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Figure 1. Sample results produced by our AdaTrans. By projecting the images into the latent space of StyleGAN, AdaTrans can achieve
disentangled face editing even when the age gap is extreme large, and manipulate multiple attributes at the same time.

Abstract

Recent works for face editing usually manipulate the la-
tent space of StyleGAN via the linear semantic directions.
However, they usually suffer from the entanglement of facial
attributes, need to tune the optimal editing strength, and
are limited to binary attributes with strong supervision sig-
nals. This paper proposes a novel adaptive nonlinear latent
transformation for disentangled and conditional face edit-
ing, termed AdaTrans. Specifically, our AdaTrans divides
the manipulation process into several finer steps; i.e., the
direction and size at each step are conditioned on both the
facial attributes and the latent codes. In this way, AdaTrans
describes an adaptive nonlinear transformation trajectory
to manipulate the faces into target attributes while keeping
other attributes unchanged. Then, AdaTrans leverages a
predefined density model to constrain the learned trajec-
tory in the distribution of latent codes by maximizing the
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likelihood of transformed latent code. Moreover, we also
propose a disentangled learning strategy under a mutual in-
formation framework to eliminate the entanglement among
attributes, which can further relax the need for labeled data.
Consequently, AdaTrans enables a controllable face edit-
ing with the advantages of disentanglement, flexibility with
non-binary attributes, and high fidelity. Extensive experi-
mental results on various facial attributes demonstrate the
qualitative and quantitative effectiveness of the proposed
AdaTrans over existing state-of-the-art methods, especially
in the most challenging scenarios with a large age gap
and few labeled examples. The source code is available
at https://github.com/Hzzone/AdaTrans.

1. Introduction
Face editing aims to render the faces to the target fa-

cial attributes such as aging or smiling with high fidelity
while keeping other facial attributes unchanged, which has
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wide applications in entertainment and forensics. Due to the
intrinsic complexity of facial attributes, face editing has at-
tracted growing research interest in recent years. Generative
Adversarial Networks (GANs) [12] have shown promising
results for face editing in terms of image quality. Earlier
works mainly focus on network architectures [19,39,43] and
loss functions [31]. With significant improvements in image
quality, these methods usually re-train a GAN model for a
specific facial attribute [17] or practical applications [27].
Unfortunately, due to the difficulties in training a good GAN,
they are limited to specific tasks and fail to generalize to
high-resolution images.

In recent years, StyleGAN [22–24] has achieved signifi-
cant progress in synthesizing photorealistic faces. In particu-
lar, the pre-trained StyleGAN generator presents a meaning-
ful intermediate latent space, traversing on which the faces
can be semantically manipulated [2, 3, 14, 34, 35, 38, 40, 41].
Typically, the faces before editing need to be inverted into the
latent space of StyleGAN to obtain the latent codes that can
be used to faithfully reconstruct the inputs [4, 33, 36]. As a
result, the latent code is manipulated along certain directions,
giving rise to the changes in the corresponding attribute in
generated faces. The methods to obtain those directions can
be roughly categorized as supervised ones and unsupervised
ones. The supervised methods [3, 34, 38, 41] leverage the
labeled data to compute the semantic directions, leading to
better controllability in the editing process. For example,
InterFaceGAN [34] trains a hyperplane in the latent space to
separate the examples with binary attributes. Unsupervised
methods [2,14,35,40] are to discover the interpretable direc-
tions using PCA [14,35] or texts [2]. Despite the meaningful
transformations, they cannot produce precise user-desired
editing without any human annotations.

In summary, most of these methods assume that the bi-
nary attributes can be well separated, so they edit the faces
by linear interpolation in the latent space. Although it is suf-
ficient to some degree, for those more complicated scenarios,
e.g., with large age gaps, they cannot perform disentangled
editing to preserve the unrelated attributes when linear as-
sumption does not hold. Meanwhile, the users are usually
required to manually tune the editing strength for accurate
manipulation. Though flexible, the optimal strength varies
among different examples. Furthermore, there is a critical
yet ignored problem in current literature that the latent codes
could be over-manipulated, i.e. falling out of the latent space,
which inevitably harms the quality of the edited face.

