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Abstract

Sparse-view computed tomography (CT)—using a small
number of projections for tomographic reconstruction—
enables much lower radiation dose to patients and accel-
erated data acquisition. The reconstructed images, how-
ever, suffer from strong artifacts, greatly limiting their di-
agnostic value. Current trends for sparse-view CT turn
to the raw data for better information recovery. The re-
sultant dual-domain methods, nonetheless, suffer from sec-
ondary artifacts, especially in ultra-sparse view scenar-
ios, and their generalization to other scanners/protocols is
greatly limited. A crucial question arises: have the image
post-processing methods reached the limit? Our answer is
not yet. In this paper, we stick to image post-processing
methods due to great flexibility and propose global rep-
resentation(GloRe) distillation framework for sparse-view
CT, termed GloReDi. First, we propose to learn GloRe
with Fourier convolution, so each element in GloRe has
an image-wide receptive field. Second, unlike methods that
only use the full-view images for supervision, we propose to
distill GloRe from intermediate-view reconstructed images
that are readily available but not explored in previous lit-
erature. The success of GloRe distillation is attributed to
two key components: representation directional distillation
to align the GloRe directions, and band-pass-specific con-
trastive distillation to gain clinically important details. Ex-
tensive experiments demonstrate the superiority of the pro-
posed GloReDi over the state-of-the-art methods, including
dual-domain ones. The source code is available at https:
//github.com/longzilicart/GloReDi.

1. Introduction

X-ray CT is one of the major modalities widely used in
clinical screening and diagnosis. Despite the benefits, there
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Figure 1. Sparse-view CT only uses a few projection views for
tomographic reconstruction, thus providing fast and low-dose CT
scanning. However, the reconstruction results of the conventional
method suffer from severe global streak artifacts.

have been growing concerns that X-ray radiation exposure
could increase the risk of cancer induction [48]. Following
the As Low As Reasonably Achievable (ALARA) principle
in the medical community [36], efforts have been made to
lower the radiation dose while maintaining imaging qual-
ity [20]. Sparse-view CT is one of the effective solutions
which reduces the radiation by sampling part of the pro-
jection data, a.k.a sinogram, for image reconstruction, as
shown in Fig. 1. However, analytical reconstruction algo-
rithms such as filtered back projection (FBP) produce infe-
rior image quality with globally severe streak artifacts, sig-
nificantly compromising its diagnosis value. How to effec-
tively reconstruct the sparse-view CT remains challenging
and, hence, is gaining increasing attention in the computer
vision and medical imaging communities.

Image-domain methods regard sparse-view CT recon-
struction as an image post-processing task on the FBP-
reconstructed images and have achieved exciting perfor-
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mance on streaking artifacts removal and structure preser-
vation [5, 22, 32, 59]. However, due to the limited recep-
tive field, these methods have difficulty in modeling the
global information efficiently, thus leading to suboptimal
results. Current dominant methods turn to the help of sino-
gram by restoring the sinogram and performing CT image
post-processing simultaneously [17,29,31,47]. Specifically,
in addition to the image domain methods, deep neural net-
works are also applied to interpolate the missing data in
sinogram so that the reconstructed images can be recovered
in a global manner [10, 25].

Despite the common success of dual-domain methods,
they suffer from unsatisfactory and unstable performance
due to the following reasons. First, the processing of sino-
gram data is sensitive and even subtle changes may remark-
ably affect the reconstructed images and introduce stubborn
secondary artifacts that are hard to be eliminated. Second,
in ultra sparse-view scenarios, inpainting methods are un-
able to accurately restore the excessive missing raw data;
e.g., inpainting sparse CT data of 18 views to the full CT
data of 720 views only retains about 2.5% of the valid in-
formation, in which the involvement of sinogram process-
ing makes the learning more difficult and compromise the
performance [29,47]. Third, it is often impractical to access
sinogram data given the privacy and commercial concerns,
and if accessible, the requirement of raw data greatly limits
the generalization to other scanners/protocols.

Motivation. Given the great flexibility of the image domain
methods, we arise a critical question in this paper: have the
image domain (post-processing) methods reached the lim-
its? Our answer is not yet, given the following observa-
tions. First, the existing image-domain methods typically
suffer from limited receptive field, which fails to extract and
recover the global information efficiently [44], given that
streak artifacts are spread globally on the reconstructed im-
ages as shown in Fig. 1. Second, the existing image-domain
methods typically use the full-view images as the unique
supervision to improve the image quality in an end-to-end
manner [22, 59]. They ignore the importance of represen-
tation learning, especially global representation (GloRe),
making the artifact removal and detail recovery entangled,
and leading to sub-optimal results due to the significant gap
between sparse- and full-view. Third, the intermediate-view
reconstructed images can be readily available during data
preparation, but to the best of our knowledge, they are sur-
prisingly neglected in the past literature. We argue that they
can provide extra information and build bridges for sparse-
and full-view CT reconstruction.

To address the abovementioned issues, we propose a
novel image-domain method for sparse-view CT recon-
struction. First, to address the limited receptive field inher-
ent in conventional convolutional neural networks, we pro-
pose to learn GloRe with fast Fourier convolution (FFC) [7],

so each element in GloRe has an image-wide receptive
field. This global nature allows artifacts and information,
spread over the entire image, to be better modeled while
also easing the alignment of the representations from dif-
ferent views. Second, to leverage extra supervision from
intermediate-view CT images, we propose a novel distil-
lation framework to learn better GloRe, termed GloReDi,
which contains a parallel teacher network to distill knowl-
edge from the readily intermediate-view images to pro-
vide high-quality and appropriate guidance for learning the
GloRe of sparse-view CT images. Specifically, we first
leverage intermediate-view reconstructed images to train a
teacher network, which is then used to guide the learning of
the student model (i.e. the sparse-view CT). The distillation
scheme benefits GloRe in two folds: (1) representation di-
rectional distillation that aligns the directions between the
student and teacher GloRe, which provides appropriate su-
pervision considering the massive information loss due to
the domain gaps between CT images with different views;
and (2) band-pass-specific contrastive distillation that uti-
lizes contrastive learning solely on the band-pass compo-
nents to help distill the specific clinical value of each CT
image without compromising the reconstruction accuracy.

