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Abstract

Brain tissue segmentation is essential for neuroscience
and clinical studies. However, segmentation on longitudinal
data is challenging due to dynamic brain changes across
the lifespan. Previous researches mainly focus on self-
supervision with regularizations and will lose longitudinal
generalization when fine-tuning on a specific age group. In
this paper, we propose a dual meta-learning paradigm to
learn longitudinally consistent representations and persist
when fine-tuning. Specifically, we learn a plug-and-play
feature extractor to extract longitudinal-consistent anatom-
ical representations by meta-feature learning and a well-
initialized task head for fine-tuning by meta-initialization
learning. Besides, two class-aware regularizations are pro-
posed to encourage longitudinal consistency. Experimen-
tal results on the iSeg2019 and ADNI datasets demon-
strate the effectiveness of our method. Our code is avail-
able at https://github.com/ladderlab-xjtu/
DuMeta.

1. Introduction
Accurate brain tissue segmentation is essential in diverse

neuroscience and clinical studies, e.g., population analyses
of brain cortical architectures and individualized diagnosis
of brain diseases. Due to spatiotemporally dynamic changes
in brain structures and functions across the human lifespan,
brain magnetic resonance images (MRIs) present longitu-
dinally heterogenous appearances, leading to varying seg-
mentation difficulties at different periods [37]. Infancy and
the elderly are two particularly challenging times for tissue
segmentation, as a result of (atypical) developmental and
degenerative processes. For example, as shown in Fig. 1 (a),
the brains of infants before six month old have inverse con-
trasts between gray matter (GM) and white matter (WM)

(a) Brain MRI of infants from iSeg2019

(b) Brain MRI of the edlerly from ADNI
Figure 1. (a) Brain morphology and tissue contrast of 6-month-
old infants from the iSeg2019 dataset. (b) Aging and Alzheimer
processes of the elderly from the ADNI dataset.

compared with following periods, and the isointense phase
around six-month-old exhibits extremely low inter-tissue
contrast. In contrast, the brains of the elderly and patients
with Alzheimer’s disease have enlarged cerebrospinal fluid
(CSF) and atrophied GM, as shown in Fig. 1 (b). These
challenges significantly hamper the generalization and lon-
gitudinal consistency of existing learning-based methods
for automatic brain tissue segmentation [25, 39, 18, 9], es-
pecially considering that labeled training samples for spe-
cific time points could be very limited in practice.

To address the above challenges, some methods in the lit-
erature [32, 29] designed contrastive self-supervised learn-
ing (SSL) strategies to learn longitudinally consistent rep-
resentations, which are then fine-tuned on a specific age
group for downstream tasks like tissue segmentation. Such
SSL methods commonly have three technical limitations
from the application perspective. That is, they usually re-
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quire longitudinally paired images of the same subjects in
the pre-training phase, which is practically hard to satisfy.
Besides, the fine-tuned segmentation models are typically
restricted to match up with the appearance of a specific age
group, sacrificing/losing the generalization capacity to other
groups. Moreover, fine-tuning a segmentation model is it-
self a challenging task, especially when there is not enough
labeled training data from the target age group.

In this paper, we revisit and reformulate the idea of longi-
tudinally generalized (or age-agnostic) representation learn-
ing. By nature, it is reasonable to make two fundamental as-
sumptions: 1) independent of changing MRI appearances,
the high-order differences between different tissue types
(e.g., in semantic space) are relatively stable in terms of the
time trajectory; 2) accurate tissue segmentation requires a
reliable mapping function to seamlessly fuse semantic in-
formation with age-specific high-resolution image details.
In line with such assumptions, we propose a unified meta-
learning framework to concurrently learns to learn a uni-
versal feature extractor (e.g., the encoder) for age-agnostic
(i.e., longitudinally consistent) anatomical representation
learning and a well-initialized segmentation head (e.g., the
decoder) that can be flexibly adapted by few age-specific
samples (e.g., one labeled MRI) to establish accurate seg-
mentation models generalizable across the lifespan.

Overall, the technical and practical contributions of this
paper are four-fold:

• We propose a dual meta-learning (DuMeta) paradigm
for the construction of longitudinally generalized seg-
mentation networks. Our DuMeta unifies the ad-
vantages of both meta-feature learning and meta-
initialization learning [22, 14] in a compact bi-level
optimization framework, which contributes to the joint
learning of an age-agnostic plug-and-play feature ex-
tractor and a reliably pre-trained segmentation head
that can be efficiently adapted to different age groups.

• For the purpose of learning to learn a universal fea-
ture extractor generalizable across the lifespan, we de-
sign an intra-tissue temporal similarity regularization
and an inter-tissue spatial orthogonality regularization,
which are combined together to encourage longitudi-
nal consistency in hierarchically multi-scale represen-
tation learning. In contrast to previous SSL works, our
design explicitly considers class information and has
no need of longitudinally paired training data.

• Our DuMeta coupled with the two class-aware regu-
larization terms features a practically attractive meta-
learning strategy. It only needs cross-sectional training
samples in the meta-learning stage and as less as one
labeled image from an unseen age group to establish
an accurate brain tissue segmentation model.