In this paper, we propose a novel framework for condi-
tional face editing, termed AdaTrans, to address these issues
in the following aspects. First, instead of manually ma-
nipulating the latents with fixed directions, we propose an
adaptive nonlinear transformation strategy that dynamically
estimates the editing direction and step size, conditioned by
the target attributes and transformation trajectory. Such a

strategy can handle various attributes at the same time for
conditional multi-attribute editing, by only changing the tar-
get attributes while keeping others unchanged. Second, we
propose to maximize the likelihood of edited latent codes,
regularize the transformed trajectory in the distribution of
latent space, and hence improve the fidelity of edited faces
predicted by a pretrained generator. Last, we propose a
disentangled learning strategy under a mutual information
framework, attenuating the entanglement between attributes
and relaxing the need for labeled data in supervised face edit-
ing methods. The merits of AdaTrans are disentanglement,
high fidelity, controllability, and flexibility. The sample re-
sults are shown in Fig. 1.

The contributions are summarized as follows:

• We present AdaTrans, a novel face editing method that
explores an adaptive nonlinear transformation for disen-
tangled and multi-attribute face editing.

• We propose a novel density regularization term, which can
encourage an in-distribution transformation in the latent
space, without harming fidelity.

• We further show a disentangled learning strategy, which
can eliminate the entanglement between attributes and
relax the need for labeled data.

• Experimental results on various facial attributes demon-
strate the effectiveness of AdaTrans both quantitatively
and qualitatively. In particular, AdaTrans can produce dis-
entangled editing, even with extremely large age gaps or
few labeled data.

2. Related Work

Generative adversarial networks. Generative Adversar-
ial Networks (GANs) describe a competition between the
generator and discriminator, where the generator maps the
random noise (e.g. Gaussian) to the complicated data dis-
tribution (e.g. image), and the discriminator tries to distin-
guish the true/generated data. Various works have made
significant progress in synthesizing photorealistic faces from
different aspects such as loss functions [5, 29] and architec-
tures [6, 21, 23]. In particular, StyleGAN [22–24] presents
a meaningful intermediate latent space W which is better
disentangled than a standard Gaussian latent space Z . To
utilize a well pre-trained StyleGAN generator, the faces are
first inverted to W to obtain the latent codes that can be used
to faithfully reconstruct the input images [4, 16, 33, 36, 42].
Consequently, semantical face editing can be achieved by
manipulating the latent space of GANs, which is fed into the
generator to obtain the manipulated faces.

Face editing in GANs. The prior literature on face edit-
ing can be roughly split into supervised and unsupervised
methods. The supervised methods [3, 25, 34, 38, 40, 41, 44]
typically employ the human annotations with particular fa-
cial attributes or a pre-trained classifier to identify how to

2



0.2

0.9
0.1

•••

Encoder 
 

Classifier 
 

Trainable

LSTM

AdaIN

MLP

AdaIN

MLP

••••••

LSTM

AdaIN

MLP

AdaIN

MLP

••••••

LSTM

AdaIN

MLP

AdaIN

MLP

••••••

•••

Classifier 

•••
•••

Layer 1

Layer 18

••••••

StyleGAN
Generator 

0.7
0.2

0.9
1.0

•••
0.0

Inference Adaptive Nonlinear Transformation

Input Face

Fixed

Density Model

Optimization

Edited Face

0.2

0.9
1.0

•••
0.0

0.3

0.1
0.7

•••
0.1

transformation trajectory

Facial 
Attributes

edit

•••

Figure 2. Illustration of the proposed AdaTrans. Given an input face, the pre-trained classifier predicts its attributes and the encoder inverts
it to the latent space of StyleGAN generator. By changing the facial attributes, our proposed AdaTrans can manipulate the faces in the
latent space for adaptive nonlinear transformation without tuning the strength. The proposed density regularization term can encourage the
in-distribution edited latent codes and the disentangled learning strategy can attenuate the entanglement between attributes. The merits of
AdaTrans are flexible, disentangled, controllable, and nonlinear.

manipulate the faces in the latent space. InterFaceGAN [34]
uses the hyperplane separating latent codes with binary at-
tributes to carry out the linear editing. StyleFlow [3] remaps
the latent codes to Gaussian noise with normalizing flows
and then samples the new latent codes conditioned by the
target attributes and original noise. Latent Transformer [41]
trains a transformation network for specified attributes under
the supervision of other attributes. Differently, the unsuper-
vised methods [1,2,9,14,20,35,37] do not need the valuable
annotated data. GANSpace [14] and SeFa [35] find editing
directions from the principal components of the latent space.
Clip2Stylegan [2] links the latent transformation with the
text descriptions under the guidance of CLIP [32]. However,
the discovered editing directions still need to be manually
labeled for meaningful editing, and it is hard to produce the
user-desired directions.

