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Abstract

While impressive progress has recently been made in
image-oriented facial attribute translation, shape-oriented
3D facial attribute translation remains an unsolved issue.
This is primarily limited by the lack of 3D generative mod-
els and ineffective usage of 3D facial data. We propose
a learning framework for 3D facial attribute translation
to relieve these limitations. Firstly, we customize a novel
geometric map for 3D shape representation and embed
it in an end-to-end generative adversarial network. The
geometric map represents 3D shapes symmetrically on a
square image grid, while preserving the neighboring rela-
tionship of 3D vertices in a local least-square sense. This
enables effective learning for the latent representation of
data with different attributes. Secondly, we employ a uni-
fied and unpaired learning framework for multi-domain at-
tribute translation. It not only makes effective usage of
data correlation from multiple domains, but also mitigates
the constraint for hardly accessible paired data. Finally,
we propose a hierarchical architecture for the discrimina-
tor to guarantee robust results against both global and lo-
cal artifacts. We conduct extensive experiments to demon-
strate the advantage of the proposed framework over the
state-of-the-art in generating high-fidelity facial shapes.
Given an input 3D facial shape, the proposed framework
is able to synthesize novel shapes of different attributes,
which covers some downstream applications, such as ex-
pression transfer, gender translation, and aging. Code at
https://github.com/NaughtyZZ/3D facial shape attribute tr
anslation ssgmap.

*The corresponding author

1. Introduction

Figure 1. Translation of 3D shape attributes to multiple domains
that correspond to expressions, genders, and ages.

The advancement of generative adversarial networks
(GANs) has recently activated a lot of studies on face-
related tasks, such as face synthesis [34, 7], facial im-
age super-resolution [38, 32], and facial attribute transla-
tion [13, 1]. The rationale of these studies is to use an auxil-
iary discriminator network to regularize the output face with
the learned distribution of facial data towards a specific cat-
egory. The task of facial attribute translation is referred to as
changing the particular aspect of a facial image, e.g. chang-
ing the expression [19] or the age [61] of a face, resulting
in desired appearances. This task has many downstream ap-
plications in the media and film industry.

In the past, most methods in the field of facial attribute
translation dealt with 2D facial images [11, 51, 55]. This
is partly because 2D facial images are easily accessible
and partly because deep learning based methods commonly
work on image data with a regular grid. Nowadays, re-
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searchers are paying more attention to 3D faces [18, 57,
50, 17, 21, 67, 49] for wider applications and more real-
istic rendering, due to advances in 3D imaging sensors and
3D applications. Editing 3D facial shape has attracted much
interest in both the computer graphics and computer vision
communities. Translation of 3D facial shapes provides ge-
ometric flexibility in addition to textures, thus resulting in
vividness for facial rigging and animation [23, 40, 53, 25].
The 3D shape is also considered as a vital commodity of
face to overcome pose and illumination challenges in exist-
ing face recognition literature [42, 65, 43].

In this work, we study the problem of 3D facial shape
attribute translation. An example is shown in Figure 1. We
denote attributes as inherent features of a 3D face, such as
expression, age, and gender that correlate to shape varia-
tions. We also refer to some GAN-based domain adaptation
works [13, 31], and define “domain” as a set of data with
certain attribute values, e.g. 30-year-old males with neu-
tral expression. We cast 3D facial attribute translation as a
domain adaptation problem, which is naturally linked with
GAN by its data-driven nature.

Applying state-of-the-art deep GANs on 3D geometry
data is challenging, and the difficulties are mainly two-fold.
Firstly, unlike facial images on a square Euclidean grid, 3D
geometric data, in the case of facial surfaces, are on a Rie-
mannian manifold. This hinders the application of state-
of-the-art deep convolutional neural networks (CNNs) on
3D facial attribute translation. We refer to this as a prob-
lem of network compatibility. Secondly, unlike facial image
data that are abundant for image translation tasks, there is a
shortage of 3D facial data. This is limited by the popularity
of 3D scanning devices. Moreover, most deep CNN based
methods rely heavily on paired and labeled data. We refer
to this as a problem of data scarcity.

For network compatibility, we design a geometric map
that encodes 3D coordinates onto regular image grids. The
adjacency information for 3D vertices is preserved in a local
least-square manner while being constrained by symmetric
property. This enables us to leverage symmetry, an impor-
tant character of face in the learning process. In addition,
the learning networks are end-to-end with a differentiable
3D-to-2D forward geometric mapping layer and a 2D-to-
3D backward grid sampling layer.