• Under the challenging experimental setting of one-shot
segmentation, our method significantly outperformed
the state-of-the-art longitudinally consistent learning
methods on both the infant and elderly datasets.

2. Related works
2.1. Meta-Feature Learning

Meta-learning typically consists of two fundamental
stages, i.e., meta-training and meta-test [14]. As a represen-
tative type of meta-learning methods, meta-feature learn-
ing (MFL) [22] aims to learn a common feature extractor in
the meta-training stage to share across various (correlated)
tasks, based on which a task-specific head is further learned
in the meta-test stage for downstream (unseen) tasks. The
common feature extractor can be formulated as an explicit
meta-learner, usually meta-trained on various tasks/datasets
in a bi-level optimization fashion. In terms of the strate-
gies to compute the gradients (w.r.t. meta-learner param-
eters), MFL is typically split into two categories: one up-
dates the meta-learner with gradients in the implicit func-
tion relation by performing several steps of gradient de-
scent on the loss function [11, 4, 35, 2, 24], the other de-
rives the hyper-gradients through the implicit function the-
ory [8, 13, 28, 12, 1]. The former is widely used to solve
the bi-level optimization problem by automatic differen-
tiation. For example, Franceschi et al. [13] proposed to
treat the final layer and remaining layers of a classification
network as the base-learner and meta-learner, respectively.
The learnable weights of the meta-learner are iteratively
updated by gradient descent in the back-propagation fash-
ion. In this paper, we separate a segmentation network as a
plug-and-play feature extractor (i.e., the meta-learner) and
a task-specific segmentation head (i.e., the base-learner).
We meta-train the plug-and-play meta-learner by gradient
descent in the implicit function relation for longitudinally
consistent learning of anatomical representations, under the
constraints by two dedicated class-aware regularizations.

2.2. Meta-Initialization Learning

As another representative type of meta-learning, meta-
initialization learning (MIL) aims to learn a good initializa-
tion of network parameters shared across (correlated) tasks
[22]. In contrast to most MFL approaches, MIL typically
does not have an explicit meta-learner, while the parame-
ters initialized by MIL can be regarded as an implicit meta-
learner. In addition, the implicit meta-learner of MIL is only
explicitly related to the base-learner in the initial state. A
mainstream of MIL methods is to update the initialization
parameters with the implicit gradients in the outer-loop of
the bi-level optimization framework, with the implicit func-
tion relationships coming from the inner-loop. As a pio-
neering MIL research, MAML [10] uses the implicit gradi-
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Figure 2. Overview of DuMeta. The meta-train of our DuMeta is divided into three steps (one shared inner-loop and two different outer-
loops) with a feature extractor and a task head. Steps (1) and (2) constitute MFL for the frozen feature extractor; Steps (1) and (3) constitute
MIL for the well-initialized task head. We finally only fine-tune the task head on an unseen dataset.

ent of the initialization process to update the meta-learner.
Considering that calculating the hessian matrix in implicit
gradient descent is computationally heavy, the following
works of MAML have actively investigated the simplifica-
tion of the MIL steps, e.g., finding ways to directly omits the
expensive second-order derivatives [20, 27, 36]. For exam-
ple, ANIL [31] proposed to remove the inner loop for all but
the (task-specific) head of the underlying neural network.
Reptile [27] proposed a variety of first-order algorithms to
avoid the consumption of the second-order derivatives. As
for the applications of MIL, some methods proposed to use
MIL in domain generalization tasks [21, 23, 17]. For exam-
ple, SAML [21] explicitly simulates domain shifts with vir-
tual meta-train and meta-test during the training procedure
to improve the generalization of learned networks. Notably,
most of these existing MIL strategies were formulated to
learn the entire network initialization, which by nature is a
practically challenging task. In contrast, our DuMeta sim-
plifies the task: Based on the learning of a frozen feature ex-
tractor for longitudinally consistent representation learning,
we only need to further learn a lightweight segmentation
head with reliable initializations. To this end, we simulate
domain shift during fine-tuning by MIL.

2.3. Longitudinally Consistent Learning

Self-supervised learning (SSL) is the most actively stud-
ied strategy to learn longitudinally consistent or generic rep-
resentations from data acquired at different time points [5,
3, 40, 30]. Such SSL methods typically design contrastive
regularization terms to learn on longitudinal data the ini-
tialized parameters of a deep network, which will then be
fine-tuned for downstream tasks. For example, as an ex-
tension of SimSiam [6], Ren et al. [32] proposed a patch-
wise spatiotemporal similarity loss to encourage longitu-
dinal consistency, and leveraged orthogonality, variance,
and covariance regularizations to avoid SSL mode col-

lapse. Ouyang et al. proposed an LNE method [29] that
adopts longitudinal neighbourhood embedding to promote
the low-dimensional representation to be instructive while
keeping a smooth progression trajectory field in the latent
space. For lifespan segmentation, Chen et al. [7] proposed
a joint feature regularization to encourage longitudinal con-
sistency. Compared with these SSL methods, we take
the goal of longitudinally consistent representation learning
further. Specifically, our DuMeta jointly learns a plug-and-
play feature extractor with promising longitudinal consis-
tency and a segmentation head with reliable initializations.
Only the lightweight segmentation head needs to be fine-
tuned for specific age groups. Also, the meta-training of
the shared feature extractor does not require longitudinally
paired training data. Moreover, instead of using existing
patch- and image-based [29, 32] regularizations, we pro-
pose two class-aware regularizations dedicated for brain tis-
sue segmentation.