In this paper, we study an adaptive nonlinear transforma-
tion rather than linear interpolation in [2,14,25,34,35,40,41],
and investigate a density regularization to encourage in-
distribution latent transformation.

3. The Proposed AdaTrans
In this section, we first formulate the problem of face

editing and present our motivation in Sec. 3.1, then describe
the proposed adaptive nonlinear transformation in Sec. 3.2
and latent density regularization in Sec. 3.3, followed by the
training and inference of the proposed AdaTrans in Sec. 3.4.
Fig. 2 illustrates the framework of the proposed AdaTrans.

3.1. Problem Formulation and Motivation

As presented in Fig. 2, we are now given a clas-
sifer network Q to estimate the facial attributes a =

{a1, a2, . . . , aN}, where N is the number of attribute an-
notations, and ai can be binary or one-hot value. Face edit-
ing focuses on manipulating one or multiple attributes in
a without changing others. Another pre-trained StyleGAN
generator G is employed to produce high-resolution photo-
realistic faces I ⊂ RH×W from the latent space W ⊂ R512,
where H ×W represents the image size.

To perform face editing with G, the face I ∈ I should be
inverted into the latent space with an encoder E: I → W to
obtain the latent code w = E(I). The practical choices [4,
33, 36] tend to adopt W+ ⊂ R18×512 with layer-wise latent
codes for faithful reconstruction. Then, the inverted latent
codes are manipulated to change the target attributes. The
resulting edited latents we can be fed into G to obtain the
generated face G(we).

Previous literature [2, 14, 34, 35, 41] usually edits the
facial attribute ai by linear interpolation in the latent space
with certain editing directions nai ∈ R512, which can be
formulated as follows:

we = w + αnai . (1)

In such a setting, α ∈ R is a scalar to control the edit-
ing strength of manipulating the face to ai. nai

can be
learned by training a hyperplane/fully-connected layers in
the latent space [34, 41], or discovered from the principal
components [14, 35] and text information [2].

However, as observed in Fig. 3, there are several limi-
tations in such simple linear interpolation. First, linearly
manipulating the latent code would change other unrelated
attributes due to the entanglement of the latent space. Sec-
ond, the optimal strength for accurate editing is hard to tune.
Small strength may not change the desired attributes while a
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Figure 3. Sample results of linear interpolation of InterFace-
GAN [34] varying the strength. The leftmost text describes the
changed attributes, and the red boxes indicate that the faces have
been successfully manipulated to the target attributes. With the in-
crease of strength, the unrelated attributes are changed and fidelity
is harmed.

large one would harm the face quality as the latent codes are
out of the latent space. Importantly, the strength varies from
input faces. Last, it is limited to binary attributes such as
gender and young, and cannot handle those more compli-
cated attributes, e.g., finer age that cannot be controlled by a
linear transformation. To verify this claim, supplementary
Fig. A3 visualizes the latent codes with fine age labels.

Consequently, we need an adaptive transformation for
nonlinear editing to address the above issues, which will be
detailed in the following sections.

3.2. Adaptive Nonlinear Transformer

To avoid tuning the optimal strength for face editing with
linear interpolation, we propose an adaptive nonlinear trans-
former for traversing the latent space of GANs. Specifically,
instead of directly learning an editing direction, we opt to di-
vide the whole transformation process into several fine steps,
where the size and direction at each step are conditioned on
the target attributes. As a result, a nonlinear transformation
trajectory can be obtained by these fine linear steps and the
endpoint is the edited latent code that we are desired.

As shown in Fig. 2, our adaptive transformer takes the
latent code w as the input. An LSTM [13] is also employed
at the beginning to smooth the transformation trajectory.
At step t, learnable affine transformations are adopted to
inject the changed/unchanged attributes to modulate the size
and the direction of manipulation, which are parameterized
by a two-layer multilayer perceptron (MLP) following the
AdaIN [18] operation:

AdaIN(h
(t)
j ,a) = y

(t)
j,s(a)h

(t)
j + y

(t)
j,b(a), (2)

where hj is the input feature, and yj,s(·) and yj,b(·) output
the learned scale and bias, respectively.

