arXiv:2309.02527v1 [cs.CV] 5 Sep 2023

A skeletonization algorithm for gradient-based optimization

Martin J. Menten'+?
Ivan Ezhov! Robbie Holland?

Abstract

The skeleton of a digital image is a compact represen-
tation of its topology, geometry, and scale. It has utility in
many computer vision applications, such as image descrip-
tion, segmentation, and registration. However, skeletoniza-
tion has only seen limited use in contemporary deep learning
solutions. Most existing skeletonization algorithms are not
differentiable, making it impossible to integrate them with
gradient-based optimization. Compatible algorithms based
on morphological operations and neural networks have been
proposed, but their results often deviate from the geometry
and topology of the true medial axis. This work introduces
the first three-dimensional skeletonization algorithm that
is both compatible with gradient-based optimization and
preserves an object’s topology. Our method is exclusively
based on matrix additions and multiplications, convolutional
operations, basic non-linear functions, and sampling from
a uniform probability distribution, allowing it to be easily
implemented in any major deep learning library. In bench-
marking experiments, we prove the advantages of our skele-
tonization algorithm compared to non-differentiable, mor-
phological, and neural-network-based baselines. Finally, we
demonstrate the utility of our algorithm by integrating it with
two medical image processing applications that use gradient-
based optimization: deep-learning-based blood vessel seg-
mentation, and multimodal registration of the mandible in
computed tomography and magnetic resonance images.

1. Introduction

Skeletonization algorithms aim at extracting the medial
axis of an object, which is defined as the set of points that
have more than one closest point on the object’s boundary
[7]. This lower-dimensional representation compactly en-
codes various geometric, topological, and scale features. As
such, it is useful for many tasks in computer vision, including
object description, compression, recognition, tracking, regis-
tration, and segmentation [19, 23, 26, 41, 46]. While there
are several efficient approaches to calculate the medial axis in
continuous space, extracting the skeleton of a discrete digital

Johannes C. Paetzold!»?
Monika Probst!
!Technical University of Munich

Veronika A. Zimmer! Suprosanna Shit!
Julia A. Schnabel'’ Daniel Rueckert!
“Imperial College London

image is not trivial. The search for accurate skeletoniza-
tion algorithms, which can process two-dimensional and
three-dimensional digital images, has spawned a plethora of
research works [5, 6, 8, 16, 19, 32,43, 47]. For a comprehen-
sive overview and taxonomy of skeletonization algorithms
and their applications, we refer to the excellent survey by
Saha et al. [33].

Today, computer vision tasks are commonly solved us-
ing deep learning. Skeletonization may be used as building
block or inductive bias in these image processing applica-
tions [13, 17, 39]. However, most established skeletoniza-
tion methods are not compatible with backpropagation and
gradient-based optimization [33]. The few works that have
integrated skeletonization with deep learning pipelines rely
on morphological skeletonization algorithms [39]. This class
of algorithms is based on simple morphological operations,
such as erosion and dilation [2 1, 45]. However, they will of-
ten result in breaks in the skeleton, causing it to diverge from
the geometry and topology of the true medial axis. Recently,
learning-based methods have also been harnessed for skele-
tonization [9, 13, 17,24, 25,27, 37, 38]. Most of these works
train an encoder-decoder neural network on pairs of input
images and ground truth skeletons, which have previously
been obtained using a classical skeletonization algorithm.
While learned approaches are intrinsically compatible with
backpropagation, they are not guaranteed to preserve the
topology of the input. Additionally, they are susceptible
to domain shifts between the training and inference data

[10, 44].

Our contribution This work bridges the gap between tradi-
tional skeletonization principles with strict topology guaran-
tees and their integration with gradient-based optimization.
We introduce a skeletonization algorithm that is topology-
preserving, domain-agnostic, and compatible with backprop-
agation (see Figure 1). Our algorithm is exclusively based
on matrix additions and multiplications, convolutional oper-
ations, basic non-linear functions, and sampling from a uni-
form probability distribution, allowing it to be easily imple-
mented in any major deep learning library, such as PyTorch
or Tensorflow [2, 28]. In benchmarking experiments, we
establish that our algorithm outperforms non-differentiable,

Non-differentiable

Compatible with gradient-
based optimization

Domain-agnostic

Morphological
skeletonization

Neural-network-based
skeletonization

Figure 1. Most existing skeletonization algorithms are not differentiable, making it impossible to integrate them with gradient-based
optimization. Morphological and neural-network-based solutions can be used with backpropagation, but alter the topology of the object
by introducing breaks along the skeleton. Our proposed skeletonization algorithm preserves the topology while simultaneously being

compatible with gradient-based optimization.

morphological, and neural-network-based baselines. Finally,
we directly integrate our skeletonization algorithm with two
medical image processing applications that rely on gradient-
based optimization. We show that it enhances both deep-
learning-based blood vessel segmentation, and multimodal
registration of the mandible in computed tomography (CT)
and magnetic resonance (MR) images.