For data scarcity, we employ a unified and unpaired
GAN for multi-domain attribute translation. Firstly, we as-
sume that the latent encodings of different domains should
be cross-correlated to each other. Rather than learning the
translation between every two domains separately, we learn
a single generator for all domains, i.e. for expression, age,
and gender translation tasks together. Secondly, we employ
an unpaired framework, assuming that exactly paired data,
i.e. different ages of a person are difficult to collect and dif-
ferent genders for the same identity are almost impossible in

the real world. This mitigates the exact constraint for hardly
accessible paired data. We also conduct data augmentation
in training by adding random perturbations of scales and
rotations of 3D facial shapes.

In summary, the main contributions of this paper are:

• We first propose a general and unified framework for
multi-domain 3D facial attribute translation, which
covers some shape-oriented applications including ex-
pression transfer, aging, and gender translation.

• We construct a novel geometric map for 3D face repre-
sentation on a canonical 2D grid. The geometric map
leverages symmetry of face and maintains the adja-
cency of 3D vertices in a local least-square manner.

• We make unpaired training of 3D facial shape data
available on a geometric map with a hierarchical GAN
architecture to suppress both global and local artifacts.

2. Related Work
The closely related fields to this work include GAN-

based 2D image translation and 3D face manipulation with
UV maps. We now briefly discuss the most related works in
each field, respectively.

2.1. GAN-based 2D Image Translation

GAN is very popular for generating novel and realistic
images [32, 44, 64, 66] because of its capability for model-
ing the distribution of a large amount of data. Many variants
of GANs with different characteristics are proposed after
the seminal work of Vanilla GAN [24].

Conditional GANs (CGANs) [46, 48] are originally pro-
posed to generate samples conditioned on a specific class.
CGANs commonly include class labels in both the gener-
ator and discriminator that are relevant to a specified task.
For example, pix2pix [32] learns image-to-image transla-
tion with a CGAN architecture in a supervisory manner with
paired data; Attgan [29] is able to change the specified at-
tribute of a facial image.

CycleGAN [68] and DisCoGAN [36] release the paired
data assumption by incorporating a cycle consistency loss
that preserves the key attribute shared by input and output
images. However, these GANs are limited to attribute trans-
lation tasks between two domains. Thus they cannot effec-
tively make use of data that cover multiple domains. To
alleviates the deterministic mapping problem, Huang et al.
propose an MUNIT framework [30] by incorporating a style
code to generate versatile images.

StarGANs [13, 14] can learn multi-domain attribute
translation with the help of domain classification loss in ad-
dition to cycle consistency loss and adversarial loss. Gen-
erally, they can effectively learn both the global features
shared by data in all domains and the local features hold



by data in a specific domain. U-GAT-IT [35] and Attention-
gan [56] further employ the attention mechanism to gener-
ate high-quality foreground against background.

In this work, we borrow some key architectures in Star-
GANs [13, 14] for 2D images and design a geometric map
elaborately for 3D facial data. We further incorporate them
in an end-to-end adversarial learning framework with a
novel hierarchical discriminator. Therefore, the proposed
framework supports multi-domain 3D facial attribute trans-
lation in an unpaired manner with a single generator.

2.2. UV Maps for 3D Face Manipulation

In a departure from 2D images with pixels on a regular
grid, raw 3D geometric data are commonly organized as
irregular points. A common way to represent 3D facial data
is to flatten the 3D surface onto a 2D UV plane, on which
the locations of 3D vertices are encoded.

Blanz and Vetter [9] project the facial surface onto a
cylindrical UV map for shape registration in their semi-
nal work for 3D Morphable Model (3DMM). The 3D lo-
cation of each vertex is encoded as height and distance to
the cylindrical axis. The 3DMM is further used for an at-
tribute translation task to manipulate weight, gender, and
expressions [3].

Bagautdinov et al. [6] conduct non-rigid registration of
3D facial scans and deform a template face (as the aver-
age of all registered results) to a 2D plane. They further
define a 3-channel image (UV map) surrounding the de-
formed template. This ensures topological neighbors on
3D are also topological neighbors on the image. This
strategy to represent 3D facial data is used by many re-
cent works [2, 22, 45, 47] for 3D faces. Generally, the
locations of 3D vertices can be converted into an image-
like tensor to apply the 2D convolutions [22]. An advan-
tage over some other works with voxel/point/graph convo-
lution [33, 52, 12, 41] is the high-frequency details can be
preserved better.

