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Abstract

Survival prediction is a complicated ordinal regression
task that aims to predict the ranking risk of death, which
generally benefits from the integration of histology and ge-
nomic data. Despite the progress in joint learning from
pathology and genomics, existing methods still suffer from
challenging issues: 1) Due to the large size of patholog-
ical images, it is difficult to effectively represent the gi-
gapixel whole slide images (WSIs). 2) Interactions within
tumor microenvironment (TME) in histology are essential
for survival analysis. Although current approaches attempt
to model these interactions via co-attention between histol-
ogy and genomic data, they focus on only dense local simi-
larity across modalities, which fails to capture global con-
sistency between potential structures, i.e. TME-related in-
teractions of histology and co-expression of genomic data.
To address these challenges, we propose a Multimodal Opti-
mal Transport-based Co-Attention Transformer framework
with global structure consistency, in which optimal trans-
port (OT) is applied to match patches of a WSI and genes
embeddings for selecting informative patches to represent
the gigapixel WSI. More importantly, OT-based co-attention
provides a global awareness to effectively capture struc-
tural interactions within TME for survival prediction. To
overcome high computational complexity of OT, we propose
a robust and efficient implementation over micro-batch of
WSI patches by approximating the original OT with unbal-
anced mini-batch OT. Extensive experiments show the supe-
riority of our method on five benchmark datasets compared
to the state-of-the-art methods. The code is released1.

1. Introduction
Survival prediction is a complex ordinal regression task

that aims to estimate the relative risk of death in can-
cer prognosis, which generally integrates the manual as-
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Figure 1. Comparison between (a) Co-Attention and (b) OT-based
Co-Attention, where (a) learns weights of instances by dense at-
tention, and (b) identifies informative instances by optimal trans-
port matching flow from a global perspective, which enforces con-
sidering potential structures of each modality, i.e. interactions
within WSIs and co-expression within genomics.

sessment of qualitative morphological information from
pathology data and quantitative molecular profiles from
genomic data in clinical settngs [6, 55, 4]. Despite re-
cent advances in multimodal learning for histology and ge-
nomics [5, 55, 27, 34], there still exists several open issues.
Among others, one daunting challenge is to capture key in-
formation from heterogeneous modalities for effective fu-
sion. Particularly, due to the large size of about 500,000 ×
500,000 pixels, it is challenging to effectively represent gi-
gapixel whole slide images without losing key information.
Furthermore, visual concepts of tumor microenvironment
(TME) within pathological images are verified to have sig-
nificant associations with survival analysis in various cancer
types [42, 1, 25], e.g. cellular components including fibrob-
last cells and various immune cells that can alter cancer cell
behaviors [33]. However, the TME-related patches occupy
only a tiny proportion of the entire WSI, leading to a fine-
grained visual recognition problem [54] that is indiscernible
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by conventional multimodal learning.
Recently attention-based multiple instance learning

(MIL) [19, 26] has provided a typical solution to identify
informative instances, in which a WSI is formulated as a
bag of patches (instances) and an attention score is assigned
for each instance as a weight for selection. In multimodal
learning, genomic data has been applied to guide the selec-
tion of TME-related instances by co-attention mechanism
across modalities [5], as genes expression might correspond
to some morphological characteristics revealed in patholog-
ical TME [29, 38]. They [5] densely calculate similarity
scores for each pair of pathology and genomic instances as
weights of selection to capture fine-grained visual informa-
tion in WSIs, as shown in Fig. 1 (a). However, this type
of approaches with a local view may not thoroughly learn
information about TME, since they ignore global potential
structure [55] within modality, e.g. interactions within TME
for histology and co-expression for genomics [31, 51].

Fruitful works [31, 33, 5] demonstrate that the interac-
tions within TME are important indicators affecting survival
outcomes, e.g. co-occurrence of tumor cells with tumor-
infiltrating lymphocytes (TILs) of the immune system is a
positive prognostic indicator. However, these collaborative
components in TME might be spatially dispersed through-
out the entire WSI, which indicates long-range structural
associations in WSI, as shown in Fig. 1 (b). On the other
hand, genes co-expression [49, 55] also suggests a poten-
tial structure. There might be intrinsic consistency between
these two potential structures [55, 31], as some studies have
verified that genomic mutations can alter normal functions
and biological processes of TILs within TME [51, 47]. By
leveraging the global consistency between their potential
structures to match histology and genomic data, it is more
likely to identify TME-related patches from WSIs. How-
ever, existing co-attention-based multimodal learning fo-
cuses on only dense local similarity, neglecting the global
coherence of potential structures.

To address these challenges, we propose a Multimodal
Optimal Transport-based Co-Attention Transformer
(MOTCat) framework with global structure consistency, in
which optimal transport-based co-attention is applied to
match instances between histology and genomics from a
global perspective, as shown in Fig. 1 (b). Optimal trans-
port (OT) [11, 3, 41], as a structural matching approach,
is able to generate an optimal matching solution with the
overall minimum matching cost, based on local pairwise
cost between instances of histology and genomics. As a
result, instances of a WSI that have high global structure
consistency with genes co-expressions can be identified to
represent the WSI. These instances might be more strongly
associated with TME that contributes to survival prediction.
In this way, the aforementioned two challenges can be
addressed by OT-based Co-Attention simultaneously.