3. Method

3.1. DuMeta Paradigm

We propose a dual meta-learning (DuMeta) paradigm
for accurate brain tissue segmentation across the lifespan,
with the schematic diagram shown in Fig. 2. In the meta-
learning (or pre-training) stage, our DuMeta attempts to
learn concurrently a universal plug-and-play feature extrac-
tor (i.e., Eθ(·)) for longitudinally consistent learning of
anatomical representations and a well-initialized segmen-
tation head (i.e., Dω(·)). They are formulated as two dif-
ferent outer-loops under a unified inner-loop in the bi-level
meta-learning optimization framework. In the meta-test (or
fine-tuning) stage, only the segmentation head needs to be
fine-tuned with few labeled images to efficiently adapt to
specific unseen age groups.



3.1.1 Meta-Learning of Universal Feature Extractor

To learn a longitudinally consistent (i.e., age-agnostic)
Eθ(·) that can be plug-and-play for unseen age groups, we
regard it as an explicit meta-learner and treat Dω(·) as the
base-learner. Such a universal Eθ(·) is therefore learned in
the MFL fashion by leveraging the idea of implicit gradi-
ent function. Specifically, as shown in Fig. 2 (1), in an
episode of meta-train, we first freeze Eθ(·) to update Dω(·)
in the inner loop. To this end, we randomly sample a dataset
from the meta-training dataset pool, on which the gradient
descent to optimize Dω(·) is defined as:

ω∗
t (θt−1) = ωt−1 − α ∗ ∂Linner(ωt−1, θt−1)

∂ωt−1
, (1)

where Linner is the loss function (Dice + CE) of the inner-
loop; θt−1 and ωt−1 denote the parameters of the meta-
learner and base-learner at the (t − 1)th iteration, respec-
tively; and α is the learning rate. It is worth noting that
Linner is actually a function of θt−1. Thus, the parameter
ω∗
t (θt−1), updated with the gradient generated by Linner, is

still a function of θt−1. Therefore, Eq. (1) can form an im-
plicit function relationship to assist the updating of Eθ(·) in
the subsequent outer-loop.

More specifically, considering that the inner-loop can be
regarded as a simulated step to fine-tune the base-learner
(i.e., the segmentation head) in our task, we hope that the
meta-learner (i.e., the feature extractor) can be good enough
to produce promising segmentation results when combined
with such a fine-tuned base-learner. For this purpose, as
shown in Fig. 2 (2), we further sample another two datasets
from the meta-training pool to update Eθ(·). Thus, the gra-
dient generated by Eq. (1) in updating Dω(·) is merged to
update the universal meta-learner, such as:

θt = θt−1 − α ∗ ∂Louter

∂θt−1
; (2)

∂Louter

∂θt−1
=
∂Louter(θt−1, ω

∗
t (θt−1))

∂θt−1

+
∂Louter(θt−1, ω

∗
t (θt−1))

∂ω∗
t

∂ω∗
t

∂θt−1
, (3)

where Louter is the combination of the segmentation loss
(i.e., Dice + CE) and class-aware regularizations (will be in-
troduced in Sec. 3.2) for training the universal meta-learner
in such an outer-loop. According to Eq. (3), we can see
that the outer-loop gradient to determine the updated θt is
actually a combination of two parts, i.e., the direct gradi-
ent and the indirect gradient, which jointly make sure the
optimization of Eθ(·) working in the right direction to de-
duce a universal meta-learner generalizable across datasets
from different age groups. That is, the direct gradient part
is determined by minimizing Louter, which allows the up-
dated Eθ(·) to perform well in the current outer-loop. On
the other hand, the indirect gradient part comes from the

implicit function formulated by Eq. (1), which allows the
updated Eθ(·) to match up with the updated Dω(·) to per-
form well for the simulated fine-tuning step and therefore
unseen age groups. In more detail, the indirect gradient part
of Eq. (3) can be unrolled as explicit second-order deriva-
tives:

∂ω∗
t

∂θt−1
=
∂(ωt−1 − α ∗ ∂Linner(ωt−1,θt−1)

∂ωt−1
)

∂θt−1

=α ∗ ∂2Linner(ωt−1, θt−1)

∂ωt−1∂θt−1
. (4)

Finally, be substituting Eqs. (3) and (4) into Eq. (2), we
get the detailed gradient-descent strategy to optimize Eθ(·):

θt =θt−1 − α ∗ ∂Louter(θt−1, ω
∗
t (θt−1))

∂θt−1

−α2 ∗ ∂Louter(θt−1, ω
∗
t (θt−1))

∂ω∗
t

∂2Linner(ωt−1, θt−1)

∂ωt−1∂θt−1
,

(5)
which consists of a direct first-order gradient for the cur-

rent outer-loop and an indirect second-order gradient for the
simulated fine-tuning step.