In this work, we construct a novel UV map that supports
forward and backward differentiable operations to be em-
bedded in an end-to-end learning network. We call our UV
map a geometric map because it has the following novel ge-
ometric properties: 1) It is square; 2) It is symmetric with
respect to a central axis; 3) the mapping between 3D ver-
tices and their 2D correspondences is in a local least-square
manner to preserve the 3D adjacency information as rigidly
as possible. These properties enable us to learn a 3D at-
tribute translation task effectively.

3. Method
In this section, we describe the proposed geometric map,

the network architecture, and the detailed loss functions in
training, respectively, which constitute the basic elements
of the proposed framework (see Figure 2).

3.1. Geometric Map Construction

We consider triangle facial meshes as the input and out-
put of the proposed method with the same number of ver-
tices and the same mesh topology. Generalization to other
formats of data, e.g. point cloud, is applicable by rigidly
alignment [8, 63] and non-rigid registration [4, 10] to a
common template mesh in our implementation. Since all
faces share the same topology, we denote each face by
V ∈ R3×n for simplicity. In order to make 2D deep CNN
architectures compatible with 3D facial shapes, we con-
struct a geometric map that bridges the gap between a 3D
surface and a 2D image grid. The steps are:

I. Average over some registered facial meshes to acquire
a noiseless 3D template mesh Vs;

II. Initialize the geometric map by harmonic
parametrization [16, 26] of Vs to Vt;

III. Deform Vt to a square and symmetric geometric
map guided by the local structure of Vs and some rear-
ranged key vertices, as follows (also refer to Fig. 3).

First, we select some key vertices on Vt that are land-
marks, edges, and central axis on the face. We adjust the
central vertices to form the central axis. The locations of
the landmarks and edges are rearranged to be square and
symmetric with respect to the central axis.

Then, we denote the 1-ring neighbors of each vertices
vsi ∈ Vs as N 1(vi). The correspondence of each vertex in
Vs to Vt is determined by the subscript i. We suppose there
exists a rigid transformation {Ri, Ti} that aligns vsi to vti , as

vti ← Riv
s
i + Ti(i ∈ Vs), (1)

where {Ri, Ti} can be estimated by a least-square align-
ment problem of the surrounding 1-ring neighbors, as

{Ri, Ti} = argmin
Ri∈SO(3),Ti∈R3

∑
vs
j∈N 1(vi)

∥∥Riv
s
j + Ti − vtj

∥∥2
2
.

(2)
Here SO(3) denotes the space of all Givens matrices.

Next, the preliminary offset for each vertex is regularized
by local smoothness. We denote pti = Riv

s
i + Ti as the

unregularized offset and formulate the problem as

{oi|i ∈ Vt} = argmin
{oi|i∈Vt}

{
∑
i∈Vt

∥∥pti − (vti + oi)
∥∥2
2

+
∑
i∈Vt

∑
j∈N 1(vi)

∥oi − oj∥22}.
(3)

Solving Eq. 3 requires taking the partial derivative with
respect to each offset oi(i ∈ Vt) and leads to a linear system

[Aij ]n×n · [Oij ]n×3 = [Bij ]n×3, (4)



Figure 2. The overall network architecture with the proposed geometric map. The loss functions for training are marked in red typeface.

Figure 3. The process to deform an initial harmonic UV-map to a
square and symmetric geometric map (Gmap).

where

Aij =

 1 + 2Nvi if i = j
−2 if i ̸= j and j ∈ N 1(vi)
0 otherwise

,

(5)
[Oij ]n×3 = [o1, ..., on]

T
, (6)

and
[Bij ]N×3 = [pt1 − vt1, ..., p

t
n − vtn]

T . (7)

Nvi is the number of vertices inN 1(vi) and the superscript
T denotes matrix transpose.

Since some key vertices on the landmarks, edges, and
central axis are fixed as constraints for solving Eq. 3, we
exclude the corresponding columns in A and rows in O.
Therefore, A is a rank-deficient matrix. Let nf be the num-
ber of fixed vertices (Vf ⊂ Vt), then Eq. 4 is degraded to

[Aij ]n×(n−nf ) · [Oij ](n−nf )×3 = [Bij ](n−nf )×3, (8)

which is an over-determined linear system. Its least-square
solution is given by the Moore-Penrose inverse as

O = (ATA)−1ATB. (9)

By this way, we are able to fix some key vertices while up-
dating other vertices. The vertex on the target mesh is added
by each offset in O after solving Eq. 8, as

vti = vti + oi(i ∈ Vt/Vf ). (10)

Finally, the steps from Eq. 1 to Eq. 10 are iterated until
the ensembled offset is smaller than a certain threshold.