Compared with the conventional co-attention mecha-
nism, the advantages of the proposed OT-based co-attention
are three-fold. First, optimal transport provides the in-
stances matching process with global awareness. Marginal
constraints of total mass equality enforce a trade-off of in-
stances within modality for transporting during optimiza-
tion, instead of only considering the local similarity of pair-
wise instances as conventional co-attention does. It en-
ables the modeling of structural interactions of WSIs and
co-expressions of genomics, which is beneficial to survival
prediction. Second, the learned patch-level attention score
is not a rigorous metric for selecting informative instances
under weak supervision [48], i.e. slide-level survival time,
especially with only a small number of WSI samples. As
an alternative, the optimal matching flow is the rigorous
closed-form solution to OT problem without accessing any
label, achieved by solving the Linear Programming prob-
lem. Last, the optimal matching flow provides a transforma-
tion between two modalities under preserving the potential
structure, which reduces cross-modal heterogeneity gap.

Nevertheless, due to a massive number of patches from
gigapixel WSIs, OT-based co-attention might suffer from
high computational complexity, preventing from applying
OT to pathology data in practice. To address this, we pro-
pose a robust and efficient implementation of OT-based co-
attention for matching histology and genomics. Specifi-
cally, we split all instances of a WSI into a subset termed
Micro-Batch and get the averaged result as a proxy to ap-
proximate the solution to the original OT problem over all
instances by unbalanced optimal transport [13], which can
provide a more robust approximation to the subset sampling
with the theoretical and experimental guarantee.

It is worth noting that the proposed method is a gener-
alized multimodal learning framework that captures poten-
tial structure across modalities with global structure consis-
tency. The contributions of this work are summarized as
follows: (1) we propose a novel multimodal OT-based Co-
Attention Transformer with global structure consistency,
where OT-based co-attention is used to identify informa-
tive instances by global optimal matching, which allows
modeling interactions of histology and co-expression of ge-
nomics. (2) We propose a robust and efficient implementa-
tion of OT-based co-attention over Micro-Batch. (3) Exten-
sive experiments on five benchmark datasets show signifi-
cant improvement over state-of-the-art methods.

2. Related Work

2.1. Multimodal Learning in Healthcare

In clinical settings, the patient state is often characterized
by a spectrum of various modalities [30], such as pathol-
ogy [54, 32], radiology [39, 50], genomics [28, 47, 31], etc.
Multimodal learning has shown superiority by leveraging



the complementary information from multimodal data [30],
in which the key issue is to overcome data heterogeneity for
better feature fusion. Most existing methods can be roughly
classified into three categories: early fusion [18, 43], late
fusion [20, 4], and intermediate fusion [5, 24]. Early fu-
sion is to aggregate all modalities at the input level. The
most straightforward solution is fusion operators such as
concatenation [18], Kronecker Product [35], etc. However,
it neglects intra-modality dynamics [30]. On the contrary,
late fusion [15] integrates the predictions from individually
separated models at the decision level for the final deci-
sion, which cannot fully explore cross-modal interactions.
Recently, intermediate fusion has attracted much interest
by capturing cross-modal interconnections at different lev-
els, where the typical one is attention-based multimodal fu-
sion [5]. For example, Zhu et al. [52] proposed a triplet at-
tention to integrate MRI and diffusion tensor imaging (DTI)
for epilepsy diagnosis. IMGFN [55] designed a graph atten-
tion network for survival prediction. MCAT [5] proposed a
co-attention to identify informative instances of gigapixel
WSI with genomic features as queries. HFBSurv [27] pro-
gressively integrated multimodal information from the low
level to the high level for survival analysis. Note that our
method MOTCat belongs to one of the intermediate fusion
approaches, which explores the global consistency of po-
tential structure by optimal transport.

2.2. Multiple Instance Learning in Pathology

Since it is difficult to represent WSIs of large size, MIL
algorithms have achieved remarkable progress in pathology,
in which WSIs are often formulated as a bag of pathol-
ogy patches. MIL in pathology generally can be divided
into two categories: instance-based algorithms [2, 44, 7]
and embedding-based algorithms [19, 16, 32]. The for-
mer aims to select a small number of instances within each
WSI for training an aggregation model. The latter one is to
map each instance into a low-dimension fixed-length em-
bedding offline, and then to learn a bag-level representa-
tion based on instance-level embeddings. There are sev-
eral strategies for aggregating instance-level embeddings.
One is clustering-based methods [37, 40], where all the
instance-level embeddings are clustered to several centroids
that are integrated for the final prediction. The most com-
mon strategy is attention-based MIL (AB-MIL) [19, 26]
that assigns a weight for each instance, in which various
approaches are developed differing in the ways to gener-
ate the weighting values. For example, one of the first
AB-MIL [19] used a side-branch network for generating at-
tention weights, followed by DS-MIL [26] adopted cosine
distance to measure the similarity of instances as weights.
Recently, transformer-based MIL like TransMIL [36] has
leveraged the self-attention mechanism to explore long-
range interactions in WSI. Furthermore, DTFD-MIL [48]

proposed the double-tier MIL framework for more rigorous
instance weights. Unlike AB-MIL, we use optimal match
flow generated by OT between pathological and genomic
instances to identify instances of WSI that have global po-
tential structure consistency with that of genomics.