Contributions. In summary, our contributions are listed
as follows. First, we propose the global representation
(GloRe) learning for sparse-view CT with Fourier convo-
lution, which, to the best of our knowledge, is the first
study to emphasize on the representation learning for im-
age post-processing in sparse-view CT. Second, we propose
a novel GloRe distillation framework, which can leverage
the extra supervision from intermediate-view reconstructed
images for high-quality information recovery and recon-
struction. Third, we present representation directional dis-
tillation and band-pass-specific contrastive distillation for
distilling GloRe to align the representation directions and
gain clinically important details. Last, extensive experimen-
tal results demonstrate the superiority of GloReDi over the
state-of-the-art sparse-view CT reconstruction methods in
terms of quantitative metrics and visual comparison.

2. Detailed Related Work
2.1. Deep-learning-based Sparse-view CT

Numerous model-based iterative reconstruction (IR)
methods have been developed to solve the sparse-view CT
problem, mainly utilizing the sparsity of the total varia-
tion (TV) of the image [4, 12, 23, 33, 37, 52, 53]. How-
ever, most of them suffer from over-smoothed results, hand-
crafted tuning for each image, and extremely high compu-
tation cost [47], limiting their clinical application. In con-
trast, deep learning methods are often faster and more ac-
cessible, thus arousing attention in this field. Among them,
most image-domain methods regard sparse-view CT recon-
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Figure 2. Overview of the proposed GloReDi for sparse-view CT reconstruction. GloReDi facilitates efficient information recovery by
learning to distill the global representation from intermediate-view images.

struction as an image post-processing task. RedCNN [5],
FBPConvNet [22], and DDNet [59] are proposed to recon-
struct the sparse-view CT by the convolutional neural net-
work (CNN). These methods achieve competitive perfor-
mance on streak artifact removal and structure preservation
compared to conventional ones, but most of them fail to
capture the global context and underperform in global re-
construction and artifact removal. Since streak artifacts re-
sult directly from the incomplete projection views, various
methods are proposed to remove the artifacts by interpo-
lating sinogram data [10, 25]. Further, dual-domain meth-
ods were becoming popular for their superior reconstruction
performance by combining the knowledge of both domains.
DuDoNet [31] first proposed a novel Radon inversion layer
linking the gradient between the image and sinogram do-
main networks. Furthermore, various techniques have been
proposed to enhance dual domain approaches through net-
work design [1,6] and unrolling architecture [58]. Recently,
Transformer [46] has been introduced to dual-domain meth-
ods for its capability of capturing long-range dependencies,
achieving superior performance [29, 47, 50]. However, the
problems of the irreversible secondary artifacts and addi-
tional computational costs are not well addressed, and the
requirement of raw data greatly limits their generalizability
to other CT scanners/protocols. In this work, we challenge
reconstructing sparse-view CT without raw data while still
achieving state-of-the-art results.

2.2. Knowledge Distillation

Knowledge distillation transfers rich knowledge from
teacher models to lightweight student models in the label or
feature domains, mainly applied in model compression and
acceleration [15, 42]. Among various approaches, feature-
based knowledge distillation is extensively applied in image
restoration tasks such as image super-resolution [14, 16, 27,
38]. It minimizes the distance between feature represen-
tations to learn richer information from the teacher model

compared to softened labels [49]. Further, contrastive rep-
resentation distillation is proposed to exploit the structural
characteristics among different samples by harnessing the
discriminative representations, thereby enhancing differen-
tiation within data [8, 19, 45]. This work distills knowledge
from the intermediate-view images to enhance the sparse-
view CT reconstruction.

2.3. Frequency Methods in Deep Learning

Frequency methods have been widely used in digital im-
age processing and machine learning [2]. Wavelet con-
volution [32] and fast Fourier convolution [7] have been
proposed to provide a larger/global receptive field, achiev-
ing great success in image restoration tasks [44]. Fre-
quency methods have also yielded promising results in do-
main adaption and image translation, mainly by taking ad-
vantage of domain-invariant spectrum components [3, 18,
55–57]. Previous research also shows that particular fea-
tures and details can be better extracted in the frequency
domain, leading to improvements in camouflaged object de-
tection [60], face forgery detection [21, 28], and face edit-
ing [9]. Frequency-based networks have also made notable
strides in CT reconstruction. Previous studies [1, 26] em-
ploy multi-wavelet CNN [32] in both sinogram and image
domain to suppress artifacts, substituting the pooling oper-
ator with wavelet transforms to achieve a larger receptive
field. However, since both the Haar filter-based wavelet
transform and convolution are applied on the spatial fea-
ture map, these methods struggle to capture global rep-
resentation effectively. Recent research has demonstrated
that employing convolution in the Fourier domain can effi-
ciently eliminate the global artifacts [30, 34]. In this work,
we utilize a frequency-based network for global representa-
tion learning, enhancing clinically critical features by band-
pass-specific contrastive distillation.



3. Method

3.1. Problem Definition

Assume we have a two-dimensional (2D) CT slice of size
N ×N , I ∈ RN×N , where each pixel contains the attenua-
tion coefficient of the corresponding human body. The raw
data or sinogram from the CT scanning, S ∈ RNv×Nd , can
be obtained via the Radon transform [40], where Nv and
Nd denote the number of projection views and the number
of the detectors, respectively. Inversely, the image recon-
struction process can be expressed as I = R−1(S), where
R−1 denotes the inverse Radon transform such as FBP. Ide-
ally, when Nv is sufficiently large, FBP can produce pleas-
ing image quality. However, when Nv is fairly small, the
image reconstruction of so-called sparse-view CT becomes
an undetermined problem.