2. Prerequisites

Digital images A discrete three-dimensional image is an
array of points P = {p(x, y, z) }, which are each assigned an
intensity value, on a lattice defined by Cartesian coordinates
x,y,2 € Z [15]. Owing to the grid nature of the image,
we can define the 6-neighborhood Ng(p), 18-neighborhood
Nis(p), and 26-neighborhood N6 (p) of a point [31]:

Ns(p) = {ps(Jo—2'|+|y—y'|+|z—2|) < 1},
Nag(p) = {p'smax(|Jz—2'|,|ly—y/|,|z—2'|) <1}, (D)
Nig(p) = {p;(le —a'|+|y—y'| +|z—2|) <2} N Nas(p).

Points that are inside each other’s n-neighborhood are called
n-adjacent. Two points p and p’ are said to be n-connected,
if there is a sequence of points p = py, ..., pr = p’ so that
each p; is n-adjacent to p;_q for 1 < ¢ < k.

Euler characteristic In the special case of a binary image
the value of each point is either 1 or 0. The foreground of a
binary image is represented by the set .S of points with value
1, while the set S denotes the remaining points with value 0.
Based on above’s definition of connectedness, we can define
an object O as a set of n-connected points in S. An object
in S that is completely surrounded by points in S is called a
cavity C in S. Finally, a hole H can be intuitively described
as a tunnel through S. Objects, cavities and holes can be
analogously defined for S. By combining the number of

objects, cavities, and holes the Euler characteristic, or genus,
of a 6-connected set of points G can be determined [15]:

Go = #0 — #H + #C..)

It is also possible to span a graph between all 6-neighbors.
On this graph, simplicial complexes consisting of one, two,
four, or eight points are called vertex v, edge e, face f, or
octant oct, respectively [15]. G can also be calculated based
on the number of these complexes via

Gg = #v — #e + #f — #oct . 3)

In the following, we only consider the case in which objects
in S are 26-connected and objects in S are 6-connected. To
calculate the genus of a 26-connected S Gag(S) we can

derive G(.S) using Equation 2 or 3 and use the following
relation [15]:

G6(5) = Gg(S5) — 1 4)
Simple points Crucial to the skeletonization of digital im-
ages is the definition of a simple point. A point belonging
to S is simple if it can be deleted, that is changed from 1 to
0, without altering the image’s topology. Morgenthaler [22]
shows that this is the case if the deletion of a point does not
change the number of objects and holes in .S and S. Using §
to denote the difference in topology between S and S \ {p},
we can write this relation as:
pis simple <= 5)
§O(S) =0,60(S)=0,5H(S)=0,6H(S) =0.
Lee et al. [16] prove that these conditions are equivalent to
calculating the change in the number of objects and Euler
characteristic of .S in a point’s local 26-neighborhood:

pissimple <= 60(S) =0,0G2%(S)=0. (6)

3. Method

Arguably, the most common class of skeletonization al-
gorithms for digital images are iterative boundary-peeling
methods [33]. These algorithms are based on the repeated
removal of simple points until only the skeleton remains.
[4, 16, 18, 22]. At its core, our skeletonization algorithm
follows the same paradigm (see Figure 2). To ensure that
our method is compatible with gradient-based optimization
while remaining topology-preserving, we make the follow-
ing contributions:

* We introduce two methods to differentiably identify
simple points (see Section 3.1). One solution relies on
the calculation of the Euler characteristic, and the other
one is based on a set of Boolean rules that evaluate a
point’s 26-neighborhood.

* We adopt a scheme to safely delete multiple simple
points at once, enabling the parallelization of our algo-
rithm (see Section 3.2).

* We introduce a strategy to apply our algorithm to non-
binary inputs and integrate it with gradient-based opti-
mization by employing the reparametrization trick and
a straight-through estimator (see Section 3.3).

* All of above’s contributions are formulated using matrix
additions and multiplications, convolutional operations,
basic non-linear functions, and sampling from a uni-
form probability distribution. We combine them into a
single PyTorch module, which we make publicly avail-
able (see Section 3.4).