2.3. Survival Prediction

Survival outcome prediction, also known as time-to-
event analysis [23], aims to predict the probability of ex-
periencing an event of interest, e.g. death event in the clini-
cal setting, before a specific time under both right-censored
and uncensored data. Right-censored data refers to cases
where the outcome event cannot be observed within the
study period [23]. Before the deep learning era, statisti-
cal models dominated survival analysis. The typical one
is Cox Proportional Hazards (CoxPH) model [9] that char-
acterizes the hazard function, the risk of death, by an ex-
ponential linear model. DeepSurv [12] is the first work
incorporating deep learning into survival analysis, which
models the risk function by several fully connected layers
and feeds it to the CoxPH model for the final hazard func-
tion. Furthermore, DeepConvSurv [53] first attempted to
use pathological images for a deep survival model. Recent
works [27, 6, 34, 4, 5] tend to directly estimate the hazard
function by deep learning models without any statistical as-
sumption. Histology and genomics data are often integrated
as the gold standard for predicting survival outcomes with
promising performance [4, 6, 55]. Similarly, our method
incorporates these two modalities for better survival predic-
tion by learning their global structural coherence.

3. Method
3.1. Overview and Problem Formulation

The overall framework of the proposed method is shown
in Fig. 2. In this work, we aim to estimate the hazard func-
tions hn(t) considered as the risk probability of experienc-
ing death event in a small interval after time point t for n-th
patient, based on pathology data Xp

n and genomic data Xg
n.

For pathology, we formulate each WSI as a ”bag” struc-
ture in a conventional multiple instance learning (MIL) set-
ting, where a bag consists of a collection of instances that
are patched from the tissue-containing image regions of a
WSI, and instance-level features are extracted from patch
images. Genomic data is also organized as a ”bag” based on
the biological functional impact of genes. For each instance
of the genomic bag, we adopt an encoder to extract genes
embeddings. The bags formulations for histology and ge-
nomics are illustrated in Sec. 3.1.1 and 3.1.2, respectively.

Then, Optimal Transport-based Co-Attention is applied
to match instances of a WSI and the corresponding genomic
instances to model pathological interactions and genomic
co-expressions, so that the instances with high structure
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Figure 2. Overview of Multimodal Optimal Transport-based Co-Attention Transformer (MOTCat) architecture, in which both modalities
are formulated as bags representations and a micro-batch of the WSI bag is sampled as pathological input. Then OT-based Co-attention
is to calculate optimal matching flow for identifying informative instances with global structure consistency. After aggregating selected
instances, features from both modalities are concatenated for survival prediction.

consistency can be identified to represent the whole modal-
ity. This part will be demonstrated in Sec. 3.2.

After that, a Transformer encoder will integrate all in-
stances after selection for each modality into a bag-level
representation, in which each instance is treated as a token.
The bag-level representation will be concatenated into the
multimodal features for predicting a hazard function to get
the ordinal survival risk. The details will be described in
Sec. 3.1.3. Finally, optimization process over Micro-Batch
and the corresponding computational complexity analysis
will be presented in Sec. 3.3.

3.1.1 WSI Bags Formulation

We formulate the learning process of pathology images
(WSIs) as a weakly-supervised MIL task, in which each
WSI Xp

n is represented as a bag with access to only bag-
level (slide-level) labels. Given a bag Xp

n = {xp
n,i}

Mp

i=1 of
Mp permutation-invariant instances, the goal is to encode
instance-level features of a WSI into a compact bag-level
feature embedding and then assign a bag-level label to it.
To this end, we apply a CNN encoder fp(·) for each patch
of the WSI to obtain a bag Bp

n of instance-level features:

Bp
n = {fp(xp

n,i) : x
p
n,i ∈ Xp

n} = {b
p
n,i}

Mp

i=1, (1)

where Bp
n ∈ RMp×d contains d-dimensional instances and

bp
n,i = fp(x

p
n,i). After identifying informative instances

of Bp
n by OT-based Co-Attention, we construct a new bag

B̂p
n ∈ RM̂p×d of features with M̂p instances, which will be

illustrated in detail in Section 3.2. Then, a transformer en-
coder is used as a global aggregation model Tp(·) to obtain

the bag-level representation Hp
n = Tp(B̂p

n) for the subse-
quent features fusion.

Algorithm 1 The MOTCat Algorithm

Input: A WSI bag as Xp
n = {xp

n,i}
Mp

i=1; A genomic bag as

Xg
n = {xg

n,j}
Mg

j=1. m refers to the size for a micro-batch
of a WSI.

