feature maps 

{Fnfa}N
a 

. Because Non-Facial attribute features are usu- 

where 
fnid 

Lah is only applied on the adversary head while 
ally represented by shallow features, we set Na < Nf . 

The fusion network integrates {Ffnid}, {Fnfa} and Zid for 
adv is applied on the FNID encoder. CSim denotes co- 

sine similarity. The overall loss to train FNID can be ex- 

pressed as: 

Lfnid = Lfnid + βfnidLfnid. (3) 

generating Ys,t. AAD layers [35] is employed as the fu- 

sion module. The number of AAD layers is Ns to fully 

preserve  non-ID  attributes.   In  the  first  Nf
    N

a
 AAD 

layers, Ffnid(Nf
  >  k  >  Na) and Zid

 are integrated. r adv adv k
 While in the last Na AAD layers, we concatenate F

fnid
 Non-Facial Attribute (NFA) Encoder. Non-facial at- 

tributes are spatially separated from the facial regions, so 

they are weakly associated with the identity. Thus, a 

straightforward way to extract non-facial features without 

identity information is to mask out the facial regions of 

k  
and Fnfa(k N

a
) and then integrate them with Zid. Fol- 

lowing [35], we use the three global losses: ID loss, recon- 

struction loss, and attribute loss to train the whole network: 

L = CSim(Z s , Z s,t ) 
the target image Xt and use a masked-image encoder for 

feature extraction. However, this method would require a 
rec = ||X 

X
 

t,t 
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face mask predictor during the inference stage. To reduce Nf 

L = ||Ffnid − Ffnid 
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||2 + ||F
nfa

 − F
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 || , 
 

  

Xt and extract similar representations to the masked-image 

encoder. In terms of network structure, NFA encoder has 

the same depth as FNID encoder but only the first few con- 

volution layers have a down-sampling operation. Thus, the 

produced Znfa is a feature map with large spatial resolu- 

tion. NFA encoder is trained in parallel with the masked- 

image encoder in the training stage (see suppl. material for 

details). We use a regularization loss on the Znfa and the 

glb rec attr 
id rec attr 

ID Encoder. Like Faceshifter [35], a pretrained face recog- 

nition model [12] is used as the ID encoder in our method. 

The normalized feature vector zid extracted by the ID en- 

coder is then fed to swap image decoder. 

Total Loss. The overall training loss function is defined as: 

Ẑnf a from masked-image
 
encoder:

 
Lnfa  = ||Znfa − Ẑnf a||2. (4) 

L = L adv + βglb glb + βfnid fnid + βnfa nfa . (6) 

2 
Swap Image Decoder. The swap image decoder takes 

Zfnid, Znfa, Zid as the input, and generate face-swapped 

image Ys,t. Three components are included, i.e., FNID 

decoder, NFA decoder, and fusion network (shown in 

4. Results 

4.1. Datasets and Metrics 

Training Data.   We use three face  image datasets to  train 

our model, i.e., CelebA-HQ [28], FFHQ [29] and VGGFace 

j=1 i=1 
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best and second best results are marked in bold and underline. 
X  Yi,j 

 

Method ID retrieval↑ pose↓ expression↓ 
 

 

evaluation w/ 3D face reconstruction model [39] 
Deepfakes [1] 81.96 0.375 7.270 

FSGAN [43] 76.57 0.169 5.402 

Faceshifter [35] 97.38 0.195 5.467 

Simswap [8] 92.83 0.167 4.943 

Hififace [58] 98.48 0.216 5.474 

InfoSwap [17] 99.67 0.441 5.733 

MegaFS [64] 90.83 0.465 5.615 

AFS [55] 88.81 0.171 5.493 

UniFace [6] 99.45 0.174 5.352 

Ours 99.88 0.146 5.290 

evaluation w/ the metrics of [62] 

FSLSD [60] 90.05 2.46 – 
StyleSwap [62] 97.05 1.56 5.28 

StyleSwap w/ W+ [62] 97.87 1.51 5.27 

Ours 99.88 1.51 5.01 

 

Table 2. Quantitative Comparison on FaceForensics++. The best 

and second best results are marked in bold and underline. 
 

