
Preserving Tumor Volumes for Unsupervised Medical Image Registration

Qihua Dong1, Hao Du1, Ying Song2, Yan Xu3*, Jing Liao1*

1Department of Computer Science, City University of Hong Kong
2National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,

Chinese Academy of Medical Sciences and Peking Union Medical College
3School of Biological Science and Medical Engineering, Beihang University
dongqh078@gmail.com, haodu8-c@my.cityu.edu.hk, jingliao@cityu.edu.hk

songying1770@hotmail.com

xuyan04@gmail.com

Abstract

Medical image registration is a critical task that es-
timates the spatial correspondence between pairs of im-
ages. However, current traditional and deep-learning-
based methods rely on similarity measures to generate a
deforming field, which often results in disproportionate vol-
ume changes in dissimilar regions, especially in tumor re-
gions. These changes can significantly alter the tumor size
and underlying anatomy, which limits the practical use of
image registration in clinical diagnosis. To address this is-
sue, we have formulated image registration with tumors as
a constraint problem that preserves tumor volumes while
maximizing image similarity in other normal regions. Our
proposed strategy involves a two-stage process. In the first
stage, we use similarity-based registration to identify po-
tential tumor regions by their volume change, generating a
soft tumor mask accordingly. In the second stage, we pro-
pose a volume-preserving registration with a novel adap-
tive volume-preserving loss that penalizes the change in size
adaptively based on the masks calculated from the previous
stage. Our approach balances image similarity and volume
preservation in different regions, i.e., normal and tumor re-
gions, by using soft tumor masks to adjust the imposition of
volume-preserving loss on each one. This ensures that the
tumor volume is preserved during the registration process.
We have evaluated our strategy on various datasets and net-
work architectures, demonstrating that our method success-
fully preserves the tumor volume while achieving compara-
ble registration results with state-of-the-art methods. Our
codes is available at: https://dddraxxx.github.
io/Volume-Preserving-Registration/.

*Corresponding authors

1. Introduction

Fixed Image Similarity-Based Registration

Moving Image Volume-Preserving Registration

Figure 1. Red boxes represent the location of tumors in the mov-
ing image before warped. In image registration with tumors,
similarity-based registration typically leads to significant alter-
ations in tumor size while our volume-preserving registration is
capable of preserving tumor anatomy.

Deformable image registration is a fundamental task that
estimates non-linear spatial correspondences between two
images. It is useful for medical image studies that involve
3D images of organs or tissues, such as MR brain scans and
CT liver scans. Recently, a wide range of deep-learning-
based methods are proposed in the field, with better perfor-
mance and obvious speed-ups in inference time compared
to the traditional registration methods [5, 38, 32, 14, 15].

Currently, most of the learning-based methods [5, 38]
train a registration model to achieve high similarity in either
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image intensity [38, 5] or anatomy label maps [14]. While
this is useful in various medical applications, such as atlas-
based segmentation and image fusion [8], problem emerges,
however, when studying images with tumors [4, 12, 24].
Tracking tumor growth is a core task in cancer treatment,
which can be used to evaluate the outcomes of radiotherapy
and chemotherapy, and plan optimal postoperative treat-
ment [12]. The process requires registration to align the
anatomy of images from different periods of the patient,
while preserving tumor properties e.g., the size. Traditional
models using regular registration have struggled to accom-
plish this task [12]. We have observed that this remains an
issue for current learning-based methods, and a viable solu-
tion has yet to be proposed.

As shown in Figure 1, the volume of tumors significantly
reduces when using popular unsupervised registration net-
works to align tumor images with atlas images. The issue
is widespread since mainstream registration networks focus
on optimizing the similarity between image pairs while ig-
noring tumor regions. Tumor regions often lack correspond-
ing parts, and even for images of the same patient, the size
and location of tumors may vary greatly. This can happen
because tumors can change shape, size, location, or disap-
pear over time. Therefore, in deformable settings, the size
of tumors will change disproportionately to maximize the
image similarity. This problem may be more severe when
the registration network has better warping ability, leading
to better performance in evaluations from previous works,
as confirmed by our experiments in Section 4. The dispro-
portionate change of tumor volume in deformable registra-
tion is lethal for clinical evaluation of tumor growth and
greatly hinders the application of registration in clinics.

In this paper, we re-formulate the deformable registra-
tion problem as a constraint problem that preserves the
properties of tumors in the original images, i.e., the shape
and the size of the tumor, while maximizing image simi-
larity in non-tumor regions. For instance, in tumor image
registration with atlas, besides the alignment of anatomi-
cal structures, the tumor should have similar morphing be-
haviours as its surrounding organs, i.e., the size of it should
change proportionally to the size of the organ. However,
this poses two major challenges for our strategy. Firstly,
due to the limited availability of annotated data, most ex-
isting registration methods resort to unsupervised learning.
Therefore, a key question is how to identify tumor regions
in the unsupervised setting. Second, after the tumor regions
have been identified, the challenge still remains of preserv-
ing tumor volumes while simultaneously maximizing simi-
larity in other regions. Finding a way to balance these two
competing objectives is crucial for achieving effective tu-
mor image registration.