Output: The optimal parameters of model;
1: // Sample micro-batch from the WSI bag Xp,m

n =
{xp

n,i}mi=1 each time.
2: for Xp,m

n in Xp
n do

3: Fix model parameters fp, fg , Tp and Tg .
4: // To extract a bag of instance-level features
5: // Eq. 1 over micro-batch of histology
6: Bp,m

n = {fp(xp
n,i) : x

p
n,i ∈ Xp,m

n }
7: // Eq. 2 of genomics
8: Bg

n = {f j
g (x

g
n,j) : x

g
n,j ∈ Xg

n}
9: Optimize Pm

n via Sinkhorn-Knopp matrix scaling
algorithm [8, 14]:

10: Pm
n ← argminPm

n
Wm(Bp,m

n ,Bg
n) // Eq. 5

11: Fix Pm
n and select instances from Bp,m

n by:
12: B̂p,m

n = Pm
n

⊤Bp,m
n

13: // To get bag-level representation
14: Hp,m

n = Tp
(
B̂p,m

n

)
// for histology

15: Hg
n = Tg

(
B̂g

n

)
// for genomics

16: Hm
n = Hp,m

n ▷◁ Hg
n // Concatenation

17: Calculate the overall loss function L of Eq. 6.
18: Update parameters of fg , Tp, Tg and the last fully

connected layers of fp by Adam.
19: end for



3.1.2 Genomic Bags Formulation

Genomic data consists of 1 × 1 attributes, such as muta-
tion status, transcript abundance (RNA-Seq), copy num-
ber variation (CNV) and other molecular characterizations.
Following the organization of genomic data in the previous
work [5, 28] that categories them according to the biological
functional impact, the expressive genomic bag can be orga-
nized as Xg

n = {xg
n,j}

Mg

j=1 ∈ RMg×dj with Mg instances
of unique functional categories. For j-th category, the cor-
responding genomic embedding consists of dj-dimensional
attributes encoded by a separated network f j

g (·). Similarly,
a bag Bg

n ∈ RMg×d of genomic data with Mg instances can
be constructed as follows:

Bg
n = {f j

g (x
g
n,j) : x

g
n,j ∈ Xg

n} = {b
g
n,j}

Mg

j=1, (2)

which is aggregated to the bag-level embedding by a trans-
former encoder Hg

n = Tg(Bg
n) as well.

3.1.3 Multimodal Survival Prediction Formulation

Survival outcome prediction aims to predict the risk prob-
ability of an outcome event occurring before a specific
time, in which the outcome event is not always observed,
leading to a right-censored event. In this task, let c ∈
{0, 1} be censor status indicating whether the outcome
event is right-censored (c = 1) or not (c = 0), and
t ∈ R+ refers to the overall survival time (in months).
Given a training set of N pathology-genomics pairs D =
{(Xp

n,X
g
n), cn, t

n}Nn=1, we can acquire the bag-level fea-
tures Hp

n of WSIs and Hg
n of genomic data for n-th pa-

tient data Xn = ((Xp
n,X

g
n), cn, t

n), as described in Sec-
tion 3.1.1 and 3.1.2. After integrating Hp

n and Hg
n into the

multimodal features Hn by concatenation, we estimate the
hazard function hn(t|Hn) = hn(T = t|T ≥ t,Hn) ∈ [0, 1]
which is viewed as the probability of death event occurring
at around time point t. Instead of predicting the overall sur-
vival time tn, the survival prediction task is to estimate the
ordinal risk of death via the cumulative survival function:

Sn(t|Hn) =

t∏
z=1

(1− hn(z|Hn)) (3)

3.2. Optimal Transport-based Co-Attention

To identify TME-related instances of WSIs, we utilize
the global potential structure consistency between TME in-
teractions of pathology and genes co-expressions as the ev-
idence of selecting instances, in which optimal transport is
used to learn the optimal matching flow between a WSI fea-
ture bag Bp

n ∈ RMp×d and a genomic bag Bg
n ∈ RMg×d.

Formally, an optimal transport from the WSI feature bag
Bp

n = [bp
n,1,b

p
n,2, . . . ,b

p
n,Mp

] to the genomic embedding
bag Bg

n = [bg
n,1,b

g
n,2, . . . ,b

g
n,Mg

] can be defined by the

discrete Kantorovich formulation [21] to search the overall
optimal matching flow Pn between Bp

n and Bg
n:

W(Bp
n,B

g
n) = min

Pn∈Π(µp,µg)
< Pn,Cn >F (4)

where Cn ≥ 0 ∈ RMp×Mg is a cost matrix given by
Cu,v

n = c(bp
n,u,b

g
n,v) with a ground distance metric c(·),

such as l2-distance, that measures the distance of local pair-
wise instances bp

n,u ∈ Bp
n in the WSI bag and the genomic

one of a unique functional category bg
n,v ∈ Bg

n.
Here Π(µp, µg) = {Pn ∈ RMp×Mg

+ |Pn1Mg
=

µp,P
⊤
n 1Mp = µg} involves the marginal constraints of to-

tal mass equality between marginal distributions, µp and
µg , for the WSI bag and the genomic bag, and 1k is a k-
dimensional vector of ones. Specifically, Π(µp, µg) refers
to the set of joint probabilistic couplings between the two
marginal empirical distributions of pathology data and ge-
nomic data. Intuitively, it describes how to distribute in-
stances of a WSI bag Bp

