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Abstract

Multi-class cell nuclei detection is a fundamental pre-
requisite in the diagnosis of histopathology. It is critical
to efficiently locate and identify cells with diverse morphol-
ogy and distributions in digital pathological images. Most
existing methods take complex intermediate representations
as learning targets and rely on inflexible post-refinements
while paying less attention to various cell density and fields
of view. In this paper, we propose a novel Affine-Consistent
Transformer (AC-Former), which directly yields a sequence
of nucleus positions and is trained collaboratively through
two sub-networks, a global and a local network. The lo-
cal branch learns to infer distorted input images of smaller
scales while the global network outputs the large-scale pre-
dictions as extra supervision signals. We further introduce
an Adaptive Affine Transformer (AAT) module, which can
automatically learn the key spatial transformations to warp
original images for local network training. The AAT module
works by learning to capture the transformed image regions
that are more valuable for training the model. Experimental
results demonstrate that the proposed method significantly
outperforms existing state-of-the-art algorithms on various
benchmarks.

1. Introduction

A major task of pathologists is to make a diagnosis with
digital pathological images, which are obtained by scan-
ning tissue slides with a whole-slide scanner [33} 42]. In
this process, a pathologist is required to provide the grad-
ing of tumors and to classify benign and malignant dis-
eases [31, [15]], by locating and identifying certain histo-
logical structures such as lymphocytes, cancer nuclei, and
glands. In some applications, instead of locating pixels on
each nucleus boundary, it could be useful to quantify the
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Figure 1. The visual comparison of predictions and training targets
between existing methods and ours. Different types of nuclei are
marked by red, green and blue boxes or centroids. Our method can
predict a sequence of position coordinates and categorical labels of
nuclei directly from an input pathological image.

different categories of cells. For example, the counts of tu-
mor cells and lymphocytes have been utilized as an effective
prognostic marker [[12]. Thus, in this paper, we do not focus
on predicting the nucleus sizes or boundaries, but only aim
at inferring the types and rough locations of cell nuclei in
digital slide images, following the previous work [1].

In the early stage, automatic nucleus detection and clas-
sification have been achieved by handcrafted features based
methods|[35] 13, 149, 4]]. These methods lack sufficient accu-
racy and generalization, while deep learning (DL) models
can tackle these issues via learning robust representations.

For nuclei detection, existing DL methods can be divided
into three groups, according to the different forms of pre-
diction targets. As Figure [I] shows, the first group is to
outline the contour or to locate the region of each single
nucleus via pixel-wise prediction [14} 9, [16} 41} 29, [30].
These methods rely on the high-quality boundary annota-
tion of nuclei that are expensive and time-consuming. The
second group [17, 11} 38]] is to pixel-wisely predict centroids
or dilated centroids (‘Dots Map’ in Figure [T), by convert-



ing the detection into a binary segmentation task. Due to
the diversity of cell density, the boundaries between adja-
cent nuclei are often confused, which makes these methods
fail to segment adherent nuclei and results in missed de-
tection. The third group is to predict the bounding boxes
of nuclei [39, 23| 56] based on the anchors of pixels, but
the performance of these methods are affected by anchor
parameters and post-processing. Adjacent nuclei with un-
clear boundaries increase the difficulty of detecting bound-
ing boxes. Thus, we propose to convert the nuclei detection
into a task of directly predicting a set of cell positions and
categories.

Besides, the diversity of image scale and nuclei den-
sity causes more difficulties in the detection and classifi-
cation tasks. Higher magnification levels or scaling factors
could lead to a smaller field of view and more sparse dis-
tribution of nuclei. We claim that it is essential to develop
a robust model for different image scales. Some existing
works [53} 50] employ multi-scale deep learning architec-
tures or simply unify the scale by dividing patches, which
does not take the prediction consistency among multiple
scales into consideration.