To tackle the challenges, we propose a novel two-stage
strategy that operates in an unsupervised manner. In the first

stage, we leverage a similarity-based registration network to
identify regions that undergo excessive volume change dur-
ing registration. Such regions are indicative of the presence
of tumors, as tumors tend to exhibit larger changes in vol-
ume due to a lack of correspondence between image pairs.
The outcome of the first stage is a soft tumor mask that dis-
tinguishes normal and possible tumor regions. In the sec-
ond stage, we introduce an adaptive volume-preserving loss
to train a volume-preserving registration network. Based on
the soft tumor mask obtained from the first stage, this loss is
designed to adaptively penalize volume changes in different
regions of the image. Possible tumor regions are assigned
larger loss weights, and similarity loss weights are adjusted
accordingly in the opposite direction. The application of the
adaptive volume-preserving loss effectively balances simi-
larity and volume preservation in different parts of the im-
age.

It should be noted that the soft masks from stage one do
not need to be highly accurate to achieve desirable results,
as our stage two is robust, which is demonstrated by our ab-
lation experiments in section 4. In addition to evaluating the
robustness of our proposed strategy on various datasets and
frameworks, including CNN and transformer, as well as dif-
ferent types of imaging data such as brain and abdominal,
MRI and CT images, we have also introduced the Square
Tumor Size Ratio (STSR) metric to measure the preserva-
tion of tumor volumes. The results demonstrate that our
methods achieve comparable warping performance metrics
such as Dice coefficient and average landmark distances
while effectively preserving tumor properties as measured
by the STSR.

To conclude, our contribution includes: (1) We have re-
formulated image registration with tumors as a constraint
problem that preserves tumor volumes while maximizes im-
age similarity in other normal regions. (2) We have de-
signed a two-stage process that the first stage performs reg-
ular registration to estimate tumor regions, and the second
stage performs volume-preserving registration on tumor re-
gions based on the adaptive volume-preserving loss. (3) We
have proposed the STSR metric to measure the preserva-
tion of tumor volumes in registration, and have evaluated
the effectiveness of our strategy on different network archi-
tectures and various datasets.

2. Related Work

2.1. Learning-Based Deformable Image Registra-
tion

Compared to conventional registration methods, deep
networks have achieved remarkable registration accuracy
and speed using various network structures, i.e., CNN
and Transformer, in applications like atlas-image registra-
tion [29, 7, 16, 6, 32, 38, 5, 14, 15, 8]. They generally



adopts unsupervised learning, utilizing image similarity on
either image intensities [29, 7, 6, 38] or synthesized label
maps [14, 15] as well as smoothness regularization to su-
pervise the registration network [7, 6, 14, 15, 38]. Advance-
ments are often made through the introduction of novel reg-
ularization such as cycle consistency [16] and geometry
preservation [1], or through innovative network structures
like multi-scale architectures [28, 23]. However, existing
methods do not adequately consider cases where tumors
exist. Tumors often have no corresponding part between
image pairs, and therefore, optimizing for similarity can ex-
cessively change their volumes, which limits the application
of registration networks in critical clinical applications like
cancer treatment. To the best of our knowledge, we are the
first to study this problem with learning-based methods and
propose a metric to measure volume preservation specifi-
cally for tumors.

2.2. Deformable Image Registration with Tumors

Conventional registration models often resolve register-
ing images with tumor by (1) excluding the similarity mea-
sure on tumors [11, 18], which requires either massive man-
ual segmentation [11] or initial seed to explicitly model
tumor-growth [12, 18]. (2) jointly segmenting and regis-
tering images [9], which is time-consuming since it need
to iteratively detect dissimilarity in image intensities and
perform resection and retraction. (3) reconstructing quasi-
normal images from pathological ones [13, 19], which is
also slow since the reconstruction need to be iteratively im-
proved.

Recently, learning-based methods for registration with
tumors [24, 21, 33] are proposed for the release of BraTS-
Reg dataset [4]. They aim to improve the spatial correspon-
dence for non-tumor regions, thus either directly annotates
landmarks to supervise registration [21] or introducing in-
vertibility of the registration to mask non-inverted regions
and ensure high correspondence in others [24, 33]. How-
ever, these methods assume the absence of tumors in one
image of the registered pair, which may not be applicable in
practical applications where we need to compare two tumor
images from one patient to track the tumor growth. In this
scenario, invertibility in tumors is still possible and thus, it
is essential to consider the preservation of tumor properties
during registration.

2.3. Unsupervised Tumor Segmentation

To ensure the preservation of tumor volumes during
registration, it is crucial to first identify the locations of
tumors. Current deep learning methods have made re-
markable progress in unsupervised tumor segmentation, as
demonstrated by recent studies [34, 35, 20]. These methods
typically use GAN models or simulate tumors on healthy
images to generate synthetic data, which is then used to

train the segmentation network. Although the well-trained
network can achieve high segmentation accuracy, it often
requires complex training strategies and additional models
or testing steps to achieve the desired performance, as noted
in recent research [35, 20]. However, in our approach, we
do not rely on sophisticated segmentation methods to ac-
curately segment tumors. Instead, our experiments, as pre-
sented in Section 4, demonstrate that our tumor mask es-
timation is sufficient for our strategy to learn a volume-
preserving registration for tumors.