The above process is in fact a variant of a locally rigid
registration process in [20]. It conducts as rigid as possi-
ble alignments from the local cells (1-rings) on the original
3D mesh to the deformed geometric map, while being con-
strained by some rearranged key vertices. It also demon-
strates that the proposed geometric map preserves the ad-
jacency relationship1 of all vertices in a least-square man-
ner. This makes the mapping from 3D mesh to 2D geomet-
ric map to be one-to-one for each vertex, avoiding triangle
flipping which is correlated to interpolation errors. Further-
more, as described in [26, 54], sampling the locations in a
geometric image is prone to large interpolation errors un-
less the border vertices are preassigned to distinct pixels. In
this work, there is seldom triangle flips even on the border
regions, thus avoiding most interpolation errors.

1This brings about an advantage over the existing UV maps [6, 2, 60].
The vertices on the upper and lower mouth area are separated, avoiding
interferences from the local convolutional kernels in common CNNs.



In addition, the advantages for the geometric map to be
square and symmetric are: 1) making full use of the pixels
(2D images also cover a square area); 2) easy to exclude the
blank pixels inside the eyes and mouth; 3) easy to leverage
a symmetric loss in training by image flip operation.

3.2. Network Architecture

The network architecture2 employs a main generator net-
work and an auxiliary discriminator network, as in Fig-
ure 2. The mapping between 3D vertices and 2D image
grid is computed by forward barycentric interpolation (as
in [2]) and backward bilinear grid sampling with the afore-
mentioned geometric map3. A mask for the valid pixels is
customized accordingly. In a departure from some exist-
ing works, the forward and backward mappings are incor-
porated into our network in an end-to-end manner. Dur-
ing training, the generator network transfers the 3D facial
shape to a certain domain, while the discriminator network
enforces indistinguishable generation (probability distribu-
tion) to the given domain.

Generator. We use an encoder-decoder architecture for
the generator network. The feature expansion of the bot-
tleneck is only downsampled by a factor of 4 to avoid the
mixing of spatial content (thus friendly to high-frequency
information) of the input geometric map. We also include 6
residual blocks [28] in the bottleneck. The skip connection
of the residual block is able to learn the latent representa-
tions of data in multiple domains efficiently. Moreover, we
embed both the forward geometric mapping layer and back-
ward grid sampling layer as the input and output layers of
the network, respectively. The end-to-end learning setting
can compensate for the sampling errors between a 3D face
and its representation on the geometric map.

Discriminator. Previous studies discriminate the fea-
ture in different dimensions, e.g. Vanilla GAN [24] for the
global image, Pixel-GAN [32] for each pixel, and Patch-
GAN [39] for a few intersected receptive fields on an im-
age. In a departure from that, we employ a strategy that
we call Pyramid-GAN to discriminate both global and local
patterns of the input shape. The discriminator downsam-
ples the feature expansion by 2 in a cascade manner until
the height and width are 2 × 2. Specifically, we conduct
bifurcated convolutional operations on every other feature
layer, then flatten and concatenate each output, and finally
fed them to the adversarial loss. This strategy leads to both
globally and locally realistic generations of 3D faces.

3.3. Loss Function

We employ several loss functions (also refer to Figure 2
for the exact locations) in the training process. The symbols

2The detailed architecture is described in the supplementary material.
3The detailed exposition for the forward and backward mappings is

described in the supplementary material.

of some variables are listed below for brevity.

• x denotes the input shape of the generator fed into the
forward geometric mapping layer.

• y denotes the output geometric map of the generator
fed into the backward grid sampling layer.

• c and c′ are the target and source domain labels of x,
respectively, which are composed of discrete expres-
sion and gender labels and continuous age labels.

• G denotes the generator network; Dsrc and Dcls de-
notes the real/fake and domain classification branch of
the discriminator network, respectively.