Method ID-CSim ↑ ID-Consis ↑ 
 

FSGAN [43] 0.205 0.196 

Simswap [8] 0.556 0.588 

InfoSwap [17] 0.611 0.599 

MegaFS [64] 0.466 0.543 

AFS [55] 0.445 0.547 

Uniface [6] 0.663 0.669 

Ours 0.743 0.761 

Table 3. Quantitative Comparison on CelebA-HQ test split. The 

 

 

Figure 5. Comparison of face swap performance on FF++. Along 

each axis we plot the performance ranking of a metric, so a poly- 

gon with a larger area means better face swap performance. 

In addition, we develop the CelebA-HQ test split with 

Nc = 100 samples to further analyze the ID swap ability 

from two-fold perspectives, i.e., ID preservation from the 

source image and ID removal from the target image. Cor- 

respondingly, two additional metrics are designed, namely 

ID cosine-similarity (ID-CSim) for source-ID preserva- 

tion and Swap ID consistency (ID-Consis ) for measur- 

ing the stability of one source image being swapped with 

varying target images. Specifically,  for  each  image  in 

the CelebA-HQ test split, we fix it as the source image  

and all other images serve as target images.   ID-CSim     
is given by the cosine-similarities of ID vectors Zid from 

the face recognition model [56] between the source im- 

age and corresponding swapped images, i.e., ID-CSim =    

  1 
Σ

Nc 

Σ
 

  
CSim(Z id  , Zid ). Then, we pro- 

[47]. As VGGFace contains many small and blur images, 

we only use 127.7K images from VGGFace with high fa- 

cial resolution for training. Additionally, we select the first 

100 images in CelebA-HQ for evaluation, so they are not 

involved in training. Following [35], all training images are 

pose a novel ID-Consis metric to evaluate the ID consis- 
tency among the swapped images for one source image and 

different target images. If ID information is removed from 

target images, all the swapped images shall share a consis- 

tent facial ID. Thus, ID-Consis is given as the ID cosine- 

similarity for all swapped image pairs from the same source: 

cropped and aligned as
 

resolution to cover the
 Σ

Nc 
Σ

 
CSim(Z

id
,Z

id
) 256 × 256 ID-Consis = i=1 j,k∈{Yi,·} j k 
, where {Yi,·} 

entire face and a part of background regions. See suppl. 

material for more training details. 

Evaluation Data and Metrics. FaceForensics++ (FF++) 

[51] is a standard face swap test dataset. On FF++, the 

overall performance of face swap methods is evaluated on 

three metrics: ID retrieval, pose error, and expression er- 

ror. We follow the ID retrieval setting of most recent meth- 

ods [1, 6, 8, 17, 35, 43, 58, 60, 62, 64], which uses a differ- 

ent face recognition model [56] as the ID vector extractor. 

However, the above-mentioned recent methods use differ- 

ent pose and expression predictors to evaluate pose and ex- 

pression errors. For a fair comparison, we use the state-of- 

the-art 3D face reconstruction model [39] to predict pose 

and expression parameters and then employ Euclidean dis- 

tance to define pose and expression errors. Also, we use 

pose [52] and expression [54] metrics reported by [62] to 

compare with recent methods [60, 62]. 

N
c
(Nc−1)(Nc−2)/2 

is all swapped images with the source Xi. 

In terms of image quality, we compute the FID metric. 
 

4.2. Comparison with Prior Arts 

ID vs. Non-ID Disentanglement. Based on FF++, we first 

evaluate the overall performance of our method and recent 

face swap methods [1, 8, 17, 35, 43, 55, 58, 60, 64]. We use 

their original resolution in comparison because resolution 

has tiny effect on our ID and non-ID metrics. The works 

[60, 62] that release neither FF++ swapped images/videos 

nor pre-trained models are only comparied with reported 

results. As shown in Tab. 2, our method achieves superior 

performances in terms of ID retrieval, pose error, and ex- 

pression error. When compared with InfoSwap [17] which 

has strong ID swap ability, our results are still significantly 

better on all three metrics. 

i =1  Nc(Nc−1) j  i  i̸=



GAN based StyleGAN based 

InfoSwap [17]    UniFace [6] ours FSLSD [60] AFS [55] 

   FID↓ 14.45 12.58 13.08 9.99 4.56  

 
 

Figure 6. Comparison of the face-swapping results of various models. The top left corner is the source image, while the other images in 

the first row are target images. As shown, our results are noticeably better in terms of ID consistency across various target images. 