To avoid the synthesis of indirect learning targets, we
consider formulating the nucleus localization and classifica-
tion problem as a sequence generation task. A transformer-
based framework is adopted to decode a list of position co-
ordinates and category labels of nuclei in a direct manner.
To adapt to diverse scales, we further split the transformer
framework into two network branches, a local network and
a global one, which aim to infer global-scale images and
their local-scale views, respectively. The local network is
not only supervised by the ground-truth annotations but also
guided by the global network that captures broader con-
textual information from the large-scale input. Thus, the
well-trained networks could accommodate to diverse fields
of view. To compute the training losses, a matching al-
gorithm is utilized to assign each target nucleus to a nu-
cleus proposal in the predicted sequence. Importantly, we
claim that not all local image regions are equal for training
a scale-consistent nuclei detection model. Therefore, we
propose a novel adaptive affine transformer that predicts a
series of affine transformation parameters to harvest the key
local-scale inputs for improving the global-local training.
Since our proposed framework is trained to deal with var-
ious fields of view and distributions of cells, it has the po-
tential to well separate the densely distributed nuclei from
each other and to reduce the missed detection rate.

In short, our major contributions are summarized as three
folds:

¢ We introduce a novel Adaptive Affine Transformer that
automatically learns to augment effective multi-scale
samples for training.

* We propose an Affine-Consistent Transformer frame-
work for nuclei detection. Its local branch learns to
output a set of nucleus-level predictions with small-
scale inputs, guided by the global branch with a large-
scale input.

* We conduct extensive experiments and demonstrate
the state-of-the-art performance of our method on three
widely-used benchmarks.

2. Related Work

Nuclei Detection and Classification Many methods have
been developed to locate and identify cell nuclei. According
to the different representations of prediction targets, they
can be divided into three types: instance based, dots map
based and bounding box based methods. The instance based
methods [14} 9} [16, 52] first use neural networks to output
pixel-level predictions such as semantic segmentation maps
and distance maps, and then obtain the mask of each single
nucleus via some post-processing methods like watershed
algorithm [9]. Some works [54, 27, 134] detect nuclei with
the generic instance segmentation methods proposed for
natural images. However, these instance-based approaches
require expensive pixel-level annotations of each nucleus
boundary, while our method only needs lower-cost annota-
tions of nucleus position for the detection task.

For the dots map based methods, they either regress
a pixel-wise density map to locate the nuclei at the peak
[48L 117, [111 |1} 1450 146], or classify image patches with slid-
ing windows [37, 50]. Abousamra et al. [1] formulate the
nuclei detection problem as a binary segmentation task of
dilated nucleus centroids, while Wang et al. [45] extract lo-
cal features and performs adversarial alignment for domain
adaptive nuclei detection. Although compelling models
have been proposed, these dots map based methods could
fail to separate two adjacent nuclei when dealing with inten-
sively distributed cells. Wu et al. [46] detect 3D centroids
by estimating the intensity peaks of voting regions, which
is different from our method that updates and outputs the
centroid coordinates directly.

Some other methods [51}, 39, 22, |44, 23| 147]] utilize the
bounding boxes of cells as training targets. Sun et al. [39]
compute discriminative features based on similarity learn-
ing to boost the classification performance, while Liang et
al. [23] propose a GA-RPN module integrating the guided
anchoring (GA) into a region proposal network (RPN) to
generate more suitable object proposals. Wu et al. [47]]
detect nuclei centroids with an RCNN-SliceNet that still
depends on the pipeline of producing and suppressing re-
gion proposals. These methods usually take a large number
of anchor boxes as candidates and adopt the non-maximum
suppression (NMS) algorithm as post-processing to screen
out the highly overlapping boxes. In this paper, we avoid the
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Figure 2. The overall framework of Affine-Consistent Transformer. An input training image is sent through an Adaptive Affine Transformer
module to generate a series of affine transformed images. The original image and the transformed images are fed into two associated
networks respectively to produce two relevant point sets with categorical scores. After one-to-one matching these two point sets, the
Hungarian loss is calculated to update the local network. The output of the global network is used to coordinate the scale consistency of

the local network. The global network is updated via the exponential mean average (EMA) manner.

tedious inference process of existing methods, and exploit
transformers to directly decode the positions and category
scores of nuclei.