Here, we use IF and IS to represent the reconstructed
images from full view (i.e. ground-truth) and sparse view,
respectively. The image-domain methods for sparse-view
CT are to improve the image quality of IS towards IF
through a neural network F . That is, the output of the net-
work, ÎS = F(IS), is expected to be of comparable qual-
ity to the full-view ground-truth. In addition, we also use
the images, IT, reconstructed from an intermediate num-
ber of projection views that are between sparse and full
views, as the teacher supervision, forming a student-teacher
framework where the teacher encoder with IT supervises
the training of student encoder with IS.

3.2. Overview of Our GloReDi

Fig. 2 presents the proposed GloReDi, which mainly
consists of four parts: two encoders to learn global repre-
sentations (GloRe) from sparse- and intermediate-view re-
constructed images, IS, and IT, respectively, and two de-
coders to produce the final processed images from GloRe.
In addition to learning GloRe with Fourier convolution, we
have two novel modules to perform distillation from the
teacher network: (1) representation directional distillation
to align the directions between the student and teacher Glo-
Res; and (2) band-pass-specific contrastive distillation to
distill the clinically important features for better detail re-
covery.

Next, we detail each of the proposed components.

3.3. Global Representation Learning

The key technique behind the proposed network is the
global representation learning with fast Fourier convolu-
tion (FFC) [7]. Concretely, FFC first applies real Fourier
transform to get the frequency feature map and then per-
forms convolution on frequency components before finally
back transforming the frequency features as shown in Fig. 2.
Therefore, GloRe from sparse-view images IS is learned by

a Fourier-based encoder network as follows:

ZS = encoderS(IS), (1)

where ZS ∈ RNw×Nh×Nc denotes GloRe extracted from
the sparse-view reconstructed image IS through the (stu-
dent) encoder encoderS and Nw × Nh × Nc denotes
the width, height, and channel size of GloRe. Compared
to the vanilla convolution with a limited receptive field,
FFC works in the frequency domain, so each element in
GloRe contains the global information of the sparse-view
images by using an image-wide receptive field, represent-
ing patterns of artifacts and the image contents simultane-
ously. Furthermore, such global nature can aid in modeling
the artifact and information distributed throughout the im-
age while easing the alignment between GloRe of different
views.

3.4. Global Representation Distillation

In the context of sparse-view CT, images with an inter-
mediate view IT can be easily obtained from the full-view
sinogram as extra supervision. To get the teacher represen-
tation from IT, a parallel teacher encoder encoderT, us-
ing the same architecture as encoderS but with different
weights, takes IT as input and yields teacher GloRe ZT of
the same shape with ZS as follows:

ZT = encoderT(IT). (2)

ZT can be regarded as a high-quality pseudo target for stu-
dent GloRe in the same latent space since richer information
can be extracted from IT. Exploring distillation from IT is
obviously easier than that of IF given the significant gap
between IS and IF.

Intuitively, ZS should be similar to ZT if the artifact-free
target information is precisely encoded. Therefore, a natural
way for distillation is to use ZT as the supervision for ZS by
minimizing their Euclidean distance. However, this could
harm the reconstruction performance since the student en-
coder has to partially recover IT. Finding an effective solu-
tion to distilling the information in ZT for sparse-view CT
reconstruction is one of the highlights in this work. Our idea
is to separate the distillation process. First, we present rep-
resentation directional distillation to align the representa-
tion directions so the images of different views are along the
same direction. Second, we propose a band-pass-specific
contrastive distillation to enhance clinically critical details.

We detail these two distillation techniques as follows.

3.4.1 Representation Directional Distillation

Given that IS and IT share the same ground truth IF, with
the main difference being in the artifact patterns, student
and teacher GloRe should at least demonstrate a consistent
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direction for reconstruction with high confidence. There-
fore, We define the directional distillation loss for ZS as
follows:

Lrdd=
1

NwNh

∑
i,j

(
1−CosSim([ZS]i,j , [ZT]i,j)

)
, (3)

where CosSim denotes the cosine similarity, defined as
CosSim(a, b) = aTb/max(∥a∥2∥b∥2, ϵ) with ϵ set to
1× 10−8 to avoid division by zero.

3.4.2 Band-Pass-Specific Contrastive Distillation

The directional distillation aligns the directions of student
representation ZS and the teacher representation ZT in the
view-independent space, which, however, does not guaran-
tee a high-quality reconstruction of the image. What dis-
tinguishes sparse-view CT reconstruction task from classic
image restoration one (e.g. denoising, deraining, etc.) is
that the former is more demanding in terms of fine-grained
details for diseases identification, organs delineation, and
low-contrast lesions detection, etc [11]. In other words, it
places more emphasis on learning the image-specific repre-
sentation.

Contrastive representation learning, as a self-supervised
approach, encourages the model to maximize the differ-
ence among representations of different samples so that
model can emphasize those category-specific representa-
tions. However, directly implementing these losses would
lead to imprecise reconstruction results because most CT
images are inherently similar in intensity distribution, es-
pecially for images of the same body parts, as shown in
Fig. 3. Recent methods have achieved great success learn-
ing on specific DCT spectrum [18, 51, 55], due to its strong
energy compaction property, making it simple to select spe-
cific frequency components [41]. Therefore, we distilled the

image-specific details by applying contrastive distillation on
specific discrete cosine transform (DCT) spectrums. On the
one hand, detailed knowledge can be better distilled from
specific frequency components of teacher GloRe. On the
other hand, contrastive against different CT slices can fur-
ther enhance image-specific details on corresponding DCT
components.

Discrete cosine transform. Discrete cosine transform
(DCT) is widely used for data compression in low-
frequency components. The basis function of 2D DCT is
defined as follows:

Bi,j
w,h = cos

(
πw
Nw

(
i+ 1

2

))
cos

(
πh
Nh

(
j + 1

2

))
, (4)

where Nw and Nh represent the width and height of the
input, respectively. Then, 2D DCT of the latent feature Z
can be written as:

fw,h(Z) =
∑Nw−1

i=0

∑Nh−1

j=0
[Z]i,jB

i,j
w,h, (5)

where w ∈ {0, 1, . . . , Nw − 1}, h ∈ {0, 1, . . . , Nh − 1}.
The f(Z) ∈ RNw×Nh represents the 2D DCT frequency
spectrum of Z. Thus, frequency components can be easily
selected by a mask M ∈ {0, 1}Nw×Nh .