2.4. Volume-Preserving Deformable Image Regis-
tration

Volume-preserving registration has been studied exten-
sively to improve the accuracy of anatomical registration.
In pulmonary CT image registration, for example, tis-
sue intensity changes between inspiration and expiration
phases can be utilized as prior knowledge, and adding a
volume-preserving constraint has been shown to be effec-
tive [31, 37]. In other cases, such as when soft tissues are
incompressible or when images come from different modal-
ities, a volume-preserving constraint can also serve as a
helpful regularization [25, 30]. Our work, instead, focus on
using volume-preservation to maintain the properties of tu-
mors during image registration. The proposed strategy im-
poses this constraint adaptively on different parts of the im-
ages in order to preserve tumor volumes and ensure anatom-
ical accuracy, while previous works have either preserved
volumes for the entire images [25, 30] or can use simple
methods to determine the regions to be preserved [31, 37].

3. Methodology
3.1. Preliminaries

Problem Setting. Given a moving image Im and fixed
image If defined over d-dimensional (d=3 in this paper)
space Ω, deformable image registration aims to find a dense
deformation filed ϕ : Ω → Ω. This field warps Im, meaning
it projects every pixel position x in warped image Iw to Im,
to achieve alignment with If . In this paper, the task is to
construct a registration network Fθ that takes input Im, If
to predict the deformation field ϕ.

ϕ = Fθ(Im, If ) (1)
Iw(x) = Im(ϕ(x) + x) (2)

Iw ∼ If (3)

Evaluation Criteria. In general, a successful de-
formable image registration involves accurately aligning the
anatomical structures while also ensuring a smooth defor-
mation field. This is often achieved through the use of
similarity-based objectives and regularization methods that
promote smoothness. However, in the context of image reg-
istration with tumors, simply aligning the anatomy is not



R
eg

is
tr

at
io

n
 

N
et

w
o

rk
𝐹
𝜃
1

R
eg

is
tr

at
io

n
 

N
et

w
o

rk
𝐹
𝜃
2

Warped Image 𝐼𝑤𝐿𝑟𝑒𝑔

𝐿𝑤_𝑠𝑖𝑚⊗

⊗ 𝐿𝑉𝑃

Stage 1: Unsupervised Tumor Mask Estimation

Stage 2: Volume-Preserving Registration

Fixed Image 
𝐼𝑓

Moving Image
𝐼𝑚

Input

Spatial
Transform

𝐿𝑉𝑃: volume-preserving Loss

𝐿𝑤_𝑠𝑖𝑚: weighted similarity loss

𝐿𝑟𝑒𝑔: regularization Loss

Deformation Field
𝜙1

Non-trainable Process

Trainable Process

Volume Change Tr
an

sf
o

rm
at

io
n

 
T
𝑟
⋅

𝐽𝑎
𝑐𝑜
𝑏
𝑖𝑎
𝑛
⋅

Volume Change

Soft Tumor
Mask

𝐽𝑎
𝑐𝑜
𝑏
𝑖𝑎
𝑛
⋅

Deformation Field
𝜙2

Figure 2. Main Framework. Our strategy consists of two stages. In the first stage, a soft mask indicating tumor regions is estimated
by analyzing the Jacobian matrix of the deformation field obtained by a registration network pre-trained on similarity loss. In the second
stage, the soft mask is used to guide the calculation of both volume-preserving and similarity losses for training the volume-preserving
registration network. This deformation field estimated by the stage two ensures that both the image similarity and the preservation of tumor
sizes.

sufficient. Preserving the volume of the tumors is crucial for
accurately tracking tumor growth, as previously discussed.
To be specific, given the moving image Im with the tumor
Tm and its surrounding organ Om and the warped mov-
ing image Iw with Tw and Ow, the morphing of tumor Tm

should be similar to that of Om. Thus in respect of the vol-
ume preservation, the change of tumor size |Tm| should be
proportionate to the change of the containing organ |Om|,
i.e.:

TSR(Im) =
|Tm|
|Om|

(4)

TSR(Im) ≈ TSR(Iw) (5)

We therefore define the tumor size ratio (TSR) as |T |
|O| , which

should be preserved after registration, and the re-formulated
registration objective is now maximizing image similarity
while preserving the volumes of tumors, i.e., the TSR.

3.2. Overall Strategy

The proposed strategy consists of two stages, as shown
in Figure 2. The first stage estimates potential tumor re-
gions and generates a soft mask for them. This is done by
analyzing volume changes, specifically the Jacobian matrix,
in the deformation field obtained by an existing similarity-
based registration network. As tumor regions tend to un-
dergo excessive volume change during registration, they can

be identified through this analysis. In the second stage, we
perform volume-preserving registration for tumors using an
adaptive volume-preserving loss. This loss is designed to
guide the volume-preserving process effectively and is as-
sociated with the tumor masks estimated in the first stage.
Through the assignment of distinct weights to diverse re-
gions, including both normal and tumor regions, it is pos-
sible to preserve tumor volumes while also ensuring a high
degree of similarity in other regions.