Delete simple ! Output
non-endpoints ! skeleton

' Detect simple

'
Input bmary Detect
1 pomts in subfield

image endpoints

1 For each
sul bfleld

Figure 2. Data flow through an iterative boundary-peeling skele-
tonization algorithm. Our method follows the same paradigm, while
ensuring that the identification of simple points, endpoints, and
the subfield-based parallelization are all compatible with gradient-
based optimization.

3.1. Identification of simple points
3.1.1 Euler characteristic to identify simple points

Lobregt et al. [18] base their detection of simple points on
the observation that the removal of a simple point does not
alter the genus of its 26-neighborhood:

pis simple = §Ga4(S) =0, 7

which is a relaxation of Equation 6. To efficiently determine
0G6(S), their algorithm assesses the change of the genus
in each of the 26-neighborhood’s eight octants and sums
their contributions. Thereby, they rely on a look-up table
in which each entry corresponds to one of the 2% possible
configurations of an octant.

In order to reduce the number of comparisons and pro-
vide a smoother learning signal for backpropagation, we use
eight convolutions with pre-defined kernels to determine the
number of vertices, edges, faces, and octants (see Figure 3).
By inserting these into Equation 3, we calculate G(S) of
each 26-neighborhood. Afterwards, we repeat this process
with the central point of each neighborhood set to zero and
assess whether the Euler characteristic has changed. This
process is parallelized while ensuring that only one point in
each 26-neighborhood is deleted at a given time. To this end,
we use multiple sets of points given by

Si,j,k S {p/(‘L+27y+jaZ + k)}a
I7yvz€{07274a "}7 Z’]7k‘6{031}

Cycling through all combinations of ¢, j, and k yields eight
subfields of points that can be processed simultaneously.
The same subfields are also used during the later removal of
simple points (see Section 3.2).

Lee et al. [16] show that the invariance of the Euler char-
acteristic under deletion of a point is a necessary but not
sufficient condition for it being simple (cf. Equation 6).
Consequently, above’s strategy slightly overestimates the
number of simple points [16]. On the set of all possible
226 configurations of a 26-neighborhood, above’s algorithm
characterizes the central point as simple in 40.07% of cases
when in fact only 38.72% are truly simple.

®)

3.1.2 Boolean characterization of simple points

For this reason, we propose a second method that identi-
fies the exact set of simple points. It is based on work by
Bertrand et al. [4] who introduce the following Boolean
characterization of a simple point:

pissimple <= (#Xg = 1) or (#Xo6 = 1)
or (#Bgg = 0,#X15 = 1)
or (#Ag = 0,#Bas = 0,#B15 = 0,
#Xo — #A15 +#A = 1)

€))

where #X,, and #X,, are the number of n-neighbors of a
point belonging to S and S, respectively. #Bag, #46, #B13,
#Ag, and #A,4 correspond to the number of specific cell
configurations depicted in Figure 4.

Similar as before, the presence of these five configura-
tions and their 6-, 8-, and 12-rotational equivalents can be
efficiently checked by convolving the image with pre-defined

1 vertex
detection kernel

Inverted
26-neighborhood

Point with
26-neighborhood

9 vertices

ido

3 edge detection

3 face detection 1 octant

kernels kernels detection kernel

0) face —0 octants

Figure 3. In order to calculate the Euler characteristic of a point, we initially invert its 26-neighborhood. Next, we determine the number of
vertices, edges, faces, and octants of the background via eight simple convolutions with predefined kernels. Finally, Equations 3 and 4 are

used to derive the Euler characteristic of the foreground.

kernels. Compared to our first strategy, this algorithm trades
off computational efficiency for accuracy. It requires a total
of 57 convolutions with three-dimensional kernels, but is
guaranteed to correctly classify all points of a binary image
as either simple or not.

P A

A@ A18 A26

iz ar

Big By

Figure 4. The five cell configuration introduced by Bertrand er al.
[4] used for Boolean characterization of simple points.

3.2. Parallelization and endpoint conditions

Sequentially checking each point using above’s condi-
tions and deleting them if they are simple already consti-
tutes a functioning skeletonization algorithm. However,
this strategy is very inefficient when applied to large three-
dimensional images. Naively deleting all simple points at
once is not possible as simultaneous removal of neighboring
points may affect the object’s topology even if both points
are simple. For this reason, previous works have researched
strategies to safely remove multiple simple points in parallel
[5, 16, 19,22,32,43]. We adopt a subiterative scheme based
on the same eight subfields that are already used during the
calculation of the Euler characteristic (see Equation 8) [5].