3.1.2 Meta-Learning of Initialized Segmentation Head

Given the plug-and-play feature extractor Eθ(·) determined
by Sec. 3.1.1, we further learn a well-initialized segmenta-
tion head Dω(·) in the MIL fashion. In this step, Eθ(·) is
fixed, while the initial weights of Dω(·), say ϕt−1, can be
regarded as an implicit meta-learner required to be updated.

To this end, we first assign the initial weight ϕt−1 to the
segmentation head parameter ω:

ωt−1 = ϕt−1. (6)
Then, we randomly sample a dataset from the meta-training
pool to update ωt−1. In line with the settings of MAML,
here we only update ωt−1 by one inner-loop iteration, i..e,

ω∗
t = ωt−1 − α ∗ ∂Linner

∂ωt−1
, (7)

It is worth noting that, by the nature of network pre-
training, the parameters of the base-learner can be seen as a
function (identity function) of the meta-learner parameters.
Hence, after the inner-loop optimization and given the fixed
Eθ(·), we update the initialization parameters of the seg-
mentation head (i.e., the implicit meta-learner) in the sub-
sequent outer-loop. Specifically, we use the updated ω∗

t to
calculate the loss function on another two datasets from the
meta-learning pool and update the initialization parameter
ϕt−1 with gradient descent, such as

ϕt = ϕt−1 − α ∗ ∂Louter2

∂ϕt−1
; (8)



Algorithm 1 Dual Meta-Learning (DuMeta)
Require: Meta-learning pool (of three datasets: A, B, and

C); feature extractor Eθ(·) parameterized by θ; segmen-
tation head Dω(·) parameterized by ω.

1: Randomly initialize θ and ω;
2: while Not converged do
3: The inner loop:
4: Sample a mini-batch from a random dataset;
5: Update ω based on Eq. (1);
6: The outer-loop for the frozen feature extractor:
7: Sample a mini-batch from the other two datasets;
8: Update θ based on Eq. (5);
9: The outer-loop for the well-initialized task head:

10: Sample a mini-batch from the other two datasets;
11: Update ω based on Eq. (11).
12: end while

∂Louter2

∂ϕt−1
=

∂Louter2

∂ω∗
t

∂ω∗
t

∂ϕt−1
; (9)

∂ω∗
t

∂ϕt−1
=
∂(ωt−1 − α ∗ ∂Linner

∂ωt−1
)

∂ϕt−1

=1− α ∗ ∂2Linner

∂ϕ2
t−1

, (10)

where Louter2 is the same (Dice + CE) segmentation loss as
Linner. By substituting Eqs. (9) and (10) into Eq. (8), the
final gradient descent in the current outer-loop iteration is:

ϕt = ϕt−1 − α ∗ ∂Louter2

∂ω∗
t

(1− α ∗ ∂2Linner

∂ϕ2
t−1

). (11)

Considering that α ∗ ∂2Linner
∂ϕ2

t−1
significantly increases compu-

tational complexity and may cause gradient explosion, such
a high-level differentiation can be omitted in practice. Be-
sides, Reptile [27] points out that the first-order term can
still enhance generalization by increasing the inner product
between gradients of different minibatches.

By summarizing the inner-loop and outer-loop iterations
in both the MFL step (i.e., Sec. 3.1.1) and the MIL step (i.e.,
Sec. 3.1.2), we can see that these two meta-learning steps
actually have the same format of the inner-loop operation
(i.e., Eqs. (1) and (7)). Therefore, the MFL of a universal
feature extractor and the MIL of a well-initialized segmen-
tation head are highly correlated and can be merged to share
one single inner-loop for simplicity, resulting in a compact
dual meta-learning (DuMeta) paradigm in Algorithm 1.

3.2. Class-Aware Regularizations

In Sec. 3.1.1, our DuMeta adopts Louter that combines
general segmentation losses with two class-aware regular-
izations to meta-learn the plug-and-play feature extractor

Eθ(·) for age-agnostic (i.e., longitudinally consistent) learn-
ing of anatomical representations. These two class-aware
regularizations are intra-tissue temporal similarity and inter-
tissue spatial orthogonality, which are designed under a fun-
damental assumption that, independent of changing time
points and MRI appearances, the high-order differences be-
tween different tissue types are relatively stable across the
lifespan. Different from existing SSL approaches [32, 29]
that typically implement their contrastive losses to align
random MRI patches or images regardless of class infor-
mation, our class-aware regularizations can be seen as a
supervised contrastive learning design to align directly the
anatomical presentations of each tissue type, which could
be more straightforward for the downstream segmentation
task. Besides, we implement such regularizations at mul-
tiple learning scales of Eθ(·) to encourage hierarchically
multi-scale longitudinal consistency across age groups.

Specifically, assume that {Fk}Kk=1 is a set of the fea-
ture maps at K different scales of Eθ(·). We have Fk ∈
RBS×NCk×Hk×Wk×Dk , where BS, NCk, and Hk ×Wk ×
Dk stand for mini-batch size, channel size, and spatial size,
respectively. For each Fk, we first resize the (pseudo) tis-
sue maps (say M) to its spatial resolution, denoted as Mk.
Then, according to the label information in Mk, we get the
spatial indices of the voxels belonging to the same classes,
based on which we average the corresponding voxel-wise
representations from Fk to obtain the anatomical represen-
tations of different tissue types (i.e., GM, WM, and CSF),
denoted as fGM

k , fWM
k , and fCSF

k (∈ RBS×NCk ), respectively.
In terms of fGM

k , fWM
k , and fCSF

k , we define the inter-tissue
spatial orthogonality loss as

Linter =
1

3K

K∑
k=1

(
cossim(fCSF

k , fGM
k ) + cossim(fCSF

k , fWM
k )

+ cossim(fGM
k , fWM

k )
)
, (12)

where cossim(·) denotes the cosine similarity that we use
to encourage the anatomical representations of different tis-
sue types to be separated for each spatial scale.