Transformer-based Object Detection Object detection
aims to predict the bounding boxes and category labels of
objects in an image. Transformer-based methods [5} 40,
25, 155, 214 [18] view object detection as a set prediction
problem, using transformer modules [43] to directly output
a final set of object-level predictions without further post-
processing. Carion et al. first propose a fully end-to-end
object detector DETR [5]] but it suffers from slow conver-
gence and limited spatial resolution of features. In follow-
up works, Zhu et al. propose Deformable DETR [57]] at-
tending to a small set of key sampling points instead of all
possible pixels. Different from existing transformer-based
detection models, we develop a new transformer framework
that not only produces affine transformation matrices for
learnable augmentation, but also adapts to nuclei detection
via predicting the nucleus centroids as a sequence of points.

3. Methodology

In this paper, we propose an Affine-Consistent Trans-
former (AC-Former). The workflow of the proposed AC-
Former is shown in Figure 2] During the training, a local
and a global networks cooperate with each other. The local
network is trained by both the nucleus centroids from the
warped images and the predicted centroids from the global
network to ensure the scale consistency. The global net-
work is continuously updated by the local network via the
exponential moving average (EMA) strategy. We first intro-

duce the proposed AC-Former framework and then describe
the essential designs: an adaptive affine transformer and the
local-global network architecture.

3.1. Affine-Consistent Transformer

The proposed method learns to directly produce the cen-
troid locations of nuclei with the corresponding confidence
scores. Given a pathological image of size H x W x 3,
we use the proposed adaptive affine transformer to gener-
ate warped images I;,7 € {1,--- , M}. And then the local
network locates the nucleus positions to generate the coor-
dinates and category scores from the encoder and decoder.
In the training stage, for the i*" warped image, I; the local
network outputs D + 1 sets: y* = {y*|j € {0,--- ,D}},
where D is the number of layers in the decoder and y% is a
set of predicted centroids with coordinates and categorical
scores. 4 is the encoder output while ¢/ with j > 0 is
the j*" decoder output. Meanwhile, the global network in-
fers the whole input image to obtain the globally predicted
results ¢y. Thus, the overall loss is defined as:

(L (¥, ') + alm(y?,5")),

ey
where L,,, denotes the Hungarian loss [5] between one-to-
one aligned nuclei, 4 is the ground truth of warped cen-
troids. §* represents the result of aligning the ground truth
with the i*" locally warped image, while 4%/ is obtained by
aligning the ;%" globally predicted set with the ‘" distorted
image. « is a weight term to balance the global branch loss
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Figure 3. The detailed architecture of the Adaptive Affine Transformer. The affine transformation matrices are generated by self-attention
modules, and will be adopted to perform affine warping on input images with a grid sampler. The overall structure is derivable and it will
learn to automatically augment image patches that benefit the model training.

and the local loss based on ground-truths.

We introduce the prediction of the global network for
supervision to enhance the spatial scale consistency of the
trained model. In the centroids sets predicted by the global
network, since the redundancy can not be eliminated by the
non-maximum suppression (NMS) [32], we use the maxi-
mum category probability as the evaluation scores of cen-
troids to select candidates with a threshold ¢. Only the cen-
troids whose maximum category probability is not smaller
than ¢ are reserved. Empirically we set £ = 0.3. During
the inference stage, we simply employ the global network
to infer a testing image, and produce D + 1 sets of nucleus
centroids. Only the last set is adopted as the final prediction
of the overall method.

3.2. Adaptive Affine Transformer

Since the distribution of nuclei is not uniform, local
views obtained by random transformations are not equally
beneficial for the training. Thus, we propose to learn to
synthesize the local views with a trainable model. To em-
brace long-range contexts, we develop a transformer-based
model, Adaptive Affine Transformer (AAT) to analyze the
input image and automatically generate the parameters of
an affine transformation.