The intermediate edited latent code at t step is formed as:

w(t)
e = w(t−1)

e + s(t)n(t), (3)

where w
(0)
e = w, and the adaptive transformer f outputs

{nt, st} = f(w
(t−1)
e ,a) conditioned on the target attributes

a. Here, st ∈ (0, 1) activated by a sigmoid function is a
scalar to control the step size, and n is a unit vector, i.e.,
∥n∥2 = 1. Consequently, our adaptive transformer can
adaptively adjust the latent code in terms of previously ma-
nipulated results.

In summary, the manipulation process can be described
as the combination of the intermediate states as follows:

we = w +

M∑
t=1

s(t)n(t), (4)

where M is the maximum steps of the trajectory.

3.3. Latent Density Regularization

Although benefitting from the well-trained StyleGAN
generator, the latent space of StyleGAN generator is fixed
during editing and hence over-manipulating the latent codes
to the target attributes would harm the image quality since
the codes are out of the distribution W . It is natural to
observe this problem. For example, in Fig. 3, when the
strength of manipulation is set to a large value, the faces
have been changed a lot to target attributes at the cost of
unnatural generated faces, since they are far away from deci-
sion boundaries [34].

The simple solution is to employ an additional loss to re-
strict the Euclidean distance between the original and edited
latent code [41], which can be written as:

Ldist = ∥we −w∥2. (5)

However, it cannot deal with the essential nature of this prob-
lem with the following problems: (1) simply restricting the
editing strength may fail to change the desired attributes, and
(2) this problem still remains when increasing the strength.
Another solution is to train a discriminator again to improve
face quality, which, however, will significantly increase the
computational cost and the training difficulty.

To address this issue, we propose to use a regularization
term to encourage the edited latent codes to fall into the
distribution of the latent space. We employ a simple yet
effective method by maximizing the likelihood of the trans-
formation trajectory with a pre-trained density model. Here,
the density model is trained in advance to model the latent
space. In this paper, we adopt the real NVP [11] due to its
simplicity and effectiveness in modeling data distribution.
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Input Projected + Makeup + Blond Hair + Wavy Hair + Age + Smile+ Eyeglasses

+ Brown Hair + Age + Chubby + Male + Mustache+ Bald

- Makeup + Eyeglasses + Age - Smile + Bald+ Male

- Male - Eyeglasses - Age + Blond Hair + Wavy Hair+ Smile

Figure 4. Disentangled and controllable face editing on real faces with binary facial attributes. Given an input face, we gradually manipulate
it into the target attributes underneath, while keeping the previous manipulating effects.

In doing so, we can always restrict the transformation
trajectory in the latent space, so that the fidelity of generated
faces would not be distorted. The resultant regularization
term can be thus written as:

Lreg = − 1

M

M∑
t=1

log pϕ(w
(t)
e ). (6)

Here, the density model is parameterized by ϕ and M is the
maximum step of the trajectory.

3.4. Training and Inference

Disentangled learning. Given the attributes a =
{a1, â2, . . . , aN} to be changed or kept, we propose to
achieve disentangled face editing by maximizing the mutual
information I(a;G(we)) between conditions and generated
faces, following [8]. Formally, the mutual information loss
function can be written as:

Lmi = −
∑
a∈a

log pθ(a|G(we)), (7)

where the true posterior pθ(a|G(we)) is approximated by
the classifier Q. In the supervised setting, Q is pre-trained
on the labeled dataset and fixed during training. We would
like to highlight that AdaTrans puts all attributes in a, which
enables AdaTrans to attenuate the entanglement between at-
tributes [8]. The most related work to AdaTrans is [3] which

models the conditional distributions of latent codes and at-
tributes using continuous normalizing flows [7]. However,
the sampling procedure in [3] makes it difficult to handle the
scenario with few labeled examples, as studied in Sec. 4.

Training and inference. Combining Eqs. (5), (6), and (7),
the overall training objective for AdaTrans is to minimize
the sum of all losses:

L = λdistLdist + λregLreg + λmiLmi, (8)

where λ∗ controls the importance between different loss
components. Here, Lreg is employed to compress those
unnecessary changes in the latent codes. During training, the
binary attributes of the given face are randomly manipulated
to {0, 1}. As a result, AdaTrans can manipulate the latent
code to desired attributes while keeping others unchanged.