 

 

Table 4. Quantitative Comparison of image quality. 

Although Simswap [8] has the lowest expression error, 

we achieve better ID retrieval and lower pose error by a 

large margin. For a more intuitive comparison, we visu- 

alize the overall performance of the top 8 methods in Fig. 5 

following [38], where our method achieves the best overall 

result with the largest pattern area. Meanwhile, Tab. 3 also 

compares the ID swap ability of our method with the recent 

methods that have publicly released models [8,17,43,55,64] 

on CelebA-HQ. As shown, our method achieves the best 

performance on both ID-CSim and ID-Consis, indicating 

that our method has better ID swap ability than compared 

methods. Considering that the current face recognition 

model is not perfect yet, our performances on ID-CSim and 

ID-Consis are quite convincing, as shown in Tab. 3. We ar- 

gue those improvements are attributed to the better ID vs. 

non-ID disentanglement brought by our framework. 

Compare with StyleGAN-based methods. In terms of im- 

age quality, though it is not our primary focus, the FID of 

our method is on par with the prior GAN-based methods, as 

 

 
Table 5. User Study. Percentage of each method being selected. 

 

shown in Tab. 4. Note that StyleGAN-based methods can 

produce significantly higher image quality than GAN-based 

methods due to the advantage of pre-trained StyleGAN [30] 

model. However, StyleGAN-based methods are poor in ID 

and non-ID preserving, which are more essential metrics 

for face swapping. Particularly, the SOTA StyleGAN-based 

method [62] reports much worse ID retrieval (2.01 drop) 

and expression error (0.26 increase) than ours (Tab. 2). This 

gap is mainly brought by the fact that the latent is not de- 

signed for ID and non-ID disentanglement and it is very dif- 

ficult to preserve both ID and non-ID by latent swapping. 

Qualitative Evaluations. In Fig. 1 and Fig. 6, we show ex- 

amples of our results and the visual comparison with prior 

methods. Benefiting from the disentangled representation 

of our framework, our results have a noticeable advantage 

in terms of ID consistency across different target images 

Simswap [8] 

AFS [55] 

InfoSwap [17] 

UniFace [6] 

Ours 

Method ID (%) Non-ID (%) Fidelity (%) 

Faceshifter [35] 17.6 22.0 25.4 

SimSwap [8] 8.8 30.8 26.0 

InfoSwap [17] 21.4 14.8 21.2 

Ours 52.2 32.4 27.4 

 



 
Method 

Skip 

con- 

nections 

Facial Regulariza- 

Non-ID  tion of 

encoder Zfnid 

Non-facial 

attribute 

encoder 

 
ID-ret 

rieval↑ 

FaceForensics++ 

expres- 
pose↓ 

sion↓
 

 
PSNR↑ 

CelebA-HQ 

ID- 
ID-Consis↑ 

CSim↑ 

Setting1 ✓ ✓ ✗ ✗ 97.59 0.161 5.681 28.69 0.571 0.610 

Setting2 ✗ ✓ ✗ ✗ 99.41 0.175 5.801 24.74 0.726 0.735 

Setting3 ✗ ✓ ✓ ✗ 99.83 0.143 5.570 22.38 0.741 0.758 

Ours(full) ✗ ✓ ✓ ✓ 99.88 0.146 5.290 28.33 0.743 0.761 
 

Table 6. Ablation results. The best results are marked in bold. 