Importantly, our strategy can be applied to nearly any
learning-based registration network without introducing
any additional modules.

3.2.1 Stage 1: Unsupervised Tumor Mask Estimation

Following previous works [5, 6, 38], we first train a
similarity-based registration network Fθ1 with parameters
θ1 and fix its parameters. As shown in Figure 1, tumors in
medical images can be detected by analyzing the change in
volume through similarity-based registration. Our goal is to
utilize this characteristic to facilitate the unsupervised esti-
mation of the tumor mask for volume preservation during
registration.

To determine the volume change at voxel x, we calculate
the determinant of the Jacobian matrix of the deformation
field (Jθ) with model parameter θ. Our objective is to ensure
that the volume change in each point of the tumor region is



similar to the volume change of the organ, which is an in-
dicator of the organ’s size change (as shown in Equation 6).
To measure the distance between the two, we calculate the
number of times one ratio exceeds another, denoted as Dθ,
using Equations 8 and 7 where D′

θ(x) represents the rela-
tive volume change of voxel x with respect to organ areas.

|Tw|
|Ow|

/
|Tm|
|Om|

≈ 1 ⇒ |Tw|
|Tm|

/
|Ow|
|Om|

≈ 1, from Eq. 5, (6)

D′
θ(x) = |Jθ(x)|/

|Ow|
|Om|

, x ∈ Ω, (7)

Dθ(x) = max(D′
θ(x), 1/D

′
θ(x)), (8)

In practice, we estimate the organ masks Om and Ow by
warping a reference image with the ground truth (GT) or-
gan segmentation. We randomly select the reference image
from the training dataset, and the choice of reference image
does not significantly impact the results because registration
for organs achieves high accuracy, as evidenced by the dice
value in table 1. By warping the reference image, we obtain
the organ segmentation for the moving image Om. We then
calculate the organ segmentation for the warped image Ow.

To obtain a soft tumor mask STM from the distance Dθ1

defined in 8, we use a transformation function Tr. This
function can be formulated as the following equation:

STM(x) = Tr(Dθ1(x)), (9)

Here, Dθ1(x) represents the distance value at pixel x, and
Tr transforms values from the range of [0,∞] to the range
of [0, 1]. A value of 1 indicates the presence of a tumor,
while a value of 0 indicates a normal region. In practical
implementation, we use Tr(x) = Sigm(5 · (x−1.5)) since
the sigmoid function is widely adopted for converting val-
ues to the range of [0, 1] and to our experience, the size of
tumor regions averagely changes around 1.5 times. How-
ever, the choice of transformation functions is not exclusive,
as demonstrated in our experiments in Section 4. We also
set the regions outside the organ mask to 0.

We observed that some normal regions, particularly
those close to the organ boundary, may also exhibit some
volume changes after registration. As a result, these regions
may be incorrectly included in the tumor mask, as shown in
Figure 3 (a). To address this issue, we implemented a pre-
registration step to first align the edges and exclude volume
changes caused by edge alignment. Specifically, in the pre-
registration step, we applied a bilateral filter to the mov-
ing image, which preserves the edges while smoothing the
interior regions. We then used the registration network to
register the filtered moving image with the fixed image in
order to align their edges. After this, an unfiltered warped
image was obtained by spatially transforming the unfiltered
moving image with the deformation field. The second regis-
tration process was then performed on the unfiltered warped

(a)Tumor Mask (b)Tumor Mask after pre-registration

Figure 3. Visualization of the soft tumor mask. (a) is the estimated
soft tumor mask without pre-registration and (b) is the one with
pre-registration. The gray colors with intensity variations denote
the soft mask, while the green and red colors represent the ground
truth segmentation for the liver and tumors, respectively.

image, which focused on the registration of interior regions
and was able to accurately estimate a tumor mask, as shown
in Figure 3 (b). Therefore, this pre-registration approach
effectively selects the tumor regions while filtering out the
non-tumor regions.

3.2.2 Stage 2: Volume-Preserving Registration for Tu-
mors

After obtaining the soft tumor mask STM , we can adap-
tively select tumor regions to maintain the size ratio. Here,
we define the volume-preserving loss directly as the dis-
tance Dθ2 , as shown in Equation 8. By minimizing the
distance, we can achieve smaller volume changes, indi-
cating better preservation of tumor volume. The volume-
preserving loss is multiplied by the soft tumor mask. This
ensures that the volume-preserving constraints are adap-
tively applied to the tumor regions and not to the normal
regions, which can be formulated as:

LVP =
1

|Im|
∑
x∈Ω

Dθ2(x) · STM(x), (10)

Here, in the second stage, the registration network takes the
soft tumor mask as input, which serves as an indicator for
the regions that need to be preserved in terms of volume.
We follow the similarity and registration loss formulation
in [38], but we use a weighted similarity loss to adapt to
the volume-preserving loss, where Cov is the covariance
between two images I1, I2, Î is the mean of I , and Cov′ is
the adapted version utilizing STM weight:

Cov’ [I1, I2] =

∑
(I1 − Î1)(I2 − Î2)(1− STM)∑

(1− STM)
, (11)

Lw sim(x) =
Cov’ [Iw, If ]√

Cov[Iw, Iw]Cov [If , If ]
, (12)



Therefore, the training loss of the second stage is:

L = Lw sim + α1 · LVP + α2 · Lreg, (13)

where we use the smoothness regularization from Voxel-
Morph [5] as Lreg , and α1 and α2 as hyperparameters to
control the relative importance of the volume-preserving
loss and the regularization loss.