n to the genomic embedding of a
genomic bag Bg

n based on the cost matrix Cn, under the
marginal constraints of total mass equality between distri-
butions µp and µg . Note that < · >F refers to the Frobe-
nius dot product, and thus Eq. 4 encourages to achieve the
overall minimum matching cost by finding optimal match-
ing flow based on local pairwise similarity. In this way, the
optimal transport of Eq. 4 is able to enforce a trade-off of in-
stances within modality, which allows the model to capture
the potential structure of visual interactions for histology
and co-expressions for genomic data.

Once acquiring the optimal matching flow P∗
n, informa-

tive instances of a WSI are identified by B̂p
n = P⊤

nB
p
n

to represent the WSI, which also aligns pathology distribu-
tion to genomics distribution under preserving the potential
structure across modalities for alleviating heterogeneity.

As such, the proposed OT-based Co-Attention simulta-
neously addresses two issues: not only does it achieve the
effective representation for gigapixel WSIs by identifying
informative instances via OT matching, but marginal con-
straints of OT enable the selected instances to have global
structure consistency with genomic data.

3.3. Optimization over Micro-Batch
Due to the large size of the WSI bag, it is difficult to

apply optimal transport for matching histology data and ge-
nomic data. Recent work [48] has validated that MIL on
WSI can benefit from multiple subsets of a bag randomly
sampled from the original WSI bag. It provides a way to
train the model over Micro-Batch of a WSI, where micro-
batch is defined as a subset sampled from a bag of WSI
instances. Furthermore, inspired by a variant [13] of OT
that offers a solution to approximate the original OT over
mini-batches with a theoretical guarantee of convergence,
we propose to use the variant UMBOT formulation [13]
over micro-batch of WSI instead of the original OT over



all instances of a WSI. Then the Eq. 4 becomes:

Wm(Bp,m
n ,Bg

n) = min
Pm

n ∈Π(µm
p ,µg)

< Pm
n ,Cm

n >F

+ ϵKL(Pm
n |µm

p ⊗ µg) + τ
(
Dϕ(P

m
n,p||µm

p ) +Dϕ(P
m
n,g||µg)

)
(5)

where Bp,m
n is micro-batch of size m sampled from Bp

n.
Similarly, Cm

n ∈ Rm×Mg is the cost matrix over micro-
batch of WSI Bp,m

n and Bg
n, and the optimal matching flow

Pm
n ∈ Rm×Mg is optimized over micro-batch as well. Here

Pm
n,p and Pm

n,g represent the marginals of Pm
n , and Dϕ is

Csiszàr divergences, τ and ϵ ≥ 0 are the coefficients of
marginal penalization and entropic regularization, respec-
tively. KL refers to Kullback-Leible divergence.
Computational complexity. With the benefit of UMBOT
for approximating the original OT, the computational com-
plexity of optimization is reduced from O(M3 log(M)) to
O(Mm × m2) = O(M × m), where M = max(Mp,Mg)
and m ≪ M . The whole optimization procedure of the
proposed MOTCat is presented in Alg. 1
Loss function. Following the previous work [5], the overall
loss function is formulated by NLL-loss [46]:

L =− m

Mp

N∑
n=1

∑
Xp,m

n ∈Xp
n

cn · log (Sm
n (tn|Hm

n ))

− m

Mp

N∑
n=1

∑
Xp,m

n ∈Xp
n

{(1− cn) · log (Sm
n (tn − 1|Hm

n ))

+ (1− cn) · log(hm
n (tn|Hm

n ))}
(6)

where Hm
n refers to the multimodal features over micro-

batch formulated in line 16 of Alg. 1. hm
n and Sm

n are
the hazard function and cumulative survival function over
micro-batch, respectively.

4. Experiment
In this section, we first present datasets and settings fol-

lowing previous experimental protocols [5, 6] for fair com-
parisons. Next, we demonstrate the performance results
of the proposed method compared with the state-of-the-art
(SOTA) methods, including unimodal and multimodal ap-
proaches. After that, we investigate the effectiveness of
each component in our method and the effect on the size
of micro-batch strategy. Finally, from a statistical point of
view, we present Kaplan-Meier survival curves and Logrank
test to show the performance of survival analysis. Inter-
pretable visualization for histology data and genomic data
are presented in supplementary materials.