 
tion and ID removal from target images. From Setting2 to 

Setting3, as shown in Tab. 6, the pose and expression er- 

rors are both reduced thanks to this regularization, which is 

also confirmed by visual examples in Fig 7 (i.e., eye clo- 

sure&gaze is preserved in Setting3). Meanwhile, source- 

ID-related metrics are also elevated because target-ID are 

successfully removed by our adversarial head. Neverthe- 

less, because of the limited capacity of Zfnid, the quality  

of facial non-ID and non-facial attributes can hardly be im- 

source target Setting1 Setting2 Setting3 Ours(full) 

Figure 7. Visualization results of ablation models 

when swapped with the same source. For rigorous qualita- 

tive evaluations, we further conduct user studies (see Tab. 5) 

on source-ID similarity, target non-ID preservation, and full 

image fidelity. The results indicate that our method signifi- 

cantly surpasses prior works on overall face swapping qual- 

ity. Refer suppl. material for more details. 

4.3. Ablation Studies 

We perform ablation studies on FF++ and CelebA-HQ 

test split with all their evaluation metrics. To this end, three 

additional models are designed with different network com- 

ponents and training strategies, whose configurations and 

quantitative results are shown in Tab. 6. Besides, a few ran- 

domly selected rich expression results are shown in Fig 7. 

Effects of Skip Connections. With skip connections, tar- 

get facial ID could leak into the decoder through shallow 

features, leading to poor source-ID similarity. As shown in 

Tab. 6, compared to Setting1, skip-connection free of Set- 

ting2 achieves significant improvements in all source-ID- 

related metrics. In contrast, skip connections also have a 

noticeable effect on non-ID attribute preservation from tar- 

get images, especially for background details. As expected, 

Setting2 is worse than Setting1 in terms of PSNR, pose, 

and expression errors. Therefore, skip connections could 

lead to a seesaw-like trade-off by leading to the aforemen- 

tioned compromises, which is not conducive to overall face- 

swapping performance. 

Effects of Zfnid Regularization. Zfnid regularization 

strategy can simultaneously enhance the non-ID preserva- 

proved simultaneously, resulting in a poor PSNR value. 

Effects of NFA Modules. The NFA module can model 

non-facial regions so as to improve the performances on 

both non-facial and non-ID information preservation. Re- 

ferring to our full method in Tab. 6, PSNR is significantly 

elevated by NFA module and the value is on par with that 

of Setting1. In the meantime, The expression error is also 

noticeably reduced thanks to the NFA module. The reason 

behind this is that the non-facial attributes are represented 

by Znfa, so Zfnid can now dedicate modeling facial non- 

ID features. As the expression is a highly abstract non-ID 

property, a high-capacity Zfnid is beneficial in modeling 

the extensive-expression variation. In contrast, the pose er- 

ror remains nearly unchanged with NFA modules because 

the pose is a weak semantic property that is not sensitive 

to the capacity of Zfnid. As shown in Fig. 7, a significant 

improvement in expression and background detail preserva- 

tion is introduced by our full method. 

 

5. Conclusions 

In this work, we unveil that the skip connection that was 

widely used in prior works is one root cause for poor dis- 

entanglement between ID and non-ID representation. We 

proposed a new framework to address this issue from both 

network structure and regularization loss perspectives. The 

experimental results confirm both our hypothesis and the 

effectiveness of our method. 

Limitation and future works. StyleGAN-based face swap 

[58, 62] methods are superior in terms of rendering quality 

(i.e., FID), although still suffer the disentanglement chal- 

lenges. Combining our framework with StyleGAN would 

be interesting future work. 
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Figure 1. Details of NFA structure in training stage. 

 

 
A. Training the NFA encoder 

To encourage the NFA encoder to extract the non-facial- 

region features, a masked-image encoder     is trained si- 

multaneously with the NFA encoder during the training 

stage. As shown in Fig.1, a pre-trained human face seg- 

mentation model is used to predict face mask M, and then 

Ẑnf a is generated with M and Xt: 

Ẑnf a  = M((1 − M) · Xt), (1) 

where (1 − M) is the non-face mask. 

In this way, facial-region features are excluded in Ẑnf a. 