4. Experiments
4.1. Experimental Settings

Implementation. Following the implementation of Recur-
sive Cascaded Network (RCN) [38], we employed PyTorch
and utilized the same similarity loss and regularization
losses (for affine and deformable, respectively) for baseline
methods. The weight of the volume-preserving losses is
set to 0.1 while the weights of similarity loss is 1 and
regularization loss is 0.1. Models were trained on one
NVIDIA GeForce RTX 3090 GPU with a batch size of 4.
During the training stage, we used the Adam optimizer [36]
and ran for a total of 5 epochs, with 20000 iterations in
each epoch. The learning rate was set to 10−4.

Baselines. We re-implemented our strategy on four SOTA
learning-based models that have distinct network architec-
tures: 1) recursive cascaded network with VTN base net-
work (VTN) [38], which stacks CNN networks to achieve
higher registration accuracy; 2) VoxelMorph [5], which is
a widely used CNN network that utilize stationary vec-
tor field to register images; 3) TransMorph [6], which is
a well-performed hybrid Transformer-ConvNet network; 4)
LapIRN [23], which is a Laplacian Pyramid network de-
signed to operate in a coarse-to-fine manner. We fit these
learning-based networks into our strategy with minor efforts
and achieve good performance. Additionally, we compare
our proposed method with two state-of-the-art traditional
methods for deformable image registration, SyN [2] (inte-
grated in ANTs [3] with the affine stage) and B-spline [26]
(integrated in Elastix [17] with the affine stage) follow-
ing [38].
Evaluation Metrics. The evaluation of the proposed strat-
egy is composed of five metrics: Dice score, landmark dis-
tance to measure the anatomical alignment, and Square Tu-
mor Size Ratio metric to measure the volume preservation
of tumors. More specifically, the Dice score is calculated
using the following formula:

Dice(I1, I2) =
2 · |I1 ∩ I2|
|I1|+ |I2|

, (14)

Additionally, we also use landmark annotations to measure
the anatomical alignment between the warped image and

the fixed image. We calculate the average distance between
the fixed image’s landmarks and the warped landmarks of
the moving image, as also introduced in RCN [38]. To
quantify the diffeomorphism and smoothness of the defor-
mation fields, we followed the methodology of previous
works such as [7, 6, 39]. Here, two metrics were em-
ployed: the average percentage of voxels with non-positive
Jacobian determinant (|Jθ| < 0(%)) in the deformation
fields, and the standard deviation of the Jacobian determi-
nant (Std.|Jθ|).

To measure the volume preservation of tumors, we pro-
pose Square Tumor Size Ratio metric (STSR), which is cal-
culated from the change of tumor size ratio (TSR) defined
in Equation 4:

STSR = max((
TSR(Im)

TSR(Iw)
), (

TSR(Iw)

TSR(Im)
))2, (15)

Here, Im, Iw refers to the moving image and the warped
moving image. The square term is used o account for larger
changes in tumor volumes, which can have a more signifi-
cant impact on the accuracy of tumor growth estimation in
clinical applications. By utilizing the STSR metric, we are
able to accurately evaluate the performance of our proposed
strategy.
Preprocessing. In our study, we follow standard prepro-
cessing steps as outlined in VTN [39] and VoxelMorph [5].
The raw scans are resampled into 128 × 128 × 128 voxels
after cropping any unnecessary areas around the target ob-
ject.