Band-pass-specific contrastive distillation. Crucially, the
low-frequency components of GloRe contribute most to the
reconstruction accuracy, while high-frequency may contain
inherent noise and artifacts of CT images. We therefore
use a band-pass supervised contrastive loss for the distilla-
tion, where a band-pass mask M is incorporated to filter out
the mid-frequency part in the frequency domain, containing
main structure as well as the necessary detail information.
The proposed band-pass supervised contrastive loss can be
written as:

z = flatten (crop (fw,h(Z),M)) , (6)

where crop operator will keep the value at locations where
M = 1 while the flatten operator flattens the 2D spec-
trum map into 1D representation.

It is to be observed that the clinical details in the CT im-
ages vary from case by case and are each very critical for
diagnosis, requiring more sophisticated instance-level dis-
tinction. To this end, we consider all representations from
different CT slices as negative samples to maximize image-
specific features while updating the memory bank M with
the widely applied First-In-First-Out mechanism per itera-
tion from the previous mini-batches. The proposed band-
pass-specific contrastive distillation loss for sample zS can
be written as follows:

Lbcd = − log
exp

(
zT
SzT/τ

)∑
z∈M exp

(
zT
Sz/τ

) , (7)



Algorithm 1 The training process of GloReDi.
Require: encoderS, encoderT, decoderS,

decoderT; Input images: IS, IT, IF;
momentum m and Memory bank

1: for iter = 0 to Max Iter do
2: Update decoderT using Eq. (8)
3: ÎT,ZT = decoderT(encoderT(IT))
4: Optimize encoderT using Eq. (9)
5: ÎS,ZS = decoderS(encoderS(IS))
6: Optimize encoderS+decoderS using Eq. (11)
7: Update memory bank
8: end for

Return: encoderS+ decoderS

where zS, zT, and z are frequency representations of ZS,
ZT, and negative samples from memory bank M of size
Nmem, respectively. τ is the temperature term used to adjust
the sensitivity of negative samples.

3.5. Loss Function and Training Procedure

Teacher reconstruction. To constrain the GloRe extracted
from IS and IT in the same latent space, a naive solution
is to share the same decoder in the training phase, which,
however, brings instability. Therefore, we adopt the widely
used Exponential Moving Average (EMA) with momentum
m to update the parameters θ of the teacher decoder by the
student decoder [13]:

θdecoderT = mθdecoderT + (1−m)θdecoderS. (8)

Then, the global representation ZT learned by the teacher is
fed into to the decoder to obtain the teacher reconstruction
result ÎT, and we use ℓ1 loss to measure the pixel-wise dif-
ference between ÎT and the full-view ground-truth IF and
train the teacher:

LpixelT = ∥decoderT(ZT)− IF∥1. (9)

Student reconstruction. The pixel-wise error measure-
ment for the student is defined in a similar way:

LpixelS = ∥decoderS(ZS)− IF∥1. (10)

Finally, a compound loss function combining pixel-wise er-
ror and two distillation losses respectively defined in Eq. (3)
and Eq. (7) is introduced for student network training to
achieve high-quality sparse-view CT reconstruction:

LStu = LpixelS + αLrdd + βLbcd, (11)

GloReDi is trained following the process summarized in Al-
gorithm 1, where the student and teacher encoder are trained
iteratively.

4. Experimental Results

4.1. Experimental Setup

Dataset. We use DeepLesion dataset [54] and “2016
NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge”
AAPM dataset [35] to demonstrate the effectiveness of the
proposed GloReDi. The DeepLesion dataset is the largest
multi-lesion real-world CT dataset made available to the
public, from which 40,000 images of 303 patients are se-
lected as the training set while 1000 images of another 18
patients are selected as the test set. AAPM dataset con-
tains routine dose CT data from 10 patients, where a total
of 5,410 slices from 9 patients are chosen for training and
526 slices from the remaining 1 patient for testing. All im-
ages are resized to 256× 256. We simulate the forward and
back projection using fan-beam geometry under 120 kVp
and 500 mA with TorchRadon toolbox [43]. The distance
from X-ray source to the rotation center is 59.5cm, and the
number of detectors is set to 672. Sparse-view CT images
are generated from Nv = 18, 36, 72, 144 projection views
uniformly sampled from full 720 views covering [0, 2π]. To
simulate the photon noise presented in real-world CT, an in-
tensity of 1× 106 Poisson noise is added to the sinograms.

Implementation details. Our model is implemented in
PyTorch. We use Adam optimizer [24] with (β1, β2) =
(0.5, 0.999) to train the model. The learning rate starts
from 1× 10−3 and is halved for every 40 epochs. For each
method, four models of different Nv are trained separately
on 4 NVIDIA RTX 3090 GPUs for 120 epochs with a batch
size of 8. For hyperparameters in GloReDi, we set α and β
in Eq. (11) empirically to 0.1 and 0.0002 to fit the scale be-
tween losses. The momentum m and temperature τ are set
to 0.9 and 1.0, respectively, while the size L of the memory
bank is set to 300 to balance the performance and compu-
tational cost. We set intermediate-view as Nv × 2 by de-
fault. More details, including the network architecture, can
be found in the Appendix.

Evaluation metrics. For quantitative evaluation, we use
peak signal-to-noise ratio (PSNR), structural similarity
(SSIM) [61] and root mean square error (RMSE); all of
them are widely adopted for image quality assessment.

4.2. Comparison with State-of-the-Art Methods

We compare GloReDi with the following state-of-the-art
methods: DDNet [59], FBPConvNet [22], DuDoNet [31],
DDPTrans [29], and DuDoTrans [47]. In addition, we name
the network without the distillation from IT as the fre-
quency encoder and decoder network (Fred-Net), optimized
with only the pixel-wise loss in Eq. (10). FBP directly ap-
plies Radon transform to reconstruct the image from the
sparse-view sinogram. DDNet and FBPConvNet are image-
domain deep-learning methods taking FBP results as input.