As shown in Figure[3] the proposed adaptive affine trans-
former divides an input image into I}{DVQV patches, feeds the
flattened patches to a linear projection layer, and obtains the
embedded patches of size I?QV x F, where E denotes the
number of embedding dimensions and P is the size of each
image patch. After that, the embedded patches are added
with their sinusoidal position embeddings, and then passed
through a transformer [43] encoder with 2 layers. These
transformer layers compute the global dependency between
image patches with the multi-head attention mechanism.
The output is linearly projected into M affine transforma-
tion matrices {41, ..., Ay }. We do not adopt perspective

transformations but only affine transformations. The point-

wise transformation process can be formulated as :

U t11 ti2 tiz| |u U
O'(U,U,A) =A|v| = t21 t22 t23 v| = ’U/ s
1 0 0 1 1 1

where u and v are the coordinates of a sampled point in the
input image. u’ and v’ are the target coordinates after the
affine transformation with A.

To avoid generating unidentifiable images of low-quality,
we constrain the matrix parameters in a moderate range. For
scaling factors in the matrix, t11, t22, we clamp them into
[0.2, 2]; for translation, t13, t23 are clamped into [-0.5, 0.5];
for rotation & shear, t12, to1 are clamped into [-1, 1]. Then
we feed these M matrices with an input image into a dif-
ferentiable grid sampler [19] to yield M distorted images.
Let V(i,7) return the pixel value at the position (4, 7) of
the input image (in Figure [3). I(u/,v’) denotes the pixel
value at the position (u’,v’) of the warped image, and can
be computed by bilinear interpolation:

o V(s [o]) V(Lu), [o])] [L—v
) = 1= P B VR )
3)

To produce the pixel values of M warped images, each
integer coordinate of the i*" warped image is set to (u’,v’)
and its corresponding (u, v) can be solved via Eq. [2} given
the i* affine transformation matrix A;. Then the pixel value
at the position (u’,v") of a warped image can be calculated
via Eq. To yield ¢ in Eq. [1} that is to say, to align
4 with ith distorted image, we set each centroid coordi-
nate in § to (u, v), and compute the corresponding (u’,v")
via Eq. [2) with A;. The resulted coordinates (u’,v") out
of the range ([0, H], [0, W]) are removed from §°. Com-
puting 7%/, namely, aligning the j*" predicted set of the
global network with the i*" warped image, is performed
in a similar manner. The process can be formulated as:
g7 = {o(@}, Ai)lqg € {1,---,]5’|}} where 7 denotes
the ¢ centroid coordinate of the globally predicted set 7.



The proposed adaptive affine transformer module enables
the network to adaptively learn enhanced features that are
robust for spatial transformations.

3.3. Global-Local Network Architecture

Backbone As illustrated in Figure 2| the global or the local
network consists of 3 components: a backbone, an encoder
and a decoder. We adopt ConvNeXt-B [26]] as the backbone
that acts as a deep feature extractor. The backbone yields a
list of feature maps of different scales.

Encoder The encoder has 3 deformable attention [57] lay-
ers and 2 fully-connected (FC) layers. The input of the en-
coder is a stack of multi-scale feature maps output by the
backbone. For each attention layer in the encoder, its input
and output have the same shape, and its query elements are
set to all pixel-level feature vectors in its multi-scale input
feature maps. After the attention layers, each feature vec-
tor is separately sent into the FC layers, which produce the
categorical scores and the coordinate offsets relative to the
feature position. Only n feature vectors with the highest
confidence are preserved as object query embeddings and
their coordinates are recorded as the reference points.
Decoder The decoder has 3 layers and each layer contains
a deformable attention module and 2 FC layers. Different
from the encoder, the deformable attention module in the
decoder takes the object queries from the encoder as query
elements. After the attention enhances the object query em-
beddings, the two FC layers predict a 2D offset and cate-
gorical scores for each object query, respectively. The 2D
offset is added to and updates the corresponding reference
point. For deep supervision [36], the 3 decoder layers pro-
vide 3 sets of predictions, respectively.