The Adversarial Loss forces the distribution of the gen-
erated 3D shapes to approach the shapes of real faces, as

Ladv = Ex[logDsrc(x)] + Ex,c[log(1−Dsrc((G(x, c))],
(11)

given the generator taking as input 3D shape x conditioned
on domain label c. In practice, we adopt the Wasserstein
GAN [5] with gradient penalty to stabilize the training pro-
cess as

Ladv =Ex[logDsrc(x)]− Ex,c[Dsrc((G(x, c)

− λgpEx̂[(∥∇x̂Dsrc(x̂)∥2 − α)2]],
(12)

where x̂ is uniformly sampled between a pair of real and
generated shapes. And we set α to 0.01.

The Classification loss enables effective domain trans-
lation from c′ to c. The objective is decomposed into

Lr
cls = Ex,c′ [− logDcls(c

′|x)] (13)

for real shapes to optimize the discriminator, and

Lf
cls = Ex,c[− logDcls(c|G(x, c))] (14)

for fake shapes to optimize the generator. In practice, we
employ cross-entropy loss for discrete expression or gender
parts and mean-square loss for the continuous age part of
the domain label.

The Cycle loss employs a cycle consistency loss [68] to
preserve the domain-unrelated part while changing only the
domain-related part in the input image, as

Lcyc = Ex,c,c′ ∥x−G(G(x, c), c′)∥1 . (15)

The Reconstruction loss makes the generator stable if
the target domain label remains unchanged with respect to
the source domain, as

Lrec = Ex,c′ ∥x−G(x, c′)∥1 . (16)

The Symmetry loss enforces the output facial shapes to
be symmetric with respect to the central axis, as

Lsym = Ey ∥y − F (y)∥1 , (17)



where F is a flip operator that flips horizontally for y and
then reverses the sign for the first channel. We exclude the
symmetric loss for asymmetric expressions in training.

The full objective functions to optimize G and D are
weighted combinations of the above loss terms as

LD = −Ladv + λclsL
r
cls (18)

and

LG = Ladv+λclsL
f
cls+λcycLcyc+λrecLrec+λsymLsym,

(19)
respectively.

4. Experiments
In this section, we carry out experiments on a public

dataset [62] to demonstrate the effectiveness of the pro-
posed method4. We also show that the trained model is gen-
eralizable to other datasets [15, 59] combined with proper
registrations.

4.1. Dataset & Labels

The FaceScape dataset [62] provides a set of topologi-
cal uniform (registered) samples with the NICP [4] method.
These samples cover 847 identities, 20 expressions, age
ranges from 16 to 70, and 2 different genders. We select
14, 486 out of all 18, 760 samples to exclude some noisy
registered results. Among the selected samples, we further
choose 10, 005 samples for training, 32 samples as a mini-
batch for validation using the leave-one-out principle [27],
and the rest samples for testing. The identities of the train-
ing and testing samples are disjoint.

One advantage of the proposed method is that it learns
multi-domain translation with a unified GAN. To this end,
we customize a domain label vector c = {ci|i = 1, 2, ...23}
of length 23. The first 20 dimensions and the following 21−
22 dimensions are one-hot binary expression and gender
label, respectively. And the last dimension is a normalized
one-hot number ranged by [−1, 1] for the ages.

4.2. Training Details & Hyper-parameter Selection

We implement all the networks with the Pytorch plat-
form. The generator and discriminator are alternated one-
by-one in the training process. Adam [37] optimizer is used.
The total iterations (mini-batches) are set to 800, 000. The
first 400, 000 iterations adopt a fixed learning rate of 1e−4.
In the last 400, 000 iterations, the learning rate decreases to
1e− 6 linearly for every 2, 000 iterations. It takes about 50
hours on a single GPU (specified as NVIDIA RTX 3090)
to train the proposed networks. In the training process, we

4We use the FaceScape dataset to train our model because it is the only
one so far that provides registered 3D shapes with various attributes.

Figure 4. Qualitative comparison for an exemplar input face. “GT”
denotes the ground truth. Some artifacts and failure cases by the
two baseline methods are marked with circles.

augment the data by random scaling and rotation by a range
of [0.9, 1.1] and [−10′, 10′] for 3 Euler angles, respectively.