Nv = 18 Nv = 36 Nv = 72 Nv = 144
Methods PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
FBP 22.22 35.36 0.0795 25.49 47.49 0.0543 30.88 63.81 0.0293 37.12 82.94 0.0144
DDNet [59] 34.57 91.94 0.0187 38.24 94.91 0.0126 41.66 97.27 0.0083 46.75 98.79 0.0048
FBPConvNet [22] 35.95 93.62 0.0164 39.79 96.13 0.0106 43.76 97.47 0.0066 48.46 98.60 0.0039
DuDoNet [31] 35.69 93.96 0.0169 40.36 96.94 0.0103 44.86 98.39 0.0059 49.33 99.23 0.0036
DDPTrans [29] 35.11 93.48 0.0181 38.68 95.99 0.0121 43.56 98.16 0.0069 48.72 99.22 0.0038
DuDoTrans [47] 36.08 93.28 0.0161 40.75 96.67 0.0095 45.16 98.44 0.0057 49.96 99.28 0.0034
Fred-Net (ours) 38.08 95.20 0.0129 40.86 96.81 0.0093 44.43 98.18 0.0063 48.45 99.08 0.0039
GloReDi (ours) 38.65 95.87 0.0120 41.25 97.05 0.0090 45.18 98.43 0.0057 48.96 99.21 0.0037

Table 1. Quantitative evaluation [PSNR (db), SSIM (%) and RMSE] for state-of-the-art methods on DeepLesion dataset.

(a) (c) (d)(b) (e) (f) (g) (h)
33.28/94.65 30.89/92.55 33.99/94.41 34.11/95.27PSNR/SSIM 24.02/74.81 29.44/88.64 32.89/94.41 

35.82/95.01 33.81/93.16 34.72/93.96 38.05/96.36 PSNR/SSIM 22.79/37.03 32.57/89.60 34.14/93.28 

37.90/96.42 38.18/96.32 37.20/95.80 40.43/97.21 PSNR/SSIM 25.14/54.29 34.38/94.01 35.16/93.83 
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Figure 4. Visual comparison of state-of-the-art methods on DeepLesion dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet,
(e) DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: the results under Nv = 18, 36, 72; display window is
set to [-1000, 2000] HU for the first two rows and [-200, 300] HU for the third row.

(a) (c) (d)(b) (e) (f) (g) (h)

PSNR/SSIM 22.79/34.18 34.05/89.46 34.23/90.64 35.20/93.31 33.81/91.89 35.26/92.83 37.55/94.76 

37.40/93.59 35.57/91.59 37.19/93.40 38.70/94.20 PSNR/SSIM 23.17/37.10 34.23/89.21 36.01/91.53 

Figure 5. Visual comparison of state-of-the-art methods on AAPM dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet, (e)
DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: Nv = 18, 36; the display window is [-1000, 2000] HU.

DuDoNet is a state-of-the-art dual-domain method that re-
stores the CT image using two U-Nets in sinogram and
image domains. Furthermore, DDPTrans and DuDoTrans
adopt Transformer on both domains to restore the image by
utilizing the long-range dependency. We try our best to re-
produce these methods and then train and test them on the
same dataset for a fair comparison.

Quantitative comparison. Table 1 presents the quantita-
tive comparison. Generally, dual-domain methods perform
better than single domain methods, especially in the case
of Nv = 72, 144 thanks to the sinogram inpainting net-
work. However, we highlight in ultra sparse-view scenarios
where Nv = 18, that dual-domain methods like DuDoNet
perform worse than classical image-domain-only methods



Nv = 18 Nv = 36 Nv = 72 Nv = 144
Methods PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
FBP 22.73 35.06 0.0732 26.27 47.52 0.0486 31.36 64.56 0.0270 37.85 84.57 0.0128
DDNet [59] 34.29 89.68 0.0194 36.95 93.03 0.0142 40.41 96.04 0.0096 44.35 98.05 0.0061
FBPConvNet [22] 35.73 92.84 0.0165 37.95 93.73 0.0127 42.92 97.19 0.0072 47.35 98.76 0.0043
DuDoNet [31] 34.82 93.00 0.0196 39.89 95.99 0.0102 44.06 98.02 0.0062 48.39 99.11 0.0038
DDPTrans [29] 34.47 91.95 0.0191 38.13 94.83 0.0125 42.77 97.65 0.0073 47.84 99.06 0.0041
DuDoTrans [47] 35.85 93.07 0.0162 40.04 96.02 0.0100 44.20 98.07 0.0062 49.02 99.21 0.0036
Fred-Net (ours) 37.20 93.90 0.0140 41.46 96.84 0.0085 43.64 97.84 0.0066 47.50 99.03 0.0042
GloReDi (ours) 37.91 94.58 0.0128 41.57 96.70 0.0084 44.24 98.03 0.0062 48.10 99.08 0.0040

Table 2. Quantitative evaluation [PSNR (db), SSIM (%) and RMSE] for state-of-the-art methods transferred to AAPM dataset.

such as FBPConvNet. This is mainly due to the secondary
artifact introduced by the unsuccessful sinogram inpaint-
ing; e.g., when Nv = 18 in our setting, directly restoring
the sinogram can be recognized as a 40× super-resolution
task, which is rather challenging. Interestingly, DuDoTrans
is superior to DuDoNet to some extent, indicating the im-
portance of long-range dependency in sparse-view CT re-
construction. DDPTrans fails to surpass DuDoNet mainly
because of the limited parameter number though most trans-
formers are memory-consuming.