4.2. Datasets

Training. To train our model, we utilized two publicly
available datasets: (1) LiTS17 [10]: The LiTS dataset com-
prises 201 CT scans that were acquired using various CT
scanners and devices. The resolution of the images in this
dataset ranges from 0.56mm to 1.0mm in the axial direc-
tion and from 0.45mm to 6.0mm in the z direction. The
number of slices in the z direction ranges from 42 to 1026.
(2) BraTS20 [22]: It consists of 369 MRI scans of brain tu-
mors, each with ground truth segmentation of four different
tumor components. For training our neural network, we uti-
lized the T1ce modality and treated all four components as
tumors, while considering the entire brain as the surround-
ing organ.
Testing. For testing, we utilized a set of 10 cases of CT
liver scans with metastatic tumors, and 10 MRI brain scans
with metastatic tumors. The modality of MRI brain scans
is T1ce. Each case included both pre- and post-treatment
images of the same patients, resulting in a total of 20 scans
for each set. Following [27], the segmentation of the scans,
which contains the organ (liver or brain) and the tumor in-
side, were carefully annotated by three experts in the field.
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Figure 4. Qualitative comparison of different volume-preserving (VP) methods trained on the Liver Tumor Segmentation (LiTS) dataset.
The left side of the figure shows two sets of images: Fixed and Ground Truth (GT), and Moving and GT. The first row of the figure
displays the warped moving image, while the second row illustrates the organ outlines in green and red for the moving and fixed images,
respectively. The yellow overlay highlights the tumors. Our proposed volume-preserving (VP) method ensures the preservation of tumor
volume while aligning the images, as demonstrated by reduced number of visible changes in tumor size. In the third row, the Jacobian
matrix of the deformation field is visualized. The green and red lines represent the organ and tumor outlines, respectively. The white
areas indicate a large Jacobian, which corresponds to a more significant change in volume. The method without volume-preserving loss
demonstrates a larger white area in the tumor, indicating a greater volume change of tumor volume. The last row of the figure displays the
deformation field. Due to space limitations, qualitative results for BraTS20 dataset are provided in the supplemental material.

Network Methods LiTs17 BraTS20
Dice ↑ Lm. Dist ↓ |Jθ| < 0(%) ↓ Std. |Jθ| ↓ STSR ↓ Dice ↑ Lm. Dist ↓ |Jθ| < 0(%) ↓ Std. |Jθ| ↓ STSR ↓

SyN - 0.850 12.36 0.192 0.221 1.564 0.9560 4.01 0.276 0.226 1.512
B-Spline - 0.853 14.22 0.003 0.288 1.330 0.9601 4.51 0.001 0.171 1.622

Regular 0.912 10.46 3.545 2.048 2.330 0.9784 2.98 0.396 0.725 2.263VTN Ours 0.908 10.77 2.956 1.124 1.260 0.9738 3.10 0.596 0.285 1.416
Regular 0.860 12.62 4.191 1.699 1.738 0.9701 3.56 0.024 0.448 1.929VXM Ours 0.857 12.43 1.681 0.691 1.241 0.9741 3.60 0.030 0.226 1.463
Regular 0.859 13.35 6.377 1.906 1.785 0.9710 4.01 0.164 0.468 1.868TransMorph Ours 0.856 13.19 4.084 0.827 1.302 0.9758 3.98 0.019 0.194 1.319
Regular 0.8933 10.23 5.301 1.788 2.360 0.9750 3.40 3.020 0.301 1.889LapIRN Ours 0.8893 10.55 4.120 0.988 1.645 0.9743 3.36 0.040 0.105 1.224

Table 1. Quantitative comparison with state-of-the-art registration methods. Our strategy was applied to two datasets, namely LiTS17 and
BraTS20, and three network architectures In addition, five metrics were employed for the evaluation process. The results of the comparison
indicate that our proposed strategy can be well generalized to other state-of-the-art methods to preserve tumor volumes while achieving
comparable or better performance on other metrics.

Landmarks were also annotated by three experts in the field
to evaluate the registration accuracy of our strategy.

4.3. Main Results

Quantitative Comparison. In Table 1, we present a com-
prehensive comparison of our proposed strategy with two
traditional methods and three learning-based methods with
different network architectures (CNN, cascaded CNN and
hybrid transformer-CNN). We compare the methods using
a similarity-based manner (regular) following the settings

in [38], as well as our volume-preserving manners. Our re-
sults demonstrate that our proposed strategy outperforms all
other methods in terms of the STSR metrics, while achiev-
ing comparable results in Dice and Landmark Dist, and
often better results in folding detection (|Jθ| < 0) and
smoothness quality (Std.|Jθ|). Furthermore, we observe
that registration networks that achieve better performance in
terms of previous metrics such as Dice tend to have worse
performance in preserving tumor volumes (STSR). This ob-
servation highlights the need to balance these two objectives



# Network Unsupervised Adaptive Region LiTs17
Dice ↑ Lm. Dist ↓ |Jθ| < 0(%) ↓ Std. |Jθ| ↓ STSR ↓

1

VTN

✓ – – 0.912 10.46 3.545 2.048 2.330
2 × – – 0.914 10.22 3.241 1.165 1.648
3 × × Tumor 0.911 10.74 2.883 1.017 1.205
4 ✓ × Organ 0.904 11.07 3.194 1.015 1.640
5 ✓ ✓ Organ 0.908 10.77 2.956 1.124 1.260
6

VXM

✓ – – 0.860 12.62 4.191 1.699 1.738
7 × – – 0.863 12.22 1.603 0.691 1.417
8 × × Tumor 0.859 12.38 1.567 0.698 1.291
9 ✓ × Organ 0.856 12.78 1.635 0.675 1.407

10 ✓ ✓ Organ 0.857 12.43 1.681 0.691 1.241
11

TransMorph

✓ – – 0.859 13.35 6.337 1.906 1.785
12 × – – 0.863 13.10 4.923 1.540 1.540
13 × × Tumor 0.858 13.21 4.401 0.877 1.227
14 ✓ × Organ 0.849 13.02 4.651 0.845 1.454
15 ✓ ✓ Organ 0.856 13.19 4.084 0.827 1.302