4. Experiments
4.1. Implementation Details

In this paper, we perform face editing in the latent space
of the StyleGAN2 generator [24] pre-trained on FFHQ [23]
and employ e4e encoder [36] to project the faces into W+

space. For the fixed attribute classifier, we trained the last
linear layer of ResNet-50 [15] on the binary attributes of
CelebA dataset [28] and the discrete age labels of FFHQ
from [30]. We train another classifier from scratch for better
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(c) Editing with large age gap.
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(d) Editing with limited labeled data.

Figure 5. Quantitative comparisons with recent methods for face editing under different experimental settings. We employ attribute/identity
preservation during editing to evaluate different methods. We desire higher editing accuracy while keeping the original identity and unrelated
attributes. Therefore, a higher curve indicates better performance.

classification performance and obtain the attribute labels
of FFHQ dataset. The first 69k faces of FFHQ are left as
training data with an image size of 256× 256. The rest 1k
faces and CelebA-HQ [21] are used as the testing data.

AdaTrans is trained for 10k iterations with a batch size
of 16, Adam optimizer [26] with a fixed learning rate of
10−4, β1 = 0.9 and β2 = 0.99. A one-layer LSTM and 10
two-layer MLP with the dimension 512 and ReLU activation
are stacked. The direction and size of each step are output
by a separate full-connected layer. The loss weights λ∗ and
the maximum step M are set to 1 and 5, respectively. Real
NVP [11] is employed as the density model trained on the
latent codes without any supervision for 10k iterations.

4.2. Disentangled and Controllable Face Editing

4.2.1 Qualitative Results

Fig. 4 showcases example results on manipulating the faces
into target attributes. We project the faces into the W+ space
of StyleGAN2 using [36], and then gradually manipulate the
latent codes with a sequential attribute list. Obviously, Ada-
Trans achieves photorealistic and disentangled modifications
on the resultant faces, i.e., the identity and other attributes
are well preserved during the manipulation process. Note
that we train all attributes presented in Fig. 4 in a unified
model. Therefore, AdaTrans has achieved great flexibility
and controllability simultaneously and is not limited to a de-
fined order of attributes. We provide additional examples for

sequential editing in supplementary Fig. A5 and the results
for editing a single attribute in supplementary Fig. A6.

4.2.2 Comparisons with State-of-the-arts

Competitors. To validate the effectiveness of AdaTrans,
we perform comparisons with the recent state-of-art meth-
ods including InterFaceGAN [34], StyleFlow [3] and Latent
Transformer [41]. We implement all methods on the latent
codes of FFHQ dataset projected by [36], strictly following
their experimental settings. We highlight that editing on real
faces is much more difficult than synthetic ones. Only three
binary attributes for gender, eyeglasses, and young
are adopted to evaluate different methods, which are defi-
nitely shown to be entangled together [34] with each other
in the latent space of StyleGAN. For fair comparisons, the
same attribute classifier is used for Latent Transformer.

Evaluation metrics. We employ three widely-used metrics
to compare different methods quantitatively, including edit-
ing accuracy, attribute preservation accuracy, and identity
preservation. A ResNet-50 is trained from scratch to predict
the attributes of manipulated faces, which can be used to
measure the editing accuracy and attribute preservation for
different facial attributes. The editing accuracy indicates
the proportion of the samples that have been successfully
manipulated into target attributes, i.e., the probability is
greater than 0.5. On the other hand, attribute preservation
accuracy is the proportion of the rest attributes being kept.
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Figure 6. Qualitative comparisons with recent methods for face editing under different experimental settings. The editing strengths of
different methods are manually increased until the faces are manipulated into target attributes. The competitors produce unexpected changes
in unrelated attributes or fail to handle the scenarios with extreme conditions like age gaps and few labeled samples.

Identity preservation is the cosine similarity between the fa-
cial embeddings of the original input and manipulated faces
extracted by [10]. In a sense, we desire a higher editing
accuracy (i.e., manipulating the faces into target attributes)
with fewer drops in identity and attribute preservation (i.e.,
identity and other unrelated attributes are unchanged).

The input faces in testing data are manipulated into the
opposite attribute with different strengths to control the de-
gree of manipulation. We gradually increase the strengths
for different methods as suggested by their official code
until the editing accuracy reaches 99%. More specifically,
we interpolate the label variables of StyleFlow [3], scale
the learned directions for InterFaceGAN [34] and Latent
Transformer [41], and modifies the maximum steps M of
AdaTrans. Consequently, we can draw the curves of iden-
tity/attribute preservation w.r.t. editing accuracy.

Figs. 5 and 6 show the comparisons between different
methods under different settings. Additional qualitative com-
parisons are provided in supplementary Fig. A7.