Compared with the previous works, the proposed Glo-
ReDi achieves competitive results by learning to distill
GloRe for high-quality reconstruction. Particularly in ultra-
sparse scenarios, e.g., when Nv = 18, GloReDi has 2.57db
and 2.70db improvement on PSNR over DuDoTrans and
FBPConvNet, respectively. As Nv increases, the advantage
of GloReDi decreases, mainly due to a shift towards arti-
facts removal tasks rather than reconstruction. We highlight
that the fewer projection views indicate less radiation dose
and more speedup. We notice that global representation dis-
tillation further improves the performance of GloReDi from
0.51db to 0.89db compared to Fred-Net. The results show
that the proposed GloReDi successfully inspire the potential
of image post-processing methods and is significantly supe-
rior to the state-of-the-art methods under various settings.

Visual comparison. Fig. A3 presents the visualization re-
sults of three sparse-view images. DDNet and FBPCon-
vNet cannot remove the artifact thoroughly, while the re-
construction results are over-smooth in the boundary of or-
gans and bones. Such effects can be easily observed in the
second row of Figs. A3(c) and A3(d) on the spine where the
anatomical structure is complicated. Although dual-domain
methods perform better in general, we find that the accuracy
in details is even worse than FBPConvNet in comparison
with Figs. A3(d) and A3(e)-(g).

Among all these methods, GloReDi best recovers the
structures and details, especially in ultra-sparse scenarios.
As shown in the first two rows of Fig. A3(h), only Glo-
ReDi precisely reconstructs those clinically important de-
tails such as soft tissue and the corrupted pulmonary alve-
oli.

config. PSNR
a) Fred-Net 38.09
b) Fred-Net w/o Fourier 36.52
c) Fred-Net w/o Fourier + Lrdd + Lbcd 36.30
d) Fred-Net + data augmentation 34.41
e) Fred-Net + Lrdd 38.39
f) Fred-Net + Lbcd 38.42
g) Fred-Net + Lrdd + Lbcd = GloReDi 38.65
h) Fred-Net + raw data 38.44

Table 3. Quantitative evaluation of different configurations.

4.3. Ablation Study

We first evaluate the effectiveness of each component in
GloReDi. We use Fred-Net as the baseline to add or remove
components. The configurations involved in Table 3 are
mainly four groups: (1) the baseline Fred-Net using pixel-
wise loss to train student model without distillation com-
ponents (a); (2) the baseline without Fourier convolutions
(b–c); (3) the baseline with distillation from intermediate-
view reconstructed images (d–g); and (4) the dual-domain
version with raw data processed by sinogram-domain sub-
network of DuDoNet [31] (h). Unless noted otherwise,
pixel-wise loss is involved in training.

Ablations on global representations. The results between
a) and b) in Table 3 confirm that learning global representa-
tions with the image-wide receptive field by Fourier convo-
lution is beneficial for sparse CT reconstruction. Also, we
notice that in Tables 1 and 2, our baseline Fred-Net still out-
performs state-of-the-art methods when Nv = 18 and 36.
Interestingly, we found that c) performs even worse than b)
in Table 3. This suggests that the global representation is
essential for bridging the gap between images of different
views. Generally, learning global representations is pow-
erful and provides a new perspective for sparse-view CT
reconstruction, which also answers that the limit of image
post-processing methods is still far beyond reach.

Ablations on global representation distillation. Through
a comparison between Fred-Net and the one trained with
intermediate-view images as data augmentation (a vs. d) in
Table 3, we found that directly applying data augmentation
had a negative impact, resulting in a 3.67db PSNR drop.



config. Nv × 2 Nv × 3 Nv × 4 720
Nv = 18 38.38 38.29 38.28 38.02
Nv = 72 44.84 44.46 44.72 44.38

Table 4. PSNR evaluation of GloReDi trained with different
intermediate-view images for 60 epochs. The first and second rows
show the results of sparse-view images with Nv = 18, 72 distilled
from images of Nv × 2, 3, 4 and 720 (full view), respectively.

This indicates that the network failed to benefit from denser-
view images directly because of the significant domain gap
among images of different view. By comparing a), e) and f)
in Table 3, we can see that both e) representation directional
distillation and f) band-pass-specific contrastive distillation
can improve the performance of a), showing that end-to-
end supervision cannot thoroughly unlock the potential of
the GloRe. By training with both distillation loss, g) fur-
ther boosts the performance and outperforms all other con-
figurations. By comparing a), g) and h), we found unsur-
prisingly that using raw data does improve the performance
of the image-domain network. However, our method Glo-
ReDi yields even better performance by effectively distill-
ing GloRe from intermediate-view image data.

Ablations on intermediate views for distillation. Select-
ing a suitable intermediate view for distillation is crucial
in realizing the full potential of GloReDi. Images recon-
structed from a denser view can provide richer informa-
tion to the teacher GloRe while introducing a more signif-
icant domain gap. As presented in Table 4, we found that
models distilled from Nv × 2 views exhibit the best per-
formance. Interestingly, models distilled from the full-view
image yield the worst performance, primarily because of the
considerable domain gap between the input data.

Further ablation studies for framework designs, configu-
rations of residual blocks, and ablation study for distillation
loss can be found in the Appendix.

4.4. Transfer to Other Dataset

To test the generalizability and robustness of GloReDi
along with other state-of-the-art methods, we finetune each
model for another ten epochs on AAPM dataset to bridge
the domain gap following the same setting. In Table 2, the
proposed GloReDi shows excellent transferability over all
other state-of-the-art methods in (ultra) sparse-view scenar-
ios (Nv = 18, 36, 72) and still achieves performance com-
parable with the dual-domain methods when Nv = 72.
Specifically, when Nv = 18, we notice GloReDi has 2.06db
and 2.18db improvements on PSNR compared to DuDo-
trans and FBPConvNet, respectively, indicating that our
method is significantly superior in ultra sparse-view scenar-
ios. Fig. A4 shows images with Nv = 18 and 36, which
are corrupted severely by FBP as shown in Fig. A4(b), thus
losing its clinical value. Previous image-domain methods
remove the artifact to some extent but lose most of the de-

tails, as shown in Figs. A4(c) and (d). Although the state-
of-the-art dual-domain methods gain better results in gen-
eral, we notice that clinical details such as lesion and bone,
as pointed out by the blue arrows, are not accurately recon-
structed in Figs. A4(e)-(g) while severe secondary artifacts
are introduced, especially when Nv = 18. In contrast, the
proposed GloReDi excels at reconstructing the details and
greatly improves the clinical value of sparse-view CT.