Thus we can remove facial region features from Znfa by 

using a regularization loss between Znfa and Ẑnf a.   The 

overall loss also encourages Znfa to contain non-facial re- 

gion features as much as possible because Znfa is spa- 

tially larger than Zfnid and has a stronger capacity of detail 

preservation. 

 

B. Training And Evaluation Details 

 
Architecture Details. The detailed network structures of 

FNID and NFA modules are shown in Tab.1 The FNID en- 

coder contains 7 down-sampling convolutional layers, while 

the NFA encoder contains 4 down-sampling convolutional 

layers and 3 ResBlocks. AdvHead is a 3-layer MLP that 

outputs a 512-dim vector with hidden layer size of 1024. 

Table 1. The FNID and NFA module details. Conv is the standard 

convlutional layer. TConv is the transposed convlutional layer. 

ResBlk is the residual convlutional block [7]. “c” is the number of 

output channels, and “s” denotes the up/down-sampling scales. 

β, γ = Conv([Ffnid, F
nfa

]). The usage of Zid is the same 

as that in FaceShifter. 

 

More details of the training losses . The adversary loss 

adv is a Hinge GAN loss from a multi-scale (256, 128, 

64) discriminator. The term 
fnid

 is to train the AdvHead. 

When it is used, the whole FNID encoder is fixed except the 

AdvHead. In contrast, Lfnid is to train FNID encoder with 

RegHead, thus L     does not contribute to the Lfnid. 

Hyper-parameters. For balance and stable training, we set 
fnid fnid rec attr glb 
adv 

βglb = 5, βfnid = 2, βnfa = 100 in the overall loss. 

 

Details of Comparison with StyleGAN-based Methods . 

r  

to output a 67-dim vector with 3-dim vpose and 64-dim 

vexp. In the last several layers of our Fusion network, 

the AAD have three inputs: Ffnid
, F

nfa
 and Zid. Ffnid 

and Fnfa are firstly concatenated to predict β and γ, i.e., 

 
[14] did not report the FID evaluation details. 

 

User Study Conduction Details . We conduct a user study 

to evaluate the face swap performance from three perspec- 

Non-facial 
attribute 
encoder 

Human 
face 

segmentation 

Masked- 
image 

encoder 

Znfa 
M 

loss 
Ẑ nfa 

   

 FNID NFA 

 
 
 

Encoder 

Conv(c=   32, s=2) Conv(c= 32, s=2) 

Conv(c=   64, s=2) Conv(c= 64, s=2) 

Conv(c= 128, s=2) Conv(c=128, s=2) 

Conv(c= 256, s=2) Conv(c=256, s=2) 

Conv(c= 512, s=2) ResBlk(c=512, s=1) 

Conv(c=1024, s=2) ResBlk(c=512, s=1) 

Conv(c=1024, s=2) ResBlk(c=512, s=1) 

 
 
 

Decoder 

TConv(c=1024, s=2) TConv(c=256, s=2) 

TConv(c= 512, s=2) TConv(c=128, s=2) 

TConv(c=  256, s=2)    TConv(c=  64, s=2) 

TConv(c=  128, s=2)    TConv(c=  32, s=2) 

TConv(c=    64, s=2) 

TConv(c=    32, s=2) 

 

The AdvHead is designed to be stronger to erase ID infor- Recent SOTA StyleGAN-based face swap methods [13, 14] 

mation from  Zfnid. Besides, both ID encoder and Adv- have not released their inference models or face swap results  

Head are the pre-trained ArcFace [4] face recognition model on FF++, thus we evaluate our method using the same  pose 

, and the pre-trained 3DMM predictor from [5] is used to and expression metrics of [14] for fair comparison. In terms 
form regularization loss L . RegHead  is  an  FC  layer of FID score, we only compare with [13 ] because  the work 

fnid
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Figure 2. Comparison of ID consistency. The top-left corner is the source image, while the other images in the first row are target images. 

tives: source ID similarity, target non-ID preservation, and 

image quality. To this end, we randomly select 100 source- 

target pairs from the FF++ [10] testset. The swap results 

are from faceshifter [8], Simswap [3], InfoSwap [6], and 

our method. Then, participants are asked to select: (i) the 

one with the best source-image ID similarity; (ii) the one 

with the best target-image similarity of the pose and facial 

expression; and (iii) the one that looks the most like the real 

photo. 