In conventional skeletonization algorithms, the program ter-
minates once a full iteration does not result in any points
being deleted. To keep the number of operations compara-
ble during repeated application, we explicitly provide the
number of outer-loop iterations. This simple scalar hyperpa-
rameter can be easily tuned on a few representative samples
of the considered dataset.

Merely preserving non-simple points would lead to a
topological skeleton. For example, a solid object without
any holes or cavities would be reduced to a single point.
For many applications in image processing, it is desirable to
also preserve some information about the image’s geometry,
such as the existence and position of extremities. This can
be achieved by also preserving so-called endpoints. Our
algorithm uses the following definition of an endpoint:

pisendpoint <= #X95 <1 (10)

Other definitions for endpoints could potentially be inte-
grated with our algorithm and would result in different prop-
erties of the obtained skeleton. For example, endpoint condi-
tions could be chosen to extract a medial surface instead of
a medial axis, or the number of short extremities, sometimes
called spurs, may be reduced [35, 47].

3.3. Processing of continuous inputs

The previously introduced definitions for simple points
and endpoints are only valid for binary images. However,
in many applications the input is often a matrix of contin-
uous values, such as probability maps output by a learning
algorithm. Simply rounding these inputs inhibits learning
via backpropagation. We circumvent this issue by treat-
ing each point as a discrete, stochastic node modeled by a
Bernoulli distribution, and use the reparametrization trick
and a straight-through estimator to facilitate sampling and
gradient estimation from it [3, 12, 20].

Non-differentiable —

Morphological —
Shit et al.

Morphological —
Viti et al.

Bertrand et al.

Brain vasculature Retinal blood vessels

Mandible

Our skeletonization
(Boolean)

Our skeletonization
(Euler characteristic)

Neural network —
Nguyen

Neural network —
Panichev et al.

Insufficient
training data

Insufficient
training data

Figure 5. The results of applying the seven tested skeletonization algorithm to representative samples of three diverse datasets. Of the
six algorithms that are compatible with gradient-based optimization, only our two methods are able to extract a thin, topology-preserving
skeleton, similar to the one obtained using the non-differential baseline. Additional samples are shown in the Supplementary Material.

The reparametrization trick splits each node into a differ-
entiable function, the raw grayscale input, and a fixed noise
distribution [1 1, 12, 20]. We can sample from each node via

X:(,((loga%) ,a:% (11

T —a1)’

where o € (0,1) is the probability of the input being 1,
o denotes the sigmoid function, L is a sample from a Lo-
gistic distribution that is scaled by factor 3 € [0, c0), and
7 € (0,00) is the Boltzmann temperature. Both § and 7
control the entropy of the distribution. Others have proposed
gradually annealing these parameters as learning progresses
or even updating them via backpropagation [1 1, 12, 20]. In
this work, we treat them as simple tunable hyperparameter.

Afterwards, we discretize the obtained samples using a
straight-through gradient estimator [3, 30]. It returns the
rounded binary value during the forward pass. Instead of
using the zero gradient of the rounding operation during the
backward pass, the modified chain rule is applied and the
identity function is used as proxy gradient.

3.4. Implementation in PyTorch

Our proposed algorithm consists exclusively of matrix
additions, multiplications, convolutional operations, basic
activation functions, and sampling from a uniform probabil-
ity distribution. As such, it can easily be implemented in any
major deep learning library and runs efficiently on graph-
ics processing units. Our skeletonization module, which
we make publicly available', is implemented in PyTorch

https://github.com/martinmenten/
skeletonization-for-gradient-based-optimization

[28] and is fully integrated with its automatic differentiation
engine.

4. Experiments and results

Initially, we benchmark the performance of our skele-
tonization algorithm with regard to spatial and topological
correctness, run time, and the ability to combine it with back-
propagation (see Section 4.1). Afterwards, we showcase the
utility of our method by integrating it with two medical im-
age processing pipelines: deep-learning-based blood vessel
segmentation and multimodal registration of the mandible
(see Section 4.2).

For the experiments, we use three different datasets:

 the DRIVE dataset consisting of 40 two-dimensional
retinal color fundus photographs and matching annota-
tions of the visible blood vessels [40],

* the VesSAP dataset comprising 24 three-dimensional
light-sheet microscopy images of murine brains after
tissue clearing, staining, and labeling of the vascular
network, which we split into 2,400 patches, [42].