On the other hand, to promote the anatomical represen-
tations of the same tissue at different time points to be con-
sistent, we define the intra-tissue temporal similarity loss as

Lintra =− 1

3K

K∑
k=1

(
cossim(fCSF

Bk
, fCSF

NCk
)

+ cossim(fGM
Bk

, fGM
NCk

) + cossim(fWM
Bk

, fWM
NCk

)
)
,

(13)

where fCSF
Bk

and fCSF
NCk

denote the kth-scale tissue anatomical
representations quantified on two datasets (from different
age groups), respectively.

Finally, the overall loss function in the outer-loop of our
MFL stage to update the universal feature extractor Eθ(·)



can be specified as:

Louter = Lseg + βLinter + γLintra, (14)

where β and γ are two hyper-parameters, which were set as
0.1 and 0.001, respectively, in our experiments.

4. Experiments

4.1. Datasets

To evaluate the efficacy of our method, we applied it
to brain tissue segmentation on two difficult age groups,
i.e., 6-month-old infancy and the elderly, under the chal-
lenging setting of one-shot segmentation. Specifically, we
meta-trained the segmentation network (consisting of a fea-
ture extractor and a segmentation head) on three public
datasets, including OASIS3, IBIS12M, and IBIS24M, and
meta-tested it on another two public datasets, i.e., ADNI
and iSeg-2019. The network inputs were T1w MRIs under-
gone a series of pre-processing, including skull stripping,
bias field correction, and intensity normalization. To obtain
high-quality meta-training labels, we segmented the pre-
processed T1w images automatically by using an advanced
pipeline, i.e., iBEAT [38]. These tissue maps produced by
iBEAT can be regarded as pseudo labels from the aspect
of semi-supervision. To obtain accurate meta-test labels,
iBEAT was first applied, followed by manual corrections by
experienced neuroradiologists to produce the ground-truth
tissue maps. Each of the three meta-training datasets was
split according to an 80-20 training-validation ratio, where
the validation set was used for model and hyper-parameter
selection. After meta-training, one training subject from
each of the two meta-test datasets was randomly sampled
to fine-tune the segmentation head. We reported the metrics
on the test set from the meta-test datasets.

OASIS3 [16]: A publicly accessible dataset consisting of
1,639 T1w MRIs from 992 longitudinally scanned partici-
pants (each with 1–5 temporal acquisitions across a 5-year
observation window). The participants include Alzheimer’s
disease (AD) patients, and healthy controls or minimally
impaired abilities, with the ages ranging from 42 to 95.

ADNI [26]: A multisite dataset consisting of 2,389 lon-
gitudinal T1w MRIs (at least two visits per subject). Par-
ticipants with AD, those who may acquire AD, and healthy
controls without any evidence of cognitive impairment were
included, with the ages ranging from 20 to 90.

IBIS: An infant brain imaging dataset that collects 1,272
structural T1w/T2w MRIs from 552 babies throughout 3
to 36 months old, including both controls and infants at

high risk for Autism Spectrum Disorder (ASD). These sub-
jects can be assigned into different groups according to their
ages. For example, IBIS12M and IBIS24M denote the 12-
month-old and 24-month-old groups, respectively.

iSeg-2019 [37]: The benchmark of the MICCAI 2019
grand challenge on 6-month infant brain MRI segmenta-
tion from multiple sites [37]. The iSeg-2019 training and
test sets include 10 and 13 subjects, respectively. Each sub-
ject consists of T1w and T2w MRIs. Notably, 6-month-old
infant brain segmentation is challenging, considering that
the GM and WM intensity ranges are substantially over-
lapped (particularly around the cortical areas) at this isoin-
tense stage, which results in the ambiguities that present the
greatest obstacle for tissue segmentation.

4.2. Implementation Details

We used 3D U-Net [34] as our baseline model, which
performs five down-samplings and five up-samplings in the
encoding and decoding path, respectively. We used Instan-
ceNorm3d for normalization and ReLU for nonlinear ac-
tivation. The network was trained by the SGD optimizer
with Nesterov momentum (µ = 0.99), and poly learning rate
schedule (initial 0.01). The weight decay was set as 3e-5
to avoid overfitting. The size of input image patches was
128 × 128 × 128, and the mini-batch size was 2. We con-
ducted deep supervision on five scales, with the weights of
0.0625, 0.125, 0.25, 0.5, and 1 (from coarse to fine), respec-
tively. The training data was extensively augmented using
the pipeline of nnUNet [15]. Two commonly used metrics
were selected to quantify segmentation performance: Dice
ratio and Average Symmetric Surface Distance (ASD). A
larger dice value indicates better overlapping between the
prediction and ground truth. In contrast, smaller ASD val-
ues suggest better performance in terms of the boundary
consistency between the prediction and ground truth.