5. Discussion and Conclusion
First, we emphasize that our contributions can be easily

extended to dual-domain methods when sinogram data are
available. On the one hand, learning to distill GloRe can
also benefit the image-domain network in a dual-domain
framework. On the other hand, the proposed method can
also be used to enhance the sinogram recovery by distill-
ing the sinogram with intermediate views. Future work can
concentrate on extending GloReDi to dual domain methods
and other CT reconstruction tasks, such as limited-views
CT reconstruction and metal artifact reduction. Second, al-
though the teacher network is trained alongside the student
network in the current version, it is valuable to explore the
utilization of pre-trained teacher models, enabling GloReDi
to progressively distill the GloRe from a series of teacher
models.

We also acknowledge some limitations. First, the teacher
network will introduce additional computational costs dur-
ing the training phase. It is possible to study how to dis-
till knowledge from a pretrained teacher network. Second,
although there are clear improvements in quantitative and
visual results, it is desirable to have feedback from radiolo-
gists for clinical practice. The generalizability and robust-
ness of the trained networks in clinical applications require
further investigation. Third, we only considered 2D cases
in the paper due to memory respect. If GPU memory per-
mits, one can extend GloReDi to 3D by replacing 2D con-
volutions with 3D ones by applying high-dimension kernels
for FFCs [7]. Lastly, GloReDi failed to surpass the dual-
domain methods in denser view scenarios when sinogram
can provide effective information for performance improve-
ment. Studying how to improve the performance given an
arbitrary Nv would be of great value for future research.

This paper sticks to reconstructing the sparse-view CT
directly in the image domain by learning to distill global
representation from intermediate-view reconstructed im-
ages innovatively. We propose to learn GloRe with Fourier
convolution for image-wide receptive field and present di-
rectional and band-pass-specific contrastive distillation for
high-quality reconstruction. The proposed framework Glo-
ReDi achieves state-of-the-art performance without access
to sinogram data, demonstrating that the limit of the image
post-processing methods is still far beyond reach.
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APPENDIX

This Appendix includes five parts: (A) more ablation study
and analysis, (B) efficiency, (C) more visualization results,
and (D) detailed network architectures.

A. More Ablation Study and Analysis

A.1. Ablation on Framework Design

EncoderS EncoderT

Decoder

EncoderS EncoderT

DecoderS DecoderT

EncoderS EncoderT

DecoderS DecoderT

(a) Shared Decoder (b) Parallel Decoder (c) EMA Decoder

Figure A1. Framework designs of GloReDi: (a) GloReDi-S:
shared decoder for student and teacher networks, which is opti-
mized twice per iteration; (b) GloReDi-P: separate parallel de-
coders for student and teacher; and (c) GloReDi-E: teacher de-
coder is updated via EMA according to student decoder. For sim-
plicity, we name GloReDi-E trained without distillation loss as
GloReDi-N for comparison.

Table A1 presents the experimental results of different
framework designs employed in GloReDi, as illustrated in
Fig. A1. We found that the parallel decoder design failed
to align the representations of different views into a shared
latent space, thus, leading to suboptimal results. The re-
sult of GloReDi-P is even worse than GloReDi-N, reveal-
ing that the domain gap between various views can harm
the training. Although the utilization of a shared decoder
can enforce the representation to be in the same latent space
and outperform GloReDi-P, it could also introduce unstable
problems during training, for the parameters of the shared
decoder are updated twice in an iteration. By contrast,
GloReDi-E achieves the alignment of representations in a
shared latent space through an exponential moving average
(EMA) update procedure, thereby circumventing interfer-
ence with student training. The resultant teacher encoder
can be considered a stable version of the student encoder,
making the teacher GloRe a dependable distillation target.
Therefore, we choose GloReDi-E as our final framework
design.

GloReDi -N -P -S -E
PSNR 37.91 37.85 38.04 38.38

Table A1. PSNR evaluation of GloReDi with different framework
designs. All networks are trained under Nv = 18 for 60 epochs.

config. e5d4 e6d3 e7d2 e8d1
Nv = 18 37.49 37.62 38.06 38.02
Nv = 72 43.75 43.90 44.39 44.08

Table A2. PSNR evaluation of GloReDi with varied numbers of
FFC residual blocks in the encoder and decoder. (e.g., e5d4 rep-
resents 5 and 4 FFC residual blocks in the encoder and decoder,
respectively). All models are trained for 40 epochs considering
the computational cost.

A.2. Ablation on Configurations of Residual Blocks

Given the fixed parameters, a larger encoder can im-
prove the information extraction and recovery process, as
well as better bridge the domain gap between the sparse-
and denser-view images. In the meantime, a larger decoder
can better decode the global representation and improve the
reconstruction quality. Table A2 presents the quantitative
results of varying numbers of FFC residual blocks in the en-
coder and decoder. The results suggest that a ratio of 7 : 2
for 9 residual blocks in the encoder and decoder is the most
favorable for distillation.

A.3. Ablation on Distillation Loss

config. ℓ1 loss ℓ2 loss (ours)
Nv = 18 37.44 37.29 38.06
Nv = 72 42.88 42.56 44.39

Table A3. PSNR evaluation of GloReDi trained with different dis-
tillation loss, including ℓ1 loss and ℓ2 loss commonly used in
knowledge distillation, as well as the proposed one with Lrdd and
Lbcd. All models are trained for 40 epochs considering the com-
putational cost.

Table A3 exhibits the results of GloReDi trained with
different distillation loss. Our findings suggest that pixel-
wise distillation losses, such as ℓ1 and ℓ2 loss, are not as
effective as the proposed one. This is attributed to the fact
that conventional distillation tasks involve both the student
and teacher networks sharing the same input and ground
truth. Consequently, the domain gap does not affect them.
However, for sparse-view CT reconstruction, it is arduous
for the student to recover the missing information entirely.
This renders pixel-wise losses too abrupt for distillation pur-
poses.