The hyper-parameter settings for the weights of differ-
ent loss functions in Eq. 12 and Eq. 19 follow a trial-and-
error principle guided by the visualized results of the vali-
dation set. We also follow some general settings in existing
works [5, 13] and adjust the parameters until the loss curves
keep oscillating, as a common way for tuning GAN. In our
experiment, we set λC

cls = 0.02, λM
cls = 0.05, λcyc = 2,

λrec = 0.1, λsym = 0.5, and λgp = 0.2, where the su-
perscripts C and M on λcls denote binary cross-entropy
loss for classification (for expression and gender labels) and
mean-square error loss for regression (for age label), respec-
tively.

4.3. Comparison for Expression Translation

Previous works on deep learning based attribute trans-
lation mostly focus on 2D images [13] or 3D texture [60].
There is seldom work on 3D facial shape attribute transla-
tion. However, there are some traceable works on 3D face
generation with expressions. Therefore, we implement two
baseline models which are close to ours to the best of our
knowledge for comparisons. Since the UV map in [47] can-
not be reproduced exactly, we use our proposed geometric
map instead.

• 3DFaceGAN [47] is the first GAN tailored towards
modeling the distribution of 3D facial surfaces. It can
be used for 3D facial expression translation, which em-
ploys Multivariate-Gaussian decomposition and super-
vision to handle expressions on a UV map.

• Pix2pix [32] is a widely used GAN for image trans-



lation applications. We blend our proposed geometric
map with the official implementation [32] for pix2pix.
We also constructed paired 3D shape data for neutral
and other expressions for training.

Method MSE-V (mm) MSE-N (degree)

3DFaceGAN [47] 1.05 0.99
Pix2pix* [32] 2.33 3.47
Our work 0.84 0.51

Table 1. Comparisons of MSE on vertices and normal. The mark
* denotes a combination with the proposed geometric map.

We select neutral expressions for all subjects and transfer
it to other expressions in the test set. After that, we compare
the per-vertex and corresponding normal mean square error
(MSE-V and MSE-N) between the generated results and
the ground-truth ones after rigid registration of each pair of
them by iterative closest point (ICP) [8] method. Table 1
and Figure 4 show the quantitative and qualitative com-
parisons. We can see that our proposed method performs
over the pix2pix method by a large margin even without
the paired setting. This is mainly due to the effective us-
age of data from multiple domains. In contrast, the pix2pix
model only makes use of limited data pairs from two do-
mains. Although the improvement of our results on MSE
over 3DFaceGAN is not very salient, our qualitative results
are visually better, especially on the edges of the mesh. We
owe our success to the multi-domain translation framework
and proper loss functions. Note that a result that is differ-
ent from the ground truth is reasonable, since our method is
supervised only by expression labels rather than pixel-wise
errors.

4.4. Multi-domain Translation

In addition to expression transfer, our proposed frame-
work is able to manipulate age and gender continuously5,
which is a notable advantage over the existing works.
Specifically, we only train a single network for expression,
age, and gender translation tasks. Furthermore, the pro-
posed method also supports input in various domains that
are not limited to neutral such that it can broaden the appli-
cations to produce user-defined attributes (see Figure 5).

4.5. Clustering Results for Feature Representation

In this experiment, we project the output feature vec-
tors at the classification head of the discriminator network
onto a latent 2D plane to view the clustering effect of data.
We employ a t-distributed stochastic neighbor embedding
(t-SNE) [58] method for latent space visualization. Fig-
ure 6 shows the results marked with expression, age, and

5Please refer to Figure 1 and more qualitative results on the supplemen-
tary material.

Figure 5. Two qualitative examples for outputs with various at-
tributes which are mostly different from the inputs.

gender labels for some randomly generated samples from
the testing samples in the FaceScape dataset. We can see
that different classes are well separated and show notewor-
thy clustering effects, which implies that the trained model
learns the representation of data of different domains effec-
tively. Note that the three sub-figures for different attributes
share the same representations.

4.6. Ablation Studies

We now conduct experiments to learn the effects of dif-
ferent components of the proposed framework. The gener-
ator architectures is borrowed from the starGANs [13, 14].
Some other components that are new to the existing works
include:

• The square and symmetric geometric map. We replace
it with the plain harmonic UV-map instead for the ab-
lation study. This considers that the plain UV map is
used in many existing works [60, 47].

• The Pyramid-GAN architecture. We replace the
Pyramid-GAN architecture with Patch-GAN [39, 13]
only in the second last feature layer for ablation study.
The Pyramid-GAN is in fact a generalization of Patch-
GAN to diverse feature expansions.

• The symmetric loss function. We neglect this loss
function for the ablation study.