The loss is calculated between each predicted set of cen-
troid proposals and a set of target centroids that could be
ground truths or predicted by the global network. The num-
ber of centroid proposals C' is far more than that of target
centroids T'. Let y. = {(u¢, v¢), ¢c} denote a centroid pro-
posal, and y; = {(u¢,v:), ¢} denote a centroid target. A
centroid proposal or centroid target consists of the coor-
dinates and category scores. A pair-wise cost matrix £ is
computed by measuring the cost between each proposal and
each target:

S(ycvyt) = ﬂl”(umUc)_(utaUt)”%"’BQZfocal(cwct)v 4

where { ocq:(-) denotes the Focal Loss [24]. 81 and (5 pro-
vide a balance between the position regression and classifi-
cation. The Focal Loss is used to mitigate the class imbal-
ance of the nuclei classification task. It is defined as:

K
A1 (1 = cep, - cor) 2 curlog(cer),

®)

1
K

lfocal(cm Ct) =

where A\; and Ao are the balanced factors and the focus-
ing parameter, K denotes the number of classes. Then we
conduct the association with the Hungarian algorithm [20]
based on the C' x T cost matrix &, and obtain 7' matching
positives and C' — T negatives. Our goal is to narrow the
coordinate and categorical difference between the positive
proposals and their corresponding target, and to amplify the
categorical difference between the negatives and the pos-
itives. For all positive and negative samples in a warped
image I;, the loss is formulated as:

T
Lon(y”, 9 Z ugd v ) — (g, o) 13
C
+WQlfocal(C;J,é;)+W3 Z lfocal(cizjvé?n))? (6)
n=T+1

where wy, wy and ws are weight terms. {(u/, v;ﬂ) i} de-
notes the p*" matching positive centroid of the j** predicted
set in the i*" warped image and {(al,%}), ¢} is the cor-
responding target in the ground truth ¢ after the i*" affine
transformation. For the negative proposals, we define their
classification target ¢ as a new empty category. The loss
between the local and the global predictions can be calcu-
lated as L,,,(y¥, §/) in Eq.[3} in a way similar to Eq. []

In the training stage, the encoder and each of the 3 de-
coder layers predict a set of centroids separately, resulting
in 4 (1+3) sets of centroids. which are all used to compute
the loss. During the inference, we take the output of the last
decoder layer as the final prediction. The hyper-parameters
a, 81, 52, A1, A2, wl, w2, w3 are set based on MMDetec-
tion [6] and Deformable DETR [57], and do not need any
complicated tuning.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate the proposed approach on three pub-
licly available datasets, CoNSeP [14], BRCA-M2C [1]] and
Lizard [13]]. CoNSeP is a colorectal nuclear dataset, con-
sisting of 41 H&E stained image tiles from 16 colorectal
adenocarcinoma whole-slide images (WSIs). BRCA-M2C
is a breast cancer dataset and consists of 120 image tiles
from 113 patients. Both CoNSeP and BRCA-M2C contain
three types of cells: inflammatory, epithelial, or stromal.
Lizard has 291 histology images of colon tissue from six
different dataset sources, containing nearly half a million
labeled nuclei in H&E stained colon tissue. Lizard pro-
vides nucleus-level class labels for epithelial cells, connec-
tive tissue cells, lymphocytes, plasma cells and neutrophils.
CoNSeP and Lizard contain the annotated contour masks of
nuclei while BRCA-M2C only has the labels of centroids.
To run instance based and bounding box based methods on



Table 1. Results on three benchmarks, CoNSep, BRCA-M2C and Lizard. For each dataset, we report the F-score of each class (EF), the
mean F-score over all classes (F..) and the detection F-score (Fy). FI"fl: pEpi- pStro. pNeu. plLym. pPla. pEos. yng OO depote
the F-socre for the inflammatory, epithelial, stromal, neutrophils, lymphocytes, plasma, Eosinophil and connective tissue cells, respectively.
For each row, the best method is in bold type and the second best method is underlined.