Editing single/multiple attributes. In this setting, each
single or any two (i.e., multiple) attributes are manipulated at
the same time. The quantitative results are shown in Figs. 5a
and 5b. Obviously, AdaTrans outperforms the other three
competitors by a large margin. We showcase the qualitative
results in Figs. 6a and 6b. For attributes like becoming old,
the glasses appear for other methods, indicating that the
entangled attributes are not handled well. Overall, the results
demonstrate that AdaTrans achieves better disentangled and
accurate face editing both quantitatively and qualitatively.

Editing with large age gaps. As studied in the previous set-
ting, the most challenging task is becoming old as the glasses
and age are entangled together in the latent space. We further
validate the effectiveness of AdaTrans in a much more rigor-
ous setting, i.e., manipulating the children below 10 years
old to the old above 70 years old. We replace the young
label with the age labels of FFHQ dataset provided by [30],
which consists of 7 discrete age groups. The quantitative
results in Fig. 5c show that AdaTrans performs significantly
better that the competitors. We note that it is natural to see
a severe drop in identity preservation since identity would
be changed a lot during the facial aging process. In terms of
qualitative results in Fig. 6c, AdaTrans can still preserve the
eyeglasses from 70+ to 10-, and eliminate the appearance of
eyeglasses from 10- to 70+. In summary, in the most chal-
lenging experimental settings, AdaTrans can still achieve
disentangled face editing over state-of-the-art methods.

Editing with limited labeled data. An important problem
of supervised face editing methods [3, 34, 41] is that they
require a large number of labeled samples, which is diffi-
cult to collect in practical scenarios. In this experimental
setting, only 128 labeled samples for each attribute are used
to challenge different editing methods. The quantitative and
qualitative results for single attribute manipulation are shown
in Fig. 5d and Fig. 6d, respectively. The proposed AdaTrans
can still handle well and achieve photorealistic face editing
with limited labeled samples, benefitting from the disentan-
gled learning strategy. Therefore, AdaTrans is more flexible
to practical applications than the competitors. An ablation
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Figure 7. Quantitative results of the proposed components. The
color box is the region of interest for comparisons.

study on the number of labeled samples is conducted in
supplementary section A.

4.3. Ablation Study

We conduct ablation studies to validate the effectiveness
of different components in AdaTrans.

Ablation study on the proposed components. We start
from the baseline method without the proposed adaptive
nonlinear transformer and density regularization, directly
optimized by Lmi and Ldist. The baseline still performs
nonlinear editing, however, with a fixed step size at each step,
compared to the full AdaTrans. Then, we gradually apply the
proposed adaptive strategy and latent density regularization
to the baseline, leading to two variants of our AdaTrans.

In Fig. 7, significant drops in identity/attribute preserva-
tion have arisen for the baseline; see the color box. We argue
that the baseline cannot compress the unnecessary changes in
the latent codes and does not adjust the manipulation process
with the fixed step size.

On the other hand, the adaptive strategy can address this
problem by adaptively controlling the manipulation accord-
ing to the previous trajectory and target attributes. Further-
more, we have also found the fidelity of generated faces has
been unexpectedly harmed. We show the qualitative results
in supplementary Fig. A2. To be manipulated into ideal
target attributes, the latent codes may fall out of the latent
space, which, as a result, harms the image quality produced
by a pre-trained StyleGAN generator. This phenomenon
motivates us to employ latent regularization to encourage
the edited latent codes to be in-distribution.

Analysis of regularization term. The pre-trained density
model is employed to estimate the loglikelihood of edited la-
tent codes (normalized by dimension) for different methods.
Fig. 8 presents the results for editing multiple attributes and
editing with a large age gap. The higher loglikelihood indi-
cates more in-distribution manipulation, indicating better fi-
delity of the pre-trained StyleGAN generator. StyleFlow per-
forms better than InterFaceGAN and Latent Transformer as
it samples the edited codes from the latent distribution. Ada-
Trans is still able to encourage the latent codes in-distribution
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Figure 8. Quantitative comparisons of the loglikelihood.

while achieving better editing accuracy, which is the key idea
of latent regularization.