Table 2. Effectiveness of adaptive volume-preserving loss in unsupervised registration frameworks on LiTs17 dataset. Three networks,
namely VTN in [38], VXM in [5], and TransMorph in [6], were applied. The methods used in the study were regular unsupervised (first
row), weighted similarity loss only based on the ground truth (GT) mask (second row), volume-preserving loss based on GT(third row),
volume-preserving loss on the whole organ based on estimation (fourth row), and on the tumor based on estimation (ours).

in order to achieve competitive results.
Qualitative Comparison. Figure 4 presents a qual-
itative comparison of our proposed strategy with
different state-of-the-art methods. Comparing the
”VTN/VXM/Trans./LapIRN regular” column and the
”VTN/VXM/Trans./LapIRN ours” column, it is evident
that our method outperforms other methods in terms of
volume preservation in the warped image (1st row) and the
corresponding deformation field (4th row). Furthermore,
in terms of visualization of the registration accuracy and
the overlay of the tumor (2nd row), our proposed method
achieves better volume preservation with comparable
accuracy compared to other methods. Lastly, the Jacobian
determinant of the deformation field (3rd row) reveals that
regular methods tend to have a larger Jacobian in tumor
regions, indicating greater volume change, compared
to our method. This highlights the effectiveness of our
volume-preserving approach in preserving tumor volumes
while aligning the images.

4.4. Ablation study

Volume-Preserving Losses. In Table 2, we present the re-
sults of our evaluation of the effectiveness of various ver-
sions of volume-preserving losses. For each sub-table, the
first row (#1, #6, and #11) represents using only the simi-
larity loss, while the second row (#2, #7, and #12) utilizes
the ground truth as a weighted similarity loss. The third row
(#3, #8, and #13) uses the ground truth binary mask as a tu-
mor mask, while the fourth row (#4, #9, and #14) uses the
mask of the entire organ as a tumor mask. The fifth row (#5,
#10, and #15) represents our proposed strategy.

By comparing the first and second rows of each sub-table
with the fifth row, we observe that our proposed volume-

preserving loss can effectively preserve details and achieve
superior performance across various metrics. The improve-
ment from the third and fourth rows to the fifth row indicates
the importance of adaptiveness in preserving the volume of
the organ and tumor, respectively. It should be noted that
we do not require pixel-wise ground truth for tumor volume
preservation.
Robustness to Tumor Mask Estimation. In Figure 5, we
showcase the robustness of our proposed strategy in the
presence of noisy ground truth segmentation masks. To
evaluate this, we randomly select points within organs to
ensure that tumors have a certain Dice score with respect to
the ground truth segmentation of tumors. As depicted in the
figure, despite the variations in the noisy ground truth seg-
mentation masks, our strategy’s performance remains con-
sistent. Specifically, when the tumor mask has a Dice score
above a certain threshold, such as 0.15, the estimated tumor
mask consistently achieves a Dice score of approximately
0.17. In contrast, using the whole organ as mask in volume-
preserving loss causes degradation in performance as it only
has a dice score of roughly 0.05. This highlights the neces-
sity and efficiency of our tumor mask estimation in stage
one.

5. Conclusions

In summary, this work addressed the problem of pre-
serving tumor volumes while maximizing similarity during
learning-based registration, which is crucial for tracking
tumor growth. We proposed a two-stage unsupervised
strategy that effectively preserves the size ratio of tumors,
without requiring extra networks. Our approach involves
generating a soft tumor mask in the first stage using a
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Figure 5. Robustness of our tumor mask estimation. We evaluated
the robustness of our tumor mask estimation by running our strat-
egy using RCN on the LiTS datasets with different noisy ground
truth (GT) masks as tumor masks, each with specific Dice scores
with tumors. We plotted the results on a graph with the Dice score
on the x-axis and the STSR in the test set on the y-axis (where
smaller values are better).

similarity-based registration network and incorporating
an adaptive volume-preserving loss and a weighted sim-
ilarity loss in the second stage to improve registration
performance. To evaluate our strategy’s performance, we
introduced a new metric, the Square Tumor Size Ratio
(STSR), which measures the preservation of tumor volume.
Our proposed strategy was evaluated on various networks
and demonstrated superior performance in tumor volume
preservation, while achieving comparable results in other
metrics. This highlights the effectiveness of our approach
in tracking tumor growth and its ability to generalize well
to different registration networks. Additionally, we noted
that the volume preservation approach could be extended to
other lesions besides tumors.
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Supplementary

This supplementary material includes additional visual-
izations of brain dataset examples that were not included in
the main paper due to space limitations. Furthermore, we
visualize landmark locations in warped images between our
method and previous approaches on all datasets, as well as
an ablation study demonstrating the efficacy and robustness
of our proposed method in estimating tumor masks. These
additions provide further insight into the effectiveness, ro-
bustness and generalization of our volume-preserving meth-
ods.