F-scoret | Hovernet [14] DDOD [7] TOOD [I0] MCSpatNet [T] SONNET [0] DAB-DETR [25] Cogvplfgfttlz Al Ac(gli’rr;;ler
2019 2021 2021 2021 2022 2022 2022 -
FInft. 0.514 0.516 0.622 0.583 0.563 0.531 0.618 0.635
&| pEpi- 0.604 0.436 0.616 0.608 0.502 0.440 0.625 0.635
% FStro. 0.391 0.429 0.382 0.527 0.366 0.443 0.542 0.568
O| 7, 0.503 0.494 0.540 0.573 0.477 0.471 0.595 0.613
Fy 0.621 0.554 0.608 0.722 0.590 0.619 0.715 0.739
o| FIMT 0.454 0.394 0.400 0.424 0.343 0.437 0.423 0.474
S| pE 0.577 0.544 0.559 0.627 0411 0.634 0.636 0.637
Z:') FStro. 0.339 0.373 0315 0.387 0.281 0.380 0.353 0.344
z| F. 0.457 0.437 0.425 0.479 0.345 0.484 0.471 0.485
Fy 0.74 0.659 0.662 0.794 0.653 0.705 0.785 0.796
FNew 0.210 0.025 0.029 0.105 0.09 0.142 0.205 0.270
FEpi- 0.665 0.584 0.615 0.601 0.599 0.653 0.714 0.788
| Frvm 0.472 0.342 0.404 0.457 0.538 0.544 0.611 0.690
§| pPia 0.376 0.130 0.152 0.228 0.370 0.356 0.333 0.475
S| pEos. 0.367 0.124 0.157 0.220 0.365 0.295 0.403 0.450
FCon- 0.492 0.347 0.383 0.484 0.143 0.559 0.578 0.671
7, 0.430 0.259 0.290 0.349 0.351 0.425 0.474 0.557
F 0.729 0.561 0.606 0.713 0.682 0.656 0.764 0.782

BRCA-M2C, we follow the work [1]] to apply the SLIC [2]
algorithm to generate superpixels as instances. We split the
fully labeled samples into training, validation, and test sets,
following the official partition [[14} 1, [13].
Evaluation metrics. We follow the work [14] and use
F-score to evaluate the detection and classification tasks. A
higher F-score means better performance. For the detection,
we compute the Euclidean distance between each predicted
centroid and GT to yield a cost matrix. Then we run the
Hungarian algorithm [20] with the cost matrix to obtain the
paired results, and set the pairs beyond 6 pixels to unpaired
samples. The predicted centroids belonging to some pair
are correctly detected centroids (7' P,, d for detection) while
the rests are overdetected predicted centroids (F'Py). The
GT centroids without matched predictions are called misde-
tected GT (F'Ng). The detection F-score is calculated with
the size of the above sets of nuclei: F; = %.
For the classification task with K classes, TP, are fur-
ther split into the following subsets: correctly classified cen-
troids of Type k (T PY), incorrectly classified centroids of
Type k (F P*) and incorrectly classified centroids of types
other than Type k& (F'N¥). The classification F-score is de-

fined as: FF = 2T Py
‘e = ST PFAFPFAFNE) T FP 1 FNy

Implementation details. Our implementation is based on
MMDetection [6]. We use AdamW [28]] optimizer with a

learning rate of 2% to train models. We load the ImageNet

[8] pre-trained weights for initializing the ConvNeXt-B
backbone and the embedding dimension F is set to 128.
For training and inference, we remove the centroid proposal
whose maximum category score is smaller than a threshold
of 0.5 and no more than n proposals are preserved. n is usu-
ally set to 1000. During the training, the network is trained
with only the local branch loss in early steps and then the
overall loss function (Eq. [I) is optimized with o = 0.1.
During the inference, we adopt the global network for pre-
diction with sliding windows. We apply the multi-scale
training with sizes between 600 and 800, and infer the im-
age with a size of 800 x 800. More details are listed in the
supplementary material.

4.2. Comparison with State-of-the-arts

As shown in Table [T} we compare our proposed method
with the state-of-the-art approaches which can jointly seg-
ment/detect and classify cell nuclei. These approaches
include the instanced based methods (Hovernet [14],
SONNET [9]), the bounding box based methods (DAB-
DETR [25], TOOD [10], DDOD [7]), and the dots map
based methods (UperNet with ConvNeXt [26] backbone,
MCSpatNet [1])). In Table[I] the proposed method achieves
the highest mean F-score in both detection and classification
tasks on the benchmarks CoNSeP, BRCA-M2C and Lizard.