¢ an in-house dataset of 34 matched three-dimensional
CT and MR images and manually extracted segmenta-
tion masks of the mandible.

Additional information about each dataset and our experi-
mental setup can be found in the Supplementary Material.

https://github.com/martinmenten/skeletonization-for-gradient-based-optimization
https://github.com/martinmenten/skeletonization-for-gradient-based-optimization

Table 1. Quantitative comparison of the topological accuracy and run time of seven skeletonization algorithms on three datasets.

Dataset Skeletonization algorithm #points Bo error B1 error PBoerror Run time [ms]
Non-differentiable — Bertrand et al. [0] 8316618 0+0 0+0 - -
Morphological — Shit et al. [39] 99261667 1156197 50423 - 19+1
Morphological — Viti et al. [45] 11834+976 266462 45+19 - 2343

DRIVE Neural network — Panichev et al. [27] 10420+915 613 13£11 - 1441
Neural network — Nguyen [25] 106191806 105 18£8 - 11741
Ours — Euler characteristic 8393+611 0+0 0+0 - 10143
Ours — Boolean 83934611 0+0 040 - 54042
Non-differentiable — Bertrand et al. [0] 471+£212 0+0 0+0 0+0 -
Morphological — Shit et al. [39] 1914+809 173+79 345 0+1 20+1
Morphological — Viti ef al. [45] 3783+1797 242 23+18 0+1 21+2

VesSAP Neural network — Panichev ef al. [27] 423+182 64+38 345 0+1 1641
Neural network — Nguyen [25] 4224189 33419 4+6 0+1 115+1
Ours (Euler characteristic) 5404245 0+1 0+1 0+1 10042
Ours (Boolean) 540+243 0+0 040 040 520426
Non-differentiable — Bertrand et al. [6] 236437 0+0 0+0 0+0 -
Morphological — Shit et al. [39] 26981387 131424 13+10 040 37+1
Morphological — Viti et al. [45] 4866+758 1+1 81+26 040 42+1

Mandible Neural network — Panichev ef al. [27] Insufficient training data
Neural network — Nguyen [25] Insufficient training data
Ours (Euler characteristic) 409+67 1+1 1+1 0+0 16042
Ours (Boolean) 405+68 0+0 0+0 0+0 1081+10

4.1. Benchmarking experiments
4.1.1 Spatial and topological accuracy

We compare our two skeletonization algorithms with five
baselines:

¢ a well-established non-differentiable skeletonization
algorithm by Bertrand ez al. [6], which has been imple-
mented in the open-source DGtal library [1],

* two morphological skeletonization algorithm based on
repeated opening and erosion proposed by Shit et al.
[39] and Viti et al. [45], respectively,

* two neural-network-based methods by Panichev et al.
[27] and Nguyen [25], respectively, that each train a
encoder-decoder network to output the skeleton of a
binary input image.

On all three datasets, both of our proposed algorithms pro-
duce continuous, thin skeletons that agree well with the non-
differentiable baseline (see Figure 5). When applying the
morphological skeletonization algorithms, we observe that
continuous blood vessels are split into many small objects
along the medial axis. Similarly, the mandible is broken into
small components that are positioned at the medial surface
of the input structure. The neural-network-based algorithms
also cannot preserve the topology of the vascular network
when applied to data from the DRIVE and VesSAP datasets,
and completely fail to converge during training on the small
mandible dataset.

These observations are corroborated by quantitative mea-
surements (see Table 1). We assess the topological correct-

ness of all skeletons by evaluating the error of the first three
Betti numbers, g, 81, and 5. These measure the absolute
difference of the number of objects, holes, and cavities, re-
spectively, between the input structure and obtained skeleton.
Our skeletonization algorithm based on the Boolean char-
acterization of simple points preserves the exact topology
of the base object in all cases as does the non-differentiable
baseline. The skeletons obtained by the morphological and
neural-network-based algorithms both contain topological er-
rors in all three Betti numbers. Furthermore, their produced
skeletons are often thicker than one voxel. This is reflected
by the substantially larger number of points included in the
results.