4.3. Comparison Results

We compared our method with other methods addressing
longitudinally consistent/generalized representation learn-
ing. We also compared our method with other meta-
learning methods addressing few-shot learning. In order to
verify the performance of our method on longitudinal data,
we performed challenging one-shot brain tissue segmenta-
tion on the ADNI and iSeg-2019 datasets in the meta-test
stage. Both data sets have longitudinal domain shifts due to
dynamic neuro-degeneration/development processes.

One-shot segmentation on iSeg-2019: The iSeg-2019
dataset consists of 6-month-old infant MRIs from multiple
sites, which present a flip GM/WM contrast with a huge
domain shift compared with other time points. Our DuMeta
meta-trained (pre-trained) the 3D U-Net on IBIS12M, and



Table 1. One-shot segmentation on the official validation set of the iSeg-2019 dataset.

Exp
Dice↑ ASD↓

CSF GM WM CSF GM WM
RandInitUnet.2D 0.8767±0.0113 0.8402±0.0220 0.7965±0.0035 0.3317±0.0215 0.5578±0.0825 0.8479±0.1930
RandInitUnet.3D 0.9029±0.0066 0.8616±0.0176 0.8200±0.0071 0.2652±0.0162 0.5497±0.0658 0.6487±0.1324
Context Restore [5] 0.9070±0.0065 0.8615±0.0118 0.8245±0.0155 0.2641±0.0239 0.5420±0.0560 0.6298±0.1068
LNE [29] 0.9315±0.0115 0.8937±0.0147 0.8654±0.0141 0.1753±0.0163 0.4482±0.0373 0.5274±0.0710
GLCL [3] 0.9141±0.0103 0.8718±0.0185 0.8337±0.0088 0.2337±0.0147 0.5017±0.0546 0.6596±0.1024
PCL [40] 0.9139±0.0089 0.8688±0.0148 0.8313±0.0133 0.2326±0.0130 0.5161±0.0484 0.6692±0.0943
PatchNCE [30] 0.9444±0.0096 0.9043±0.0081 0.8782±0.0223 0.1360±0.0153 0.3820±0.0376 0.4520±0.0760
MAML [10] 0.9433±0.0107 0.9025±0.0100 0.8768±0.0185 0.0174±0.0139 0.3931±0.0493 0.5374±0.0859
Reptile [27] 0.9450±0.0129 0.9047±0.0121 0.8777±0.0143 0.0117±0.0123 0.3896±0.0451 0.5324±0.0825
Ours 0.9611±0.0059 0.9313±0.0083 0.9145±0.0126 0.1082±0.0158 0.2916±0.0423 0.3318±0.0483

Table 2. One-shot segmentation on the ADNI dataset.

Exp
Dice↑ ASD↓

CSF GM WM CSF GM WM
RandInitUnet.2D 0.9223±0.0084 0.9051±0.0098 0.9361±0.0096 0.1571±0.0422 0.1573±0.0338 0.2059±0.0909
RandInitUnet.3D 0.9459±0.0062 0.9236±0.0073 0.9495±0.0058 0.0933±0.0205 0.1160±0.0297 0.1226±0.0291
Context Restore [5] 0.9500±0.0058 0.9289±0.0069 0.9527±0.0054 0.0821±0.0179 0.1056±0.0267 0.1101±0.0241
LNE [29] 0.9665±0.0043 0.9456±0.0065 0.9637±0.0047 0.0487±0.0107 0.0711±0.0168 0.0760±0.0180
GLCL [3] 0.9531±0.0055 0.9332±0.0069 0.9559±0.0052 0.0736±0.0151 0.0964±0.0238 0.1018±0.0236
PCL [40] 0.9526±0.0057 0.9314±0.0068 0.9547±0.0053 0.0750±0.0137 0.0995±0.0255 0.1059±0.0273
PatchNCE [30] 0.9716±0.0040 0.9520±0.0060 0.9687±0.0043 0.0402±0.0091 0.0591±0.0118 0.0634±0.0157
MAML [10] 0.9680±0.0062 0.9472±0.0070 0.9647±0.0061 0.0460±0.0197 0.0680±0.0239 0.0736±0.0281
Reptile [27] 0.9687±0.0056 0.9476±0.0071 0.9656±0.0049 0.0452±0.0167 0.0666±0.0163 0.0702±0.0176
Ours 0.9809±0.0021 0.9678±0.0034 0.9796±0.0024 0.0222±0.0042 0.0315±0.0052 0.0322±0.0054

Input      2D Unet    3D Unet       Contex         LNE         GLCL          PCL       PatchNCE      Ours  Ground Truth

Figure 3. The 2D slice views of representative one-shot segmenta-
tion results on the held-out test set of iSeg-2019.

 3D Unet       Contex         LNE         GLCL          PCL       PatchNCE     Ours  Ground Truth

Figure 4. The 3D WM surface views of representative one-shot
segmentation results on the held-out test set of iSeg-2019.