For the Lizard dataset, our proposed method demon-



Table 2. The results of ablation study. The results are obtained on the CoNSeP and Lizard datasets. ‘BL’ means training the single-branch
baseline in our method, with original pathological images. ‘RC’, ‘RR’ and ‘RT’ denote the random crop, random rotation and random
affine transformation strategies for synthesizing local views. ‘AAT’ is the Adaptive Affine Transformer and ‘GL’ is the supervised loss

based on the global branch.

Methods | CoNSeP | Lizard
‘ Fclﬂfl FCEP7 FcStro. E Fy ‘ FC]Veu. FCEI” FCLym FCPla. FCEOS. FCCOTL. Fc F,

BL 0.571 0.627 0.538  0.579 0.696 | 0.042 0.740 0.629 0.395 0.348 0.526  0.447 0.715
BL+RC 0.604 0.625 0.560  0.596 0.713 | 0.011 0.707 0.625 0.365 0.335 0.629  0.445 0.725
BL+RR 0.595 0.619 0.545 0.584 0.704 | 0.010 0.743 0.612 0.389 0.347 0.633  0.456 0.732
BL+RT 0.617 0.565 0.541 0.574 0.711 0.070 0.741 0.62 0.414 0.393 0.660 0.474 0.749
BL+AAT 0.603 0.627 0.553  0.594 0.721 0.234 0.774 0.659 0.440 0.428 0.615 0525 0.752
BL+RC+GL 0.606 0.648 0.551 0.602 0.730 | 0.187 0.758 0.677 0.439 0.430 0.662 0526 0.769
BL+RR+GL 0.626 0.638 0.555 0.606 0.726 | 0.140 0.758 0.643 0.411 0.404 0.657 0502 0.747
BL+RT+GL 0.642 0.562 0.543 0.582 0.725 | 0.174 0.768 0.664 0.453 0.454 0.679 0532 0.775
BLtguArTS;—GL 0.635 0.635 0.568 0.613 0.739 | 0.270 0.788 0.690 0.475 0.450 0.671  0.557 0.782

strates 1.8% F-socre in detection and 8.3% F-score in clas-
sification higher than the second best model MCSpatNet,
respectively. Some existing models show inferior results.
It may be that Lizard is a newly released and challenging
benchmark that has the class imbalance problem. Figure
presents a qualitative comparison between the state-of-the-
art algorithms and the proposed network. More results are
presented in the supplemental materials.

Comparison using the Same Backbone. Consider that a
large-size of high-capacity backbone may improve or de-
grade the performance due to over-fitting. To fairly repro-
duce the existing methods in Table [I] their backbones are
set following their original paper. All the backbones are
pre-trained on the ImageNet. Note that in Table [I| even
though DAB-DETR and UperNet use the same backbone
ConvNeXt as our method, the proposed model significantly
exceeds them by 2.4%-12% in F; on the CoNSep dataset.
Comparison with Bounding Box based Methods. Bound-
ing box methods provide more information like cell sizes,
but their labels are more expensive than the centroid labels
used by our method. We only aim at locating more cells
with correct labels and reducing the missing rate, which can
be used to compute the counts of cells as prognostic mark-
ers [12]]. In Table[T] two competitive bounding-box models
DDOD and DAB-DETR are compared with ours. The pro-
posed method surpasses the two models by more than 9%
F-score in detection on the BRCA-M2C dataset. Such a
performance gap unveils those centroid-based methods are
superior to bounding-box based ones for nuclei detection.