4.1.2 Run time analysis

Table 1 also lists the average run time of each skeletoniza-
tion algorithm when processing images of varying sizes and
dimensions. We report the duration of a single forward
and backward pass through each skeletonization module as
required during gradient-based optimization. All measure-
ments were conducted using a workstation equipped with a
Nvidia RTX A6000 GPU (Nvidia Corporation, Santa Clara,
California, United States), 128 GB of random access mem-
ory, and a AMD Ryzen Threadripper 3970X 32-core central
processing unit (Advanced Micro Devices, Inc., Santa Clara,
California, United States). We find that our algorithms are
slower than both morphological and neural-network-based
methods. Still, all algorithms run in a second or less and are
fast enough to be effectively employed for the applications
described in the following (see Section 4.2).

4.1.3 Compatibility with gradient-based optimization

In order to make our skeletonization algorithms compatible
with gradient-based optimization, logistic noise is added
to the input during the reparametrization trick (see Section
3.3). We demonstrate the efficiency of this approach and the
importance of well-tuned noise parameters, S and 7, in a
simple experiment (see Figure 6). Hereby, an input tensor
is initialized with random values and passed through our
skeletonization module. Using backpropagation, the tensor’s
values are learned so that its ultimate output resembles that of
the ground truth skeleton. While several degenerate solutions
that all yield the same skeleton, exist, we expect the learned
tensor to ultimately resemble the skeleton itself.

Mean

squared ..'...,
error
Image Skeletonization Prediction Differentiable Learned
skeletonization tensor

—» Forward pass
< Backpropagation

Figure 6. Experiment to test the compatibility of our skeletonization
algorithm (orange box) with backpropagation.

With very low levels of entropy, we observe that learning
with our skeletonization module is very slow (see Figure
7). Increasing the entropy results in single passes through
the skeletonization to be less faithful to the geometry and
topology of the true medial axis (see Figure 8). However,
averaging over repeated samples mostly recovers the true
skeleton and enables learning of the correct structure. At
too high entropy, convergence slows down as the obtained
skeleton is not sufficiently accurate anymore.

Learning progress with different levels of entropy

B
0.5 — 0.01
— 0.05

0.4 —0.1
5 0 — 05 -
5 -~ 10 -
© 50
(9] |
5 0.3 10.0
> 50.0
i 100.0
0.2 '
[
=

0.1

0.0

10 20 30 40 50
Number of backpropagation steps

Figure 7. Effect of the scale 3 of the added logistic noise on the

ability to propagate a gradient through our skeletonization mod-

ule. Both very low entropy and very high entropy inhibit learning.

Similar results can be found when varying 7 (see Supplementary

Material).

B=10,n=1 B=1.0,n=10

B=10,n=20

Figure 8. Effect of scaling the added logistic noise (/3) in our skele-
tonization algorithm. Repeated sampling (n) mostly recovers the
true skeleton.

4.2. Application experiments
4.2.1 Topology-aware blood vessel segmentation

We explore the utility of our skeletonization methods by
integrating them with a deep-learning-based segmentation
algorithm for the VesSAP dataset (see Figure 9). The training
of the basic U-Net incorporates the centerline Dice (clDice)
loss function that encourages topology preservation across
different vessel scales by comparing skeletons of the predic-
tion and ground truth [29, 39]. The loss formulation requires
a skeletonization function that is compatible with backprop-
agation. In all cases, we tune the weighting factor A, which
balances the clDice loss with the standard Dice loss.

Centerline
Dice Loss

Neural

Prediction
network

Differentiable
skeletonization

Skeletonization

Ground truth

Figure 9. Deep learning pipeline for training a vessel segmentation
network using the centerline Dice loss [39]. The loss formulation
requires the use of a skeletonization algorithm that is compatible
with backpropagation (orange box).

Using the clDice loss instead of a vanilla Dice loss slightly
improves the topological agreement between prediction and
ground truth as indicated by a lower error of the first three
Betti numbers (see Table 2). Moreover, we find that using
our skeletonization methods yield slightly better results than
using a morphological skeletonization algorithm. Spatial
accuracy, quantified by the Dice similarity coefficient (DSC),

was nearly identical in all cases. We obtain similar findings
when conducting the same experiment using the DRIVE
dataset (see Supplementary Material).

Table 2. Performance of the vessel segmentation network using
either a standard Dice loss (’Without’) or clDice loss with different
skeletonization algorithms.