Ablation study on the maximum steps M . In AdaTrans,
M defines the maximum steps of transformation trajectory.
During training, M is empirically fixed and AdaTrans is
trained to learn each step size and direction. During infer-
ence, the user can flexibly adjust M for desired visual re-
sults (e.g., becoming younger or older). Fig. 9 demonstrates
that increasing M during training can further improve edit-
ing performance. Although M can be set large enough since
AdaTrans can adaptively adjust the step size, more computa-
tional costs may be introduced and effects of each step may
be minor. Supplementary Fig. A8 visualizes the transformed
trajectory and shows that AdaTrans has produced smooth
transformations.
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Figure 9. Quantitative results for the ablation of M .

5. Conclusion
In this paper, we introduce AdaTrans, a novel nonlinear

transformation for face editing. AdaTrans divides the manip-
ulation process into several finer steps to achieve nonlinear
manipulation in the latent space of GANs. A predefined
density real NVP model regularizes the trajectory of the
transformed latent codes to be constrained in the distribu-
tion of latent space. A disentangled learning strategy is
employed to eliminate the entanglement among attributes.
Extensive experiments have been conducted to validate the
effectiveness of AdaTrans, especially with the large age gap
and few labeled examples. In the future, we will explore
preserving the background for face editing with the help of
the intermediate features of StyleGAN generator.
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APPENDIX

A. Ablation study on the number of labeled
samples.

A potential advantage of AdaTrans is the great generaliza-
tion ability for the scenarios with few limited samples. This
advantage benefits from the proposed disentangled learn-
ing strategy. To investigate the optimal and least labeled
samples used for face editing, experiments are conducted to
demonstrate the influence of the number of labeled samples.

Fig. A1 shows the quantitative results for this ablation.
Interestingly, we found that training on 128 labeled sam-
ples achieves satisfactory performance versus 512 samples.
AdaTrans failed with only 32 samples. Therefore, 128 sam-
ples are sufficient to train a good AdaTrans. Please refer to
Fig. A4 for additional qualitative results.
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Figure A1. Quantitative results for the ablation of the number of
labeled samples used for face editing.

B. Additional qualitative results.
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Figure A2. Qualitative results for the ablation of the proposed com-
ponents in AdaTrans. The baseline has inevitably modified some
unrelated facial attributes (e.g., eyes close when editing male and
eyeglasses), although the faces are successfully manipulated into
target attributes. Thanks to the proposed latent regularization, the
resultant faces are much more natural than previous two variants.

Figure A3. Visualization of 100k synthesized latent codes produced
by StyleGAN2 mapping network, which is reduced to 2 dimensions
by linear discriminant analysis. The points are colored by the age
labels obtained using a pre-trained age classifier with 7 discrete
age groups [30]. It validates that the transformation with finer ages
cannot be accurately achieved by simple linear interpolation.

11



+ 
Ey

eg
la

ss
es

+ 
Ey

eg
la

ss
es

+ 
M

al
e

- M
al

e
+ 

A
ge

+ 
A

ge

+ 
M

al
e

- M
al

e
- A

ge
- A

ge

- E
ye

gl
as

se
s

- E
ye

gl
as

se
s

32 512128Original Projected32 512128Original Projected

Figure A4. Qualitative results for the ablation of the number of labeled samples used for face editing. With only 128 labeled samples,
AdaTrans can still achieve satisfactory face editing while 32 samples failed.
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Figure A5. Additional results for sequential editing.
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Figure A6. Additional results for editing a single attribute.

14



+ 
Ey

eg
la

ss
es

- M
al

e
+ 

A
ge

- A
ge

Projected InterFaceGAN StyleFlow Latent Transformer Ours

(a) Editing single attributes.

+ 
Ey

eg
la

ss
es

 / 
- A

ge
+ 

M
al

e 
/ +

 A
ge

+ 
M

al
e 

/ -
 A

ge
- M

al
e 

/ -
 A

ge

Projected InterFaceGAN StyleFlow Latent Transformer Ours

(b) Editing multiple attributes.

+ 
A

ge
 (7

0+
)

- A
ge

 (1
0-

)

Projected InterFaceGAN StyleFlow Latent Transformer Ours

+ 
A

ge
 (7

0+
)

- A
ge

 (1
0-

)

(c) Editing with large age gap.
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(d) Editing with limited labeled data.

Figure A7. Additional results for the qualitative comparisons with recent methods for face editing under different experimental settings.
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Figure A8. Visualization of the intermediate states for AdaTrans, with the step below. Although the maximum step is predefined as 5,
AdaTrans can produce photorealistic results at different steps, and would not change unrelated attributes and identities when increasing the
maximum step.
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