4.1. Datasets and Settings

Datasets. To demonstrate the performance of the proposed
method, we conducted various experiments over five pub-
lic cancer datasets from The Cancer Genome Atlas (TCGA)

that contains paired diagnostic WSIs and genomic data with
ground-truth survival outcome: Bladder Urothelial Carci-
noma (BLCA), Breast Invasive Carcinoma (BRCA), Uter-
ine Corpus Endometrial Carcinoma (UCEC), Glioblastoma
& Lower Grade Glioma (GBMLGG), and Lung Adenocar-
cinoma (LUAD). The number of cases for each cancer type
is shown by N in Tab. 1. Note that cases of these cancer
datasets used for all compared methods are not less than
cases used in the proposed method. For genomic data, the
number of unique functional categories Mg is set as 6 fol-
lowing [28, 5], including 1) Tumor Supression, 2) Onco-
genesis, 3) Protein Kinases, 4) Cellular Differentiation, 5)
Transcription, and 6) Cytokines and Growth.
Evaluation. For each cancer dataset, we perform 5-fold
cross-validation with a 4:1 ratio of training-validation sets
and report the cross-validated concordance index (C-Index)
and its standard deviation (std) to quantify the performance
of correctly ranking the predicted patient risk scores with
respect to overall survival.
Implementation. For each WSI, we first apply the OTSU’s
threshold method to segment tissue regions, and then non-
overlapping 256×256 patches are extracted from the tissue
region over 20× magnification. Then, we use ImageNet-
pretrained [10] ResNet-50 [17] and a 256-d fully-connected
layer as the feature encoder fp to extract the 1024-d em-
bedding for each patch, where parameters of ResNet-50 are
frozen. For genomic data, we adopt SNN [22] as the feature
encoder fg following the setting of [5].

During training, we follow the setting of [5] for a fair
comparison. Specifically, we adopt Adam optimizer with
the initial learning rate of 2 × 10−4 and weight decay of
1 × 10−5. Due to the large size of WSIs, the batch size
for WSIs is 1 with 32 gradient accumulation steps, and all
experiments are trained for 20 epoches. The size of Micro-
Batch m is set as 256. Regarding the hyper-parameters of
OT in Eq. 5, the coefficient of marginal penalization τ is
0.5 for all cancer datasets, and the coefficient of entropic
regularization ϵ is 0.05 for BLCA and LUAD, as well as 0.1
for BRCA, UCEC and GBMLGG.

4.2. Results

We compare our method against the unimodal baselines
and the multimodal SOTA methods as follows:
Unimodal Baseline. For genomic data, we adopt SNN [22]
that has been used previously for survival outcome predic-
tion in the TCGA [4, 5], and SNNTrans [22, 36] which in-
corporates SNN as the feature extractor and TransMIL [36]
as the global aggregation model for MIL. For histology, we
campare the SOTA MIL methods AttnMIL [19], DeepAt-
tnMISL [45], CLAM [32], TransMIL [36], and DTFD-
MIL [48].
Multimodal SOTA. We compare four SOTA methods
for multimodal survival outcome prediction including



Table 1. C-Index (mean ± std) performance over five cancer datasets. Patho. and Geno. refer to pathology modality and genomic modality,
respectively. The best results and the second-best results are highlighted in bold and in underline, respectively.

Model Patho. Geno.
BLCA BRCA UCEC GBMLGG LUAD

(N = 373) (N = 956) (N = 480) (N = 569) (N = 453)

SNN* [22] ✓ 0.618 ± 0.022 0.624 ± 0.060 0.679 ± 0.040 0.834 ± 0.012 0.611 ± 0.047
SNNTrans* [22, 36] ✓ 0.659 ± 0.032 0.647 ± 0.063 0.656 ± 0.038 0.839 ± 0.014 0.638 ± 0.022

AttnMIL* [19] ✓ 0.599 ± 0.048 0.609 ± 0.065 0.658 ± 0.036 0.818 ± 0.025 0.620 ± 0.061
DeepAttnMISL [45] ✓ 0.504 ± 0.042 0.524 ± 0.043 0.597 ± 0.059 0.734 ± 0.029 0.548 ± 0.050
CLAM-SB* [32] ✓ 0.559 ± 0.034 0.573 ± 0.044 0.644 ± 0.061 0.779 ± 0.031 0.594 ± 0.063
CLAM-MB* [32] ✓ 0.565 ± 0.027 0.578 ± 0.032 0.609 ± 0.082 0.776 ± 0.034 0.582 ± 0.072
TransMIL* [36] ✓ 0.575 ± 0.034 0.666 ± 0.029 0.655 ± 0.046 0.798 ± 0.043 0.642 ± 0.046
DTFD-MIL* [48] ✓ 0.546 ± 0.021 0.609 ± 0.059 0.656 ± 0.045 0.792 ± 0.023 0.585 ± 0.066

Pathomic [4] ✓ ✓ 0.586 ± 0.062 - - 0.826 ± 0.009 0.543 ± 0.065
PONET [34] ✓ ✓ 0.643 ± 0.037 - - - 0.646 ± 0.047
Porpoise* [6] ✓ ✓ 0.636 ± 0.024 0.652 ± 0.042 0.695 ± 0.032 0.834 ± 0.017 0.647 ± 0.031
MCAT* [5] ✓ ✓ 0.672 ± 0.032 0.659 ± 0.031 0.649 ± 0.043 0.835 ± 0.024 0.659 ± 0.027
MOTCat (Ours) ✓ ✓ 0.683 ± 0.026 0.673 ± 0.006 0.675 ± 0.040 0.849 ± 0.028 0.670 ± 0.038