IBIS24M (i.e., 12/24-month-old infants), and OASIS3 (i.e.,
the elderly), and then meta-tested (fine-tuned) it on iSeg-
2019. Notably, our model did not see 6-month-old data dur-

Input      2D Unet    3D Unet       Contex         LNE         GLCL          PCL       PatchNCE      Ours  Ground Truth

Figure 5. The 2D slice views of representative one-shot segmenta-
tion results on the ADNI dataset.

 3D Unet       Contex         LNE         GLCL          PCL       PatchNCE     Ours  Ground Truth

Figure 6. The 3D WM surface views of representative one-shot
segmentation results on the ADNI dataset.

ing meta-training, and we froze the feature extractor and
only fine-tuned the segmentation head with one 6-month-
old subject during meta-test. The quantitative segmentation



results obtained by different competing methods are sum-
marized in Table 1. From Table 1, we can see that our
DuMeta outperformed other competing methods by a large
margin in learning a longitudinally generalizable segmen-
tation model. As a support to the quantitative evaluations,
we also show the qualitative experimental results in Figs. 3
and 4, from which we can see that our method performs bet-
ter in segmenting detailed structures, e.g., cortical foldings.

One-shot segmentation on ADNI: By leveraging the
same meta-training strategy used in iSeg-2019, we further
meta-tested the pre-trained 3D U-Net on the ADNI dataset.
Correspondingly, the quantitative segmentation results and
representative visualization results are summarized in Table
2 and Figs. 5 and 6, respectively. It can be seen that, consis-
tent with the observations on iSeg-2019, our DuMeta also
outperformed other competing methods by a large margin
in the case of aging brain tissue segmentation. These re-
sults suggest the promising generalization capacity of our
DuMeta in segmenting brain tissues across the lifespan.

Besides the state-of-the-art segmentation accuracies, it
is worth mentioning that the pre-training by other compet-
ing methods was based on self-supervision without ground-
truth label information. Similarly, our DuMeta does not
need the ground truth either during meta-training, as we
used pseudo labels efficiently generated by iBEAT, which
can be understood as semi-supervision. However, the inclu-
sion of pseudo label information can help avoid mode col-
lapse potentially caused by contrastive self-supervision. For
example, because of the U-Net skip connection, the self-
supervised model degenerated into identity mappings can
still achieve good self-reconstruction, which hampers the
model to learn informative representation for downstream
segmentation tasks. Moreover, in contrast to contrastive
self-supervision that typically needs longitudinally paired
training, our DuMeta works on unpaired cross-sectional
data, which is much easier to satisfy in practice.

Evaluation of longitudinal consistency: We evaluated
the longitudinal consistency of different segmentations on
ADNI by using two metrics, i.e., STCS [19] and ASPC
[33]. Results in Table 5 suggest the better performance
of DuMeta. We also conducted a t-sne visualization of
the meta-learned features learned from the ADNI and i-Seg
subjects. Examples in Fig. 7 imply that DuMeta can learn
reliably time-invariant discriminative representations.

4.4. Ablation Studies

We performed ablation experiments on the iSeg-2019
training set. Specifically, iSeg-2019 provides 10 publicly
available labeled training samples. In the meta-test stage,
we used one sample for fine-tuning, two subjects for valida-
tion, and the remaining two subjects for test.

CSF of infants (iSeg2019)
CSF of the elderly (ADNI)
GM of infants (iSeg2019)
GM of the elderly (ADNI)
WM of infants (iSeg2019)
WM of the elderly (ADNI)

Figure 7. Visualizing meta-learned features for different ages.

Role of DuMeta and class-aware regularizations: To
evaluate the efficacy of the DuMeta paradigm and class-
aware regularization terms proposed in this paper, we con-
ducted a series of ablation experiments by removing them
to check the influence on segmentation accuracies, with the
results summarized in Table 3. It can be seen that, com-
pared with the baseline (i.e., A in Table 3), DuMeta led to
significantly improved performance, implying its efficacy
in learning generalizable segmentation networks across the
lifespan. Also, we can see that both the two class-aware reg-
ularizations brought respective performance gains. Among
them, the improvements by the inter-tissue spatial orthog-
onality are relatively larger than the intra-tissue temporal
similarity. The potential reason could be that the inter-
tissue spatial orthogonality encourages the differentiation
between different class representations and could be more
straightforwardly linked to the segmentation task. The best
result was achieved by using both regularizations, which
suggest that they are complementary in longitudinally con-
sistent representation learning for segmentation.

Influence of different base/meta-learner splits: We
have carried out experiments to check the influence
brought by different base/meta-learner (i.e., feature extrac-
tor/segmentation head) splits of the 3D U-Net, with the re-
sults shown in Table 4. It can be seen from Table 4 that,
compared with the pre-trained model (i.e., w/o ft), fine-
tuning all parameters (i.e., ft all) achieved much better re-
sults, suggesting that there are indeed domain gaps across
the lifespan. On the other hand, when only a small number
of parameters were fine-tuned (e.g., ft 1 upsample layer),
the performance decreased compared with ft all. The reason
could be that there is a gap between the local and global op-
timum due to too few parameters available for fine-tuning.
In contrast, when fine-tuning the last three upsample lay-
ers (i.e., ft 3 upsample layers) in the meta-test stage, our
DuMeta led to the best performance. These results suggest
that there is a trade-off between convergence difficulty and
convergence quality in model fine-tuning, considering that



Table 3. Ablation study of different components on the held-out test set of iSeg-2019.