Skeletonization DSC Bo error By error [32 error
Without 0.85+0.01 5.1£0.8 3.1+0.1 0.8+0.3
Morphological ~ 0.85+0.01 4.3£0.5 2.840.2 0.7+0.1
Ours (Euler) 0.86+0.01 3.5£0.2 2.7+0.1 0.440.1
Ours (Boolean) 0.864+0.01 3.7+£0.3 2.840.1 0.54+0.2

4.2.2 Multimodal registration of the mandible in CT
and MR images

Finally, we explore whether incorporating skeletonization
can improve multimodal registration of the mandible (see
Figure 10). This application is motivated by the fact that
bones often appear larger in MR images than in CT images.
When registering segmentation masks from both modalities,
the smaller mask can be orientated flexibly inside the larger
one. We propose extracting the skeleton of both structures
and calculating their overlap as image distance function in-
stead. We employ a conventional registration algorithm that
optimizes the image distance with respect to the rigid trans-
formation between both images using a gradient-based opti-
mization method, thus requiring a compatible skeletoniza-
tion method. We implement this application in AirLab [34],
which uses Pytorch’s autograd functionality to compute the
gradient based on the objective function. This allows a
seamless integration of our skeletonization module in a con-
ventional registration algorithm.

H

Warped image

Mean
squared

Differentiable
skeletonization

Moving image

— Forward pass
b S Backpropagation

Fixed image Skeletonization

Figure 10. Workflow for multimodal registration of the mandible.
To compensate for the different size of the mandible in CT and MR
images, the skeleton of both images are calculated (orange box)
and registered instead.

We report the DSC, the Hausdorff distance (HD) and
the average surface distance (ASD) between the fixed and
warped segmentation as proxy measure for registration accu-
racy (see Table 3). Our findings show registering the images
based on the skeleton of their segmentation map slightly
improves the alignment of both structures.

Table 3. Registration accuracy using two different loss functions:
either the image distance is calculated using the full binary mask
of the mandible ("Without’), or based on their skeletons obtained
via one of three skeletonization algorithms.

Skeletonization DSC HD [mm] ASD [mm]
Without 0.384+0.01 29.9+0.9 6.6+0.2
Morphological 0.3240.01 29.2+1.1 6.710.2
Ours (Euler) 0.374£0.02 28.6+1.2 6.61+0.2
Ours (Boolean) 0.3740.01 28.0+t1.1 6.5+0.2

5. Discussion and conclusion

This work bridges the gap between classical skeletoniza-
tion algorithms and the ability to integrate these with
gradient-based optimization. We have introduced a three-
dimensional skeletonization algorithm that is compatible
with backpropagation, domain-agnostic and preserves an
object’s topology. Our method combines a characterizations
of simple points, a parallelization scheme for their efficient
removal, and a strategy for discretization of non-binary in-
puts that are all compatible with gradient-based optimization.
In benchmarking experiments, we have proved the superior
spatial and topological accuracy of our method compared to
morphological, and neural-network-based baselines.

Our algorithm consists exclusively of matrix additions,
multiplications, convolutional operations, activation func-
tions and sampling from basic probability distributions. Con-
sequently, it can be implemented in any deep learning library
and can be seamlessly integrated with diverse image pro-
cessing pipelines that use gradient-based optimization. We
showecase this utility by applying it in two realistic medical
image processing applications: semantic segmentation of
blood vessels with deep learning, and automated multimodal
image registration. In both cases, we find that our skele-
tonization algorithms allows the incorporation of topological
and geometric information within the respective optimiza-
tion objective, leading to modest performance gains.

To our knowledge, this work introduces the first topology-
preserving skeletonization algorithm for gradient-based op-
timization. Still, we discern that there may be other, poten-
tially more effective, approaches to create such algorithms.
We hope that this work can serve as a blueprint for others to
further explore skeletonization. Building upon a rich body
of literature on classical skeletonization algorithms, future
work could further explore alternative strategies to identify
simple points [33, 36]. Similarly, past works have exten-
sively studied schemes to efficiently remove simple points in
parallel of which some may be better suited for processing
on graphics processing units. Finally, the endpoint condi-
tion used during skeletonization influences the properties of
the created skeleton [36, 47]. In other applications skeletal
surfaces may be preferable over a medial axis or a different
trade-off between a geometric and topological skeleton may
be chosen. Ultimately, we envision that our method may

also be beneficial in many computer vision applications that
have historically utilized skeletonization, but have since been
increasingly solved using deep learning.

Acknowledgments

We would like to thank Viktoria Thierauf for her help
with the Mandible dataset. This work was funded by the
Munich Center for Machine Learning.