MCAT [5], Pathomic [4], Porpoise [6] and PONET [34].
Results are shown in Tab. 1, where the methods marked

* are re-implemented and the best results are reported, and
other results are obtained from their papers. Note that due
to varying cancer datasets used in their works, not all results
of the five datasets used in this work can be reported, and
hence we use ’-’ to indicate the results are not reported in
their papers.
Unimodal v.s. Multimodal. Compared with all unimodal
approaches, the proposed method achieves the highest per-
formance in 4 out of 5 cancer datasets, indicating the ef-
fective fusion of multimodal data in our method. Note that
the overall performance of genomic data is better than that
of histology, which validates the reasonability of using ge-
nomic data for guiding the selection of instances in WSIs.
In particular, most multimodal methods are inferior to the
unimodal model of genomics in UCEC dataset, suggesting
the serious challenge in multimodal fusion. Nevertheless,
the proposed method can achieve the comparative perfor-
mance with genomic model on UCEC.
Multimodal SOTA v.s. MOTCat. In one-versus-all
comparisons of multimodal models, the proposed method
achieves superior performance on all benchmarks with
1.0%-2.6% performance gains except UCEC. In compar-
ing the proposed method with the most similar work MCAT
in multimodal fusion, our method gets better results on all
datasets, indicating the effectiveness of learning the intra-
modal potential structure consistency from a global per-
spective between TME-related interactions of histology and
genomic co-expression.

4.3. Ablation Study

We first investigate the effectiveness of OT-based co-
attention component (denoted by OT) and the micro-batch

strategy (denoted by MB). Furthermore, the effect on the
size of micro-batch and the actual computational speed of
our method are explored.
Component validation. As shown in Tab. 2, we observe
that multimodal fusion can benefit from micro-batch strat-
egy by comparing (a) and (b), and OT-based co-attention
further improves the performance by approximating the
original results with the averaged results over micro-batches
via UMBOT. As a result, our method achieves the best over-
all performance. These improvements both demonstrate the
effectiveness of each component for the proposed method.

Additionally, recent work [48] has claimed that MIL on
WSIs can benefit from learning over sub-bags in a WSI,
which is also validated by performance increases in variant
(b). The reason why it can profit from micro-batch might be
that it increases the number of bags, so that more features
can be used for survival analysis.
Size of Micro-batch. To show the robustness of approx-
imation to the size of Micro-batch strategy, we compare
several variants of the proposed method over the varying
sizes of micro-batch, as shown in the quantitative analysis
of Fig. 3. The qualitative analysis of the effect on size of
Micro-Batch can be found in the supplementary materials,
which also achieves the consistent conclusion.

For the quantitative analysis in Fig. 3, two variants of the
proposed method are compared: 1) UMBOT→ EMD: To
demonstrate the robustness of different OT variants, we re-
place UMBOT used in our method with the original OT (i.e.
EMD) for comparison, which is equivalent to the Eq. (4)
done over Micro-batch. 2) UMBOT → CoAttn: To com-
pare the robustness of the proposed OT-based co-attention
and the original co-attention, we replace UMBOT with the
co-attention used in MCAT [5] and train the model over
Micro-batch for comparison.



Table 2. Ablation study assessing C-Index (mean ± std) performance of MOTCat over five datasets, in which version (c) in bold is the
proposed method with full components, and (a) and (b) refer to its variants. The best results are marked in bold.

Variants OT MB BLCA BRCA UCEC GBMLGG LUAD

(a) MCAT 0.672 ± 0.032 0.659 ± 0.031 0.649 ± 0.043 0.835 ± 0.024 0.659 ± 0.027
(b) MOTCat w/o OT ✓ 0.663 ± 0.025 0.666 ± 0.017 0.663 ± 0.031 0.845 ± 0.023 0.673 ± 0.036
(c) MOTCat ✓ ✓ 0.683 ± 0.026 0.673 ± 0.006 0.675 ± 0.040 0.849 ± 0.028 0.670 ± 0.038

Effect on Size of Micro-Batch
(over 128, 256 and 512)

Figure 3. Boxplots of C-Index over various sizes of Micro-batch for our method and two variants on five cancer datasets, in which the green
triangle means the averaged results of all sizes and the horizontal line in the box represents the median result.

From the results of Fig. 3, we can see that 1) our method
achieves the best averaged performance of various sizes
compared with the two variants, especially on BRCA with
the most samples of 956. 2) Further, on UCEC and LUAD
datasets, the proposed method gets the most robust results.
3) Although the second variant UMBOT→ CoAttn shows
slightly better robustness on BLCA and BRCA, the perfor-
mance of our method surpasses it by a large margin. In
a nutshell, the proposed method achieves a better trade-off
between performance and robustness, compared with dif-
ferent OT variants or the co-attention of MCAT.