• The reconstruction loss function. We neglect this loss
function for the ablation study.

We train the networks with the above settings, respec-
tively. Table 2 shows the quantitative results in terms of the
aforementioned MSE scores. We can see that each element
contributes to some gains, among which the geometric map
and the identity loss take effects most. Some qualitative
results are also selected for a better understanding of the



Figure 6. Clustering of generated data with the t-SNE [58] method for different expressions, genders, and ages, respectively.

Figure 7. Qualitative results of 2 generated expressions for an ex-
emplar face. The ground truths are also included for reference.

Method MSE-V (mm) MSE-N (degree)

W/O geometric map 1.31 1.17
W/O pyramid GAN 1.06 1.13
W/O symmetric loss 0.91 0.78
W/O reconstruction loss 2.79 1.98
Full version 0.84 0.51

Table 2. Comparisons on MSE for the ablation study.

underlying mechanism of each proposed component, as in
Figure 7. We observe that: 1) the geometric map contributes
to realistic details since it handles a fundamental one-to-one
3D-to-2D mapping problem; 2) the Pyramid-GAN architec-
ture reduces some artifacts over Patch-GAN; 3) the sym-
metric loss utilizes some prior knowledge of face for more
stable and noiseless results; 4) the reconstruction loss resists
identity drift. It is worth noting that the identity drift is not
common in image-oriented tasks, however, it is a problem
in the shape-oriented task in this work. This is because the
pixel-wise values rather than 2D patterns are correlated to
3D shapes directly.

Figure 8. Generalization to two exemplar faces from VOCA [15]
and FaceVerse [59] datasets, respectively.

4.7. Generalization Test & Limitations

The deep learning methods on image data often suffer
from generalization problems. However, in this work, we
find that the trained model on FaceScape is well generaliz-
able to other datasets if the target face is registered to a com-
mon template properly. We register the template to some
samples from two other datasets (VOCA [15] and FaceV-
erse [59]), and then feed the registered samples into the
trained model. Figure 8 shows two examples for attribute
translation. Overall, both of the two samples are translated
to the target attributes well. The reason should be that fa-
cial shape data are much simpler than texture data, since 3D
shapes are immune to illumination and pose changes. How-
ever, some unexpected artifacts appear on the nose region
(marked with green circles ) in the top example. This is due
to the intrinsic bias of the training set, i.e., all training sam-
ples are east Asian while the testing example is Caucasian.
In the future, we will try to train a model with richer data
that cover various ethnicities for better generalization.



5. Conclusion
In this paper, we propose an unpaired end-to-end ad-

versarial learning framework for multi-domain 3D facial
shape attribute translation. Given an input 3D facial shape,
the proposed framework is capable of synthesizing realis-
tic 3D facial shapes with various expressions, genders, and
ages with a unified generator network. The key element
of our proposed framework is the canonical representation
of 3D faces by a square and symmetric geometric map, en-
abling effective learning on facial surfaces. Others include a
Pyramid-GAN architecture and task-related loss functions,
enabling unified and unpaired training with 3D data on the
geometric map robustly. Extensive experiments demon-
strate the effectiveness of the proposed method for the trans-
lation of various facial attributes. We hope this work will be
helpful for future research and applications.

6. Supplementary Material
6.1. Details for Geometric Mapping

We clip the frontal part (see Figure 9) of the original 3D
template on the FaceScape dataset [62], considering that the
variations of facial attributes (expression, age, and gender)
are manifest only in the frontal parts in current 3D scans.
The resulting resolution of the clipped face is 10, 857 ver-
tices. The size of the geometric map (Gmap) is designed to
be 128 × 128 × 3, being a trade-off of computational effi-
ciency and representation accuracy. The resolution for the
Gmap (128 × 128 = 16384) is also on par with the res-
olution of the clipped template, thereby being sufficient to
represent the details of 3D facial shapes.

In addition, the details of the Gmap are shown in Fig-
ure 10. It preserves the adjacency relationship of all vertices
on the original 3D mesh in a local least-square sense while
being square and symmetric. It also makes the mapping
from 3D mesh to 2D geometric map to be one-to-one for
each vertex, avoiding triangle flipping which is correlated
to interpolation errors. We can see there is seldom triangle
flipping even in the most difficult regions, i.e. inner mouth
and eye surroundings.