A. More finaltive Comparisons on Similarity-
Based Registration and Volume-
Preserving Registration

In addition to the results presented in Figure 4. of
the main paper, we provide further qualitative results on
brain scans using three different networks (VTN, VXM and
TransMorph), as shown in Figure 6. These additional re-
sults provide further evidence of the effectiveness of our
volume-preserving approach in preserving tumor volumes.

Furthermore, we visualize landmark locations in the
warped images for the regular similarity-based method and
our proposed method, as depicted in Figure 7. These visu-
alizations demonstrate the ability of our approach to align
the anatomy in the images comparably to previous methods
on different networks.

B. Ablation Study on Calculation of Soft Tu-
mor Mask

Table 3 presents the results of various calculation meth-
ods used to estimate tumor masks on the LiTs17 dataset
with VTN. The study demonstrates the adaptive methods
that generate soft masks for tumor estimation (1st and 2nd
row) produce similar results, while the use of hard thresh-
old functions that generates binary masks (3rd, 4th, and 5th
row) fails to balance the preservation of the tumor size ra-
tio (STSR) with the alignment of image anatomy (Dice and
Landmark Distance (Lm. Dist)). Moreover, the study shows
that the adaptive volume-preserving loss is robust for dif-
ferent transformation functions. Two different transforma-
tion functions in adaptive methods , sigmoid (1st row) and
sin (2nd row), achieve comparable performance on all three
metrics.

In practice, the complete transformation function for
”Sigm” is expressed as STM(x) = sigmoid(5 · (D(x) −
1.5)), while for ”Sin” it is given by STM(x) = 1

2sin(π ·
(D(x)−1.5))+0.5, where D denotes the size ratio change
of the voxel at location x. The exact forms have been cho-
sen to ensure that STM(x) ≈ 1 when D(x) ≥ 2 and

STM(x) ≈ 0 when D(x) = 1. This is because we ob-
served when the change of size ratio exceeds 2, it is highly
probable that tumors are present. Conversely, if the ratio
does not deviate significantly (changes close to 1), it is more
likely that the observed tissue is normal.

These results provide valuable insights into the optimiza-
tion of tumor estimation methods and suggest the use of
adaptive methods in volume-preserving loss to enhance per-
formance.

Trans. Thres. Dice ↑ Lm. Dist ↓ STSR ↓
Sigm † 0.908 10.89 1.26
Sin 0.906 10.77 1.29
Hard 1 0.840 12.23 1.27
Hard 1.5 0.877 13.67 1.46
Hard 2 0.904 12.68 1.86

Table 3. Comparison between different calculations of tumor
mask on VTN network using LiTS17 dataset. The term ”Trans.”
refers to the transformation function that computes the estimated
tumor masks based on the change of size ratio in each voxel.
It encompasses various functions, such as sigmoid (”Sigm”), sin
(”Sin”), which predict soft tumor masks, and threshold functions
(”Hard”), that generate binary masks based on a fixed threshold.
”Thres.” refers to the threshold for binary tumor mask estimation.
The ”†” indicates the adoption of this transformation function used
in previous experiments.
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Figure 6. Qualitative comparison between similarity-based (regular) and volume-preserving (ours) methods trained on the Brain Tumor
Segmentation (BraTS20) dataset. Specifically, the VTN, VXM, and TransMorph (Trans.) networks were tested, both with their regular
similarity-based registration versions and our proposed volume-preserving version. The left side of the figure shows two sets of images:
Fixed and Ground Truth (GT), and Moving and GT. The first row of the figure displays the warped moving image, while the second row
illustrates the organ outlines in green and red for the moving and fixed images, respectively. The yellow overlay highlights the tumors.
Our proposed volume-preserving (VP) method ensures the preservation of tumor volume while aligning the images, as demonstrated by
reduced number of visible changes in tumor size. In the third row, the Jacobian matrix of the deformation field is visualized. The green
and red lines represent the organ and tumor outlines, respectively. The white areas indicate a large Jacobian, which corresponds to a more
significant change in volume. The method without volume-preserving loss demonstrates a larger white area in the tumor, indicating a
greater volume change of tumor volume. The last row of the figure displays the deformation field.
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Figure 7. Comparison of similarity-based (regular) and volume-preserving (ours) methods using landmark visualization trained on the
Liver Tumor Segmentation (LiTS17) dataset (1st and 2nd row) and the Brain Tumor Segmentation (BraTS20) dataset (3rd and 4th row).
Specifically, the VTN, VXM, and TransMorph (Trans.) networks were tested, both with their regular similarity-based registration versions
and our proposed volume-preserving version. The left side of the figure comprises two sets of images, namely, Fixed and its corresponding
landmark locations represented by a yellow cross and Moving and its landmark location represented by a red cross. The right side of the
figure shows the warped image using different methods, along with the warped landmarks from the moving image represented by a red cross
and the corresponding landmarks from the fixed image projected on the plane represented by a yellow cross. The landmark visualization
results indicate that our proposed method yields landmark distances that are comparable to those obtained using similarity-based methods
while simultaneously preserving tumor volume. This aspect is highly beneficial in tracking tumor growth.