Exp Linter Lintra DuMeta
Dice↑ ASD↓

CSF GM WM CSF GM WM
A 0.9155±0.0147 0.8724±0.0114 0.8375±0.0094 0.1113±0.0194 0.2954±0.0498 0.4082±0.0955
B ✓ 0.9358±0.0060 0.8955±0.0011 0.8679±0.0235 0.0781±0.0106 0.2176±0.0421 0.2997±0.0847
C ✓ ✓ 0.9431±0.0057 0.9015±0.0029 0.8742±0.0247 0.0669±0.0093 0.2009±0.0428 0.2775±0.0826
D ✓ ✓ 0.9414±0.0051 0.8977±0.0025 0.8690±0.0235 0.0701±0.0087 0.2127±0.0447 0.2935±0.0830
E ✓ ✓ ✓ 0.9492±0.0078 0.9091±0.0001 0.8826±0.0205 0.0597±0.0104 0.1824±0.0328 0.2488±0.0664

Table 4. Ablation study of different base/meta-learner splits on the held-out test set of iSeg-2019 (ft means fine-tune).

Exp
Dice↑ ASD↓

CSF GM WM CSF GM WM
w/o ft 0.8450±0.0074 0.8082±0.0089 0.7564±0.0091 0.2487±0.0320 0.5298±0.0652 0.7460±0.2265
ft all 0.9454±0.0069 0.9076±0.0008 0.8823±0.0220 0.0653±0.0076 0.1857±0.0369 0.2493±0.0715
ft 5 upsample layers 0.9484±0.0087 0.9083±0.0003 0.8820±0.0220 0.0617±0.0130 0.1842±0.0322 0.2487±0.0669
ft 4 upsample layers 0.9491±0.0081 0.9096±0.0005 0.8829±0.0194 0.0618±0.0124 0.1841±0.0331 0.2502±0.0644
ft 3 upsample layers 0.9492±0.0078 0.9091±0.0001 0.8826±0.0205 0.0597±0.0104 0.1824±0.0328 0.2488±0.0664
ft 2 upsample layers 0.9451±0.0076 0.9058±0.0002 0.8793±0.0211 0.0654±0.0101 0.1908±0.0373 0.2600±0.0730
ft 1 upsample layer 0.9450±0.0066 0.9049±0.0013 0.8782±0.0229 0.0661±0.0103 0.1920±0.0394 0.2620±0.0775

Table 5. Evaluation of longitudinal consistency on the ADNI
dataset.

Exp STCS↑ ASPC↓
CSF GM WM CSF GM WM

RandInitUnet.2D 0.8809 0.8584 0.8998 6.35 8.32 5.16
RandInitUnet.3D 0.9063 0.8862 0.9177 5.06 6.02 4.20
Context Restore [5] 0.8386 0.8180 0.8580 9.15 11.07 8.08
LNE [29] 0.9015 0.8796 0.9132 4.78 6.81 4.49
GLCL [3] 0.8956 0.8706 0.9057 5.18 7.57 4.75
PCL [40] 0.9155 0.8968 0.9275 3.98 5.63 3.13
PatchNCE [30] 0.9250 0.9087 0.9356 3.80 5.05 2.94
Ours 0.9373 0.9222 0.9468 2.66 3.40 2.20

Table 6. Ablation of hyperparameters on the ADNI dataset.
beta gama Dice↑ ASD↓

CSF GM WM CSF GM WM
1e-1 1e-1 0.9714 0.9516 0.9684 0.0407 0.0600 0.0647
1e-3 1e-3 0.9710 0.9509 0.9679 0.0417 0.0617 0.0652
1e-3 1e-1 0.9697 0.9490 0.9671 0.0448 0.0656 0.0675
1e-1 1e-3 0.9809 0.9678 0.9796 0.0222 0.0315 0.0322

fine-tuning the whole network is hard to converge, while
fine-tuning few network layers is prone to suboptimal so-
lutions. Our method found a good compromise, leading to
accurate and generalizable segmentation results.

Hyperparameter sensitivity evaluation: We performed
a hyperparameter sensitivity evaluation. Results in Table
6 suggest the inter-class term Eq. (12) does have a larger
influence than the intra-class term Eq. (13). This may be
due to the fact that the inter-class term has a more direct
effect on the segmentation task.

5. Conclusion
In this paper, we have proposed a dual meta-learning

(DuMeta) paradigm coupled with dedicated class-aware
regularizations to learn longitudinally consistent represen-
tations from brain MRIs for accurate brain tissue segmenta-
tion across the lifespan. Our DuMeta unifies the advantages

of both meta-feature learning and meta-initialization learn-
ing to jointly meta-learn an age-agnostic plug-and-play fea-
ture extractor and a well-initialized segmentation head. In
the meta-test, only one labeled data is needed by DuMeta to
adopt the segmentation head to unseen age groups. Experi-
ments carried out on the ADNI and iSeg2019 datasets show
that our method significantly outperforms existing longitu-
dinally consistent representation learning methods.
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