 

C. More Qualitative Results 

 
Comparison of ID Consistency. We believe ID consis- 

tency is important in many applications (e.g., virtual human 

methods in terms of source-ID similarity and target-non-ID 

preservation, indicating our method has advantages in the 

disentanglement representation. 

Comparing with Simswap. Although Simswap [3] 

achieves slightly lower expression error than our method 

in quantitative comparison, its performance on source-ID 

similarity lags considerably behind our method. In Figs. 2 

and 3, Simswap has minor visual advantages in expres- 

sion preservation, but its swap results are not similar to the 

source ID. For example, referring to the 2nd-8th columns in 

Fig.2 and the all results in Fig.3, the swapped ID of Sim- 

swap are quite close to the target images. In contrast, our 

results are overall superior when compared to Simswap. 

creation, film-making), and swap identity should be consis- Cross-Age/Gender/Hairstyle  Face  Swap  Results. As 

tent across various contents. Therefore we show additional shown in Fig.4, our method  can  produce  impressive  face 

results in Fig.2, where our method is superior in ID consis- swap results for difficult cross-age/gender cases. 

tency. As for cross-hairstyle face swap, there are two situations 

as shown in Fig.5:  (1) Target has  bangs  while  source  has 

Comparison with Prior Arts in FF++. To further visu- no  bang.  Our method can handle this situation because our 

ally compare our method with prior methods, we randomly NFA encoder can detect  the bangs as  non- facial  attributes 

collect source-target pairs in FF++. Referring to Fig. 3, we and  our decoder will preserve them.  (2)  Source has  bangs 

can see that our swap results are better than that of other while target has no  bang.  Our  method  cannot  handle  this 



 

 
Source Target Deepfakes [1]  FSGAN [9]  Faceshifter [8]   Simswap [3]   Hififace [12]  InfoSwap [6]   MegaFS [15]   AFS [11] UniFace [2] Ours 

 

Figure 3. Comparison of face-swapping results on FF++. 

 

           Figure 5.  Cross  hairstyle  results  by  our  method.  Result-AB is 

produced by using image A as the source image and image B as 
the target image, result-BA is produced by using image B as the 

Figure 4. Cross gender and age results by our method. 

situation because the pretrained ID encoder regards bangs 

as a part of facial ID. 

 

D. Discussion on Face shape swap 

source image and image A as the target image. 

 

 
masks in last four AAD ResBLK when face shape changes. 

From the masks,  we find out the  7th AAD ResBLK  plays 

important  role  in  face  shape  swap.  Fig. 6 (e)  shows  the 

Face shape is a essential part of face ID. In our method details  of  mask  of  the  7th AAD ResBLK.  The  GREEN 

design, the learned masks in AAD ResBLK affect signif- and BLUE lines roughly represent the swap and target face 

icantly to face shape swap. Fig. 6(d) shows the learned shape. The inner region of the BLUE line are very dark 



 

 

 
Figure 6. Visualization of the masks when face shape changes. 

 
 

and the outer region of GREEN line is very light, which 

means those regions are generated mostly according to one 

input feature (either ID or non-ID). The region between the 

BLUE and GREEN line is lighter than the facial region 

yet darker than the background, which means this region 

should be generated according to both ID and non-ID fea- 

tures. From the qualitative results, our method is with better 

swapped face shapes than other methods. 

 

E. Ethical Consideration 

The goal of this paper is to study high-quality face 

swaps.  It does not intend to manipulate existing images   

or to create misleading or deceptive content. However, the 

method, like all other related AI image generation tech- 

niques, could still potentially be misused for impersonating 

humans. We condemn any behavior to create such harmful 

content. Currently, the synthesized portraits by our method 

contain certain visual artifacts that can be identified by hu- 

mans and some deepfake detection algorithms. We en- 

courage to apply this method for learning more advanced 

forgery detection approaches to avoid potential misusage. 
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