Sampling the locations between a 3D shape and its rep-
resentation on the 2D Gmap (on an image grid) involves bi-
directional mappings between the 3D shape V and its vertex
locations on the 2D image grid. The mappings are as fol-
lows (also refer to Figure 11).

• Forward mapping is computed by barycentric inter-
polation. Suppose a pixel P = {x, y} on the image
grid lies inside a triangle ∆P1P2P3 indexed by i1i2i3
on the geometric map, then the shape coding Ix,y is

Ix,y = w1vi1 + w2vi2 + w3vi3(vi1 , vi2 , vi3 ∈ V),
(20)

Figure 9. Illustration for the clipped template.

Figure 10. The visualized details of the geometric map. Please
zoom in to view the structures.

Figure 11. Sampling the locations between a 3D facial shape and
its representation on the Gmap.

where

w1 = (
−−→
PP2 ×

−−→
PP3)/(

−−−→
P1P2 ×

−−−→
P1P3),

w2 = (
−−→
PP3 ×

−−→
PP1)/(

−−−→
P1P2 ×

−−−→
P1P3),

w3 = (
−−→
PP1 ×

−−→
PP2)/(

−−−→
P1P2 ×

−−−→
P1P3),

(21)

and × is the outer-product between two 2D vectors.

• Backward mapping is computed by bilinear grid
sampling from the image grid to the geometric map.



Index Type Kernel Stride Output Others Appended Loss
1 Input shape - - 3× 10857 - -
2 Geometric mapping - - 3× 128× 128 Mask Area set to 0 -
3 Label cat. - - 26× 128× 128 - -

4
Conv. 7× 7 1× 1 64× 128× 128 IN+ReLU -
Conv. 4× 4 2× 2 128× 64× 64 IN+ReLU -
Conv. 4× 4 2× 2 256× 32× 32 IN+ReLU -

5 Residual blocks ×6 - - 256× 32× 32 - -

6 DeConv. 4× 4 2× 2 128× 64× 64 IN+ReLU -
DeConv. 4× 4 2× 2 64× 128× 128 IN+ReLU -

7 Conv. 7× 7 1× 1 3× 128× 128 Mask Area set to 0 Symmetric loss
8 Bilinear grid sampling - - 3× 10857 Mask Cycle&Reconstruction loss

Table 3. The architecture of the generator network. The padding size of each layer is determined to be compatible with the input and output
feature sizes. “IN” denotes for instance normalization operation. “ReLU” denotes for rectified linear unit activation.

Index Type Kernel Stride Output Others Appended Loss
1 Input shape - - 3× 10857 - -
2 Geometric mapping - - 3× 128× 128 Mask Area set to 0 -

3

Conv. 4× 4 2× 2 64× 64× 64 LReLU -
Conv. 4× 4 2× 2 128× 32× 32 LReLU Conv. + Cat. + Adv. loss
Conv. 4× 4 2× 2 256× 16× 16 LReLU -
Conv. 4× 4 2× 2 512× 8× 8 LReLU Conv. + Cat. + Adv. loss
Conv. 4× 4 2× 2 1024× 4× 4 LReLU -
Conv. 4× 4 2× 2 2048× 2× 2 LReLU Conv. + Cat. + Adv. loss

4 Conv.&Output for class 2× 2 1× 1 23× 1× 1 - Classification loss

Table 4. The architecture of the discriminator network. The padding size of each layer is determined to be compatible with the input and
output feature sizes. “LReLU” denotes leaky ReLU activation. The Conv. operations listed in the appended loss denote convolutions to
feature size 1 by 3 × 3 kernels and 1 × 1 strides. The output features for the 3 pyramid layers are then flattened and concatenated to fed
into the adversarial loss.

6.2. Detailed Network Architecture

The detailed architectures for the generator and the dis-
criminator of the proposed adversarial learning framework
are elaborated in Table 3 and Table 4 for ease of reproduc-
tively, respectively. We will also release our code.

6.3. Additional Qualitative Results

We have mentioned in the main manuscript that our
method is also capable of translating gender and age. Fig-
ure 12 shows additional results for some authorized samples
in the test set of FaceScape [62]. In addition, the propose
method supports both continous (e.g. the expressions and
genders) and discrete attribute labels (e.g. the ages). We
also suggest that the fractional labels for expressions can
be acquired by linear interpolations on the output directly.
Figure 13 shows continous variations from neural to certain
expressions. Therefore, our proposed method is capable of
generating realistic shapes with different attributes given an
input 3D facial shape.
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