A.4. Ablation on Band-pass-specific Contrastive
Distillation

We have demonstrated the effective components by
training GloReDi with Lbcd on specific frequency compo-
nents. However, there are various methods to split the fre-
quency components [18,39,51,55]. Note that in 2D discrete
cosine transform, low-frequency components are placed on
the upper left. We define the mask M ∈ {0, 1}Nw×Nh as



follows to select the target components:

Mi,j =

{
1, if i∈ [blowNw, bupNw] and j∈ [blowNh, bupNh]

0, otherwise,
(A.1)

where Mi,j is the element in M at position (i, j); blow and
bup denote the hand-craft ratios defining the lower and up-
per bounds, respectively, which range from [0, 1]. We then
split the DCT spectrum into five groups, demarcated by the
intervals [blow, bup], as illustrated in Fig. A2. Notably, the
model distilled via the vanilla supervised contrastive loss
served as the baseline for our comparative analysis and was
denoted by the black horizontal line in Fig. A2. Obvi-

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0] [0.2-0.5]
DCT components

38.0

38.1

38.2

38.3

38.4

PS
NR

38.111

38.286 38.278
38.253

38.14

38.397

Figure A2. The effect of different frequency components. Note
that the black horizontal line represents the contrastive distillation
without projecting the representation to the DCT domain. The
models are trained with Lbcd only for 60 epochs.

ously, models trained with frequency components, except
for the lowest and highest, perform better than vanilla ones,
demonstrating that selecting band-pass components is ef-
fective. In addition, middle groups perform relatively better
among different groups, demonstrating the effectiveness of
the selected band-pass-specific components. Therefore, we
select [blow, bup] = [0.2, 0.5] to train our final models to
balance the performance and memory usage.

B. Efficiency

Methods DDNet FBPConvNet DuDoNet DDPTrans DuDoTrans GloReDi
mem. (MB) 86.4 274.9 2150.1 7220.3 3108.5 798.8
infer. (ms) 14.7 11.7 49.6 71.3 78.4 33.1

Table A4. Peak memory usage and mean inference time on a single
RTX 3090 GPU using 1000 images, with a batch size of 1, at a
resolution of 256× 256.

Table A4 presents the peak memory usage (mem.) and
mean inference time (infer.) assessed on a single RTX 3090
GPU with a batch size of 1, averaging over 1000 images at
a resolution of 256 × 256. Overall, dual-domain methods
exhibit lower efficiency compared to image post-processing

techniques. Transformer-based methods are suboptimal in
both memory usage and inference time to those built with
CNN. In contrast, GloReDi demonstrates comparable per-
formance to other post-processing methods while achieving
higher efficiency than dual-domain approaches by eliminat-
ing the need for the teacher network during inference.

C. More Visualization Results
Fig. A3 presents the visualization results of six groups

of sparse-view images. Among all the methods, GloReDi
better recovers the clinical details such as the lung trachea
in the first row, the round soft tissue in the second row, and
the clear boundary highlighted in the fifth row.

Fig. A4 shows another four images in the AAPM dataset.
We note that in ultra-sparse scenarios when NV = 18, 36
as shown in the first and the second rows, only GloReDi
precisely reconstructs the structure highlighted by the blue
box. When NV = 72, GloReDi achieves competitive per-
formance compared with DuDoTrans but without using the
sinogram data.

D. Detailed Network Architectures
Tables A5 and A6 show the detailed network architecture

of the encoder and decoder, respectively.
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Figure A3. Visual comparison of state-of-the-art methods on DeepLesion dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet,
(e) DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: the results under Nv = 18, 36, 36, 72, 72, 144;
display window is set to [-1000, 2000] HU for the first and the second rows, and [-200, 300] HU for the rests.
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Figure A4. Visual comparison of state-of-the-art methods on AAPM dataset: (a) Ground Truth, (b) FBP, (c) DDNet, (d) FBPConvNet, (e)
DuDoNet, (f) DDPTrans, (g) DuDoTrans, and (h) GloReDi. From top to bottom: the results under Nv = 18, 36, 72, 72; display window
is set to [-1000, 2000] HU for the first row, [-1000, 1000]HU for the second row and [-200, 300] HU for the third and fourth row.



Name Channels Description
Input 2 sparse-view images IS or IT
Rpad0 2 reflectionpad2d((3,3,3,3))

Down1 64 K7C64S1P1-BN-ReLU

Down2 128 K3C128S2P1-BN-ReLU

FFC-Split ×m 256
local branch: K3C64S2P1-BN-ReLU

global branch: K3C192S2P1-BN-ReLU

FFC-1 ×m 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-2 ×m 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-Cat ×m 256 concat(local branch, global branch) w/ residual learning

Table A5. Network architecture of student and teacher encoder. We use ‘K-C-S-P’ to denote the kernel, channel, stride, and padding
configuration of convolution layers.



Name Channels Description

FFC-Split ×n 256
local branch: K3C64S2P1-BN-ReLU

global branch: K3C192S2P1-BN-ReLU

FFC-1 ×n 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-2 ×n 256

convl2l: K3C64S1P1

convl2g: K3C192S1P1

convg2l: K3C64S1P1

convg2g: K1C96S1-bn-relu-FFT-K1C192S1-iFFT-K1C192S1

local branch: BN-ReLU

global branch: BN-ReLU

FFC-Cat ×n 256 concat(local branch, global branch) w/ residual learning

Up1 128 ConvTranspose2d: K3C128S2P1-BN-ReLU

Up2 64 ConvTranspose2d: K3C64S2P1-BN-ReLU

Rpad1 64 reflectionpad2d((3,3,3,3))

Out 1 K7C1S1

Table A6. Network architecture of the shared decoder. We use ‘K-C-S-P’ to denote the kernel, channel, stride, and padding configuration
of convolution layers.