4.3. Ablation Study

Effectiveness of the proposed AAT module. In Table
‘BL’ denotes the baseline that is the global branch in our
method (Figure[2). ‘BL+AAT" is a dual-branch model using
the AAT to warp images and the EMA strategy to update the
global branch. Comparing ‘BL+AAT’ with ‘BL’ shows that

the AAT module improves the baseline by 7.8% in F,. and
3.7% in F; on the Lizard dataset, which is significant.
Comparison with Non-learnable Data Augmentation.
Since the AAT can learn to transform input image patches
for training, we compare the AAT with other traditional
non-learnable data augmentations. As Table @] shows, we
implement 3 kinds of non-learnable augmentation: Random
Cropping, Random Rotation, and Random Affine Transfor-
mation, which are denoted as ‘+RC’, ‘+RR’, and ‘+RT".
‘BL+AAT+GL’ denotes our overall proposed method,
while ‘GL’ means the Global Loss (the supervision from
the global branch, see the lower half of Table [2). By
replacing AAT with RC/RR/RT, we obtain the results of
‘BL+RC+GL’, ‘BL+RR+GL’, ‘BL+RT+GL’. Our proposed
method outperforms the three models by 2.5%-5.5% F-
score in classification and 0.7%-3.5% F-score in detection,
on the Lizard dataset. The results suggest that the pro-
posed AAT is superior to the 3 kinds of data augmentation
strategies. Interestingly, the AAT brings more significant
improvements in the sub-task of cell classification, which
indicates that the proposed module does synthesize useful
input samples for learning more robust semantic features.
Effectiveness of the Global-Local Architecture. We in-
vestigate the strengths of the global-local framework. In
Table [2| we analyze the results of different image trans-
formation strategies, and find that the use of Global Loss
L(y,y) from the global network can achieve stable im-
provements. Specifically, on Lizard, ‘BL+AAT+GL (Ours)’
surpasses ‘BL+AAT’ by 3% and 3.2% F-scores in detection
and classification, respectively. The statistics suggest that
using sub-network learning from large-scale inputs can help
train another sub-network to adapt to various fields of view.
Efficiency Analysis. Our AAT and dual-branch design are
used only in the training stage. Thus, our method enjoys
the same inference efficiency as the single-branch baseline.
As Table [3] shows, our method avoids post-processing and
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Figure 5. The effects of the number of warped images generated by
the Adaptive Affine Transformer on Lizard dataset. The F-scores
of each nucleus category are in the supplemental materials.

takes less than 0.1 s for inferring an image, while the post-
processing based methods are 3 times slower (> 0.33 s).
Amount of Warped Images. Figure [5] shows the results
of investigations about how the number of warped images
M for training a local network affects the testing F-score.
The results show that setting M to 4 performs the best. Set-
ting M from 2 to 4 can achieve consistent improvements in
comparison to the model with M/ = 1. A large number of
distorted images (e.g., M = 5) would degrade the results.

Table 3. Efficiency Analysis of the state-of-the-art methods and
ours with a Tesla v100 (32GB), Intel Xeon Gold 6248 on CoNSeP.

Time (s) Memory (GB)
Methods Inference+Post-process  Inference  Training
Baseline (BL) 0.097 11.191 12.298
HoverNet 0.021+0.376 11.380 12.892
MCSpatNet 0.058+0.287 2.679 6.228
SONNET 0.081+0.250 21.031 30.493
Ours 0.097 11.191 24.206

5. Conclusion

In the paper, we propose a novel affine-consistent trans-
former framework that directly predicts a list of locations

and categories for multi-class nuclei detection without com-
plex post-refinements. We first introduce an Adaptive
Affine Transformer module, which can automatically learn
argumentation strategies to warp training input images, and
enhance the model adaptability and accuracy. Next, we pro-
pose two associated networks that adapt to local-scale im-
age views under the guidance of global-scale predictions, to
boost the consistency and robustness of the model. Exten-
sive experiments on three benchmarks have demonstrated
the strengths of our overall framework AC-Former and the
proposed AAT module on nuclei detection and classifica-
tion tasks.

The limitation is that our model could fail to locate in-
complete nuclei that are split at image boundaries due to
the lack of contextual information. To solve the issue, we
may try to crop highly-overlapping image patches and stitch
their results better in future work.
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