Computational Speed. We measure the actual averaged
computational speed for 10 WSIs (about 150k patches in
total) on one GPU of NVIDIA GeForce RTX 3090. The
proposed method is compared with a variant ’org-OT’ that
replaces UMBOT by the original OT. However, the origi-
nal OT with the high complexity takes extreme long time
for one WSI (about 20k patches), and thus we fail to mea-
sure the actual computational time for the original OT in a
short time. Here we present the speed of our method, which
suggests our method makes it practicable to apply OT to
histology and genomics. Specifically, the training speed of
the proposed method is 6540 p/s (p/s refers to the number

of processing patches per second) and the inference speed
is 11885 p/s.

4.4. Statistical Analysis

To show a statistical difference in patient stratifica-
tion performance, we visualize the Kaplan-Meier survival
curves for different methods, in which patients are separated
into two groups of low-risk and high-risk based on predicted
risk scores, and then the statistics on ground-truth survival
time are presented for each group in Fig. 4. The Logrank
test is conducted to measure the statistically significant dif-
ference in two groups of patients, where a lower P-value
indicates better performance of patient stratification. From
the results of Fig. 4, intuitively our method separates pa-
tients of low and high risk more clearly on all datasets. In
the Logrank test, our method achieves a lower P-value on
all datasets in comparison to MCAT, especially on BLCA,
BRCA and UCEC with a large margin of magnitude.

5. Conclusion
In this paper, we present a novel Multimodal Opti-

mal Transport-based Co-Attention Transformer with global
structure consistency to tackle two important issues in mul-
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Figure 4. Kaplan-Meier Analysis on five cancer datasets, where patient stratifications of low risk (green) and high risk (red) are presented.
Shaded areas refer to the confidence intervals. P-value < 0.05 means significant statistical difference in two groups, and lower P-value is
better. (Zoom in for better viewing.)

timodal learning of histology and genomics for survival pre-
diction. First, we utilize a new OT-based Co-Attention to
match pairwise instances between histology and genomics
for selecting informative instances strongly related to tu-
mor microenvironment, which provides a way to effectively
represent gigapixel WSIs. Second, optimal transport offers
a global awareness for modeling potential structure within
modality, i.e. pathological interactions and genomic co-
expression. Furthermore, to enable applying OT-based Co-
Attention in practice, we propose a robust and efficient im-
plementation over micro-batch of WSI bags, in which the
approximation over micro-batch might provide a solution
to update the parameters of extractor for patch images in
an end-to-end way instead of extracting feature embeddings
offline, which will be further explored in the future.
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A. Outline

The supplementary materials for this paper are organized
as follows:

1. We demonstrate the qualitative visualization for the ef-
fect on the size of Micro-Batch Strategy.

2. We provide visualization cases of Co-Attention.



B. Effect on Size of Micro-Batch
In this section, we compare several variants of the pro-

posed method to show the robustness to the size of Micro-
batch strategy used in histology data, in which the results
over the size of 128, 256 and 512 are presented in Fig. 5.

There are two variants of the proposed method men-
tioned in the quantitative analysis of Section 4.3 and MCAT
to be compared for the qualitative analysis. As shown in
Fig. 5, we visualize the co-attention values between the first
300 instances of a WSI and all genomic instances (Mg = 6)
from the same patient.

We observe that 1) our method demonstrates the best
consistency of activation among different sizes of Micro-
Batch, while the variant (c) UMBOT → EMD shows con-
siderably poor consistency, which validates that UMBOT-
based co-attention used in our method is more robust to
the size of Micro-Batch than the original OT (i.e. EMD).
2) When we replace UMBOT with the co-attention used in
MCAT and train it over Micro-Batch, we found that the acti-
vation pattern of size 512 is significantly different from that
of sizes 128 and 256, as shown in the variant (b) UMBOT
→ CoAttn. 3) Furthermore, results of all sizes in variant (b)
are apparently distinguished from the co-attention of MCAT
directly computed over all instances, further indicating the
poor robustness of the original co-attention.

C. Visualization of Co-Attention
To show the interpretability, we visualize the co-

attention values of all instances in each WSI for high and
low cases, as shown in Fig. 6 of our method and Fig. 7 of
MCAT [5]. In order to present a more obvious difference
in co-attention values among various genomic instances, we
consider the instance of Tumor Suppression (marked in red)
as the reference and show the differences of other genomic
instances from it, since there is only a slight difference in
the values of co-attention.

By comparing MCAT with the proposed method, we
found that the OT-based co-attention is concerned about dif-
ferent areas of the WSI for different genomic functional in-
stances, while the dense co-attention used in MCAT focuses
on the similar regions of histology for different functional
instances of genes. As a result, the better performance of
our method may benefit from these different concerns.
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Figure 5. Co-Attention values between the first 300 instances of histology and all instances of genomics for the case TCGA-06-0210 of
GBMLGG: (a) MCAT, (b) UMBOT → CoAttn, (c) UMBOT → EMD and (d) our method, in which the size of Micro-Batch ranges from
128 to 512.
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Figure 6. Co-Attention visualization of our method for high and low risk cases in GBMLGG, with corresponding top-4 highest attention
patches for each genomic instance of unique functional category.
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Figure 7. Co-Attention visualization of MCAT [5] for high and low risk cases in GBMLGG, with corresponding top-4 highest attention
patches for each genomic instance of unique functional category.