References

[1] Dgtal: Digital geometry tools and algorithms library. http:
//dgtal.org. 6
[2] Martin Abadi et al. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. 1
[3] Yoshua Bengio et al. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013. 4,5
[4] Gilles Bertrand. A boolean characterization of three-
dimensional simple points. Pattern recognition letters,
17(2):115-124, 1996. 3, 4
[5] Gilles Bertrand et al. Three-dimensional thinning algorithm
using subfields. In Vision Geometry I11, volume 2356, pages
113-124. SPIE, 1995. 1,4
[6] Gilles Bertrand et al. Powerful parallel and symmetric 3d
thinning schemes based on critical kernels. Journal of Mathe-
matical Imaging and Vision, 48:134-148, 2014. 1, 6, 13
[7] Harry Blum. A transformation for extracting new descriptions
of shape. Models for the perception of speech and visual form,
pages 362-380, 1967. 1
[8] Gunilla Borgefors et al. Computing skeletons in three dimen-
sions. Pattern recognition, 32(7):1225-1236, 1999. 1
[9] Ilke Demir et al. Skelneton 2019: Dataset and challenge on
deep learning for geometric shape understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2019. 1, 11
[10] Yaroslav Ganin et al. Domain-adversarial training of neu-
ral networks. The journal of machine learning research,
17(1):2096-2030, 2016. 1
[11] Iris AM Huijben et al. A review of the gumbel-max trick
and its extensions for discrete stochasticity in machine learn-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022. 5
[12] Eric Jang et al. Categorical reparameterization with gumbel-
softmax. ICLR, 2017. 4,5
[13] Koteswar Rao Jerripothula et al. Object co-skeletonization
with co-segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3881-3889. IEEE, 2017. 1
[14] Diederik P Kingma et al. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 11
[15] T Yung Kong et al. Digital topology: Introduction and sur-
vey. Computer Vision, Graphics, and Image Processing,
48(3):357-393, 1989. 2
[16] Ta-Chih Lee et al. Building skeleton models via 3-D medial
surface axis thinning algorithms. CVGIP: Graphical Models
and Image Processing, 56(6):462—478,1994. 1, 2,3, 4

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

Jiang-Jiang Liu et al. Dynamic feature integration for simul-
taneous detection of salient object, edge, and skeleton. /EEE
Transactions on Image Processing, 29:8652-8667, 2020. 1
Steven Lobregt et al. Three-dimensional skeletonization: prin-
ciple and algorithm. IEEE Transactions on pattern analysis
and machine intelligence, 2(1):75-77, 1980. 3

C Min Ma et al. A fully parallel 3D thinning algorithm and
its applications. Computer vision and image understanding,
64(3):420-433, 1996. 1,4

Chris J. Maddison et al. The concrete distribution: A continu-
ous relaxation of discrete random variables. In Proceedings
of the International Conference on learning Representations.
International Conference on Learning Representations, 2017.
4,5

Petros Maragos et al. Morphological skeleton representation
and coding of binary images. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34(5):1228-1244, 1986. 1,
13

David G Morgenthaler. Three-dimensional simple points:
serial erosion, parallel thinning and skeletonization. TR-1005,
1981. 2,3, 4

Bryan S Morse et al. Multiscale medial analysis of medical
images. In Biennial International Conference on Information
Processing in Medical Imaging, pages 112—131. Springer,
1993. 1

Sabari Nathan et al. Skeletonnet: Shape pixel to skeleton pixel.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 0-0, 2019.
1

Nam Hoang Nguyen. U-net based skeletonization and bag
of tricks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2105-2109, 2021. 1,
6,11, 13

Kalmén Paldgyi et al. A sequential 3D thinning algorithm and
its medical applications. In Biennial International Conference
on Information Processing in Medical Imaging, pages 409—
415. Springer, 2001. 1

Oleg Panichev et al. U-net based convolutional neural network
for skeleton extraction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 2019. 1,6, 11, 13

Adam Paszke et al. Automatic differentiation in pytorch.
NIPS 2017 Workshop Autodiff, 2017. 1, 5

Olaf Ronneberger et al. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Com-
puting and Computer-Assisted Intervention—-MICCAI 2015:
18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part 111 18, pages 234-241. Springer,
2015. 7, 11

Frank Rosenblatt. The perceptron, a perceiving and recog-
nizing automaton. Cornell Aeronautical Laboratory, 1957.
5

Azriel Rosenfeld et al. Digital picture processing. Academic
press, 1976. 2

Punam K Saha et al. A new shape preserving parallel thin-
ning algorithm for 3D digital images. Pattern recognition,
30(12):1939-1955, 1997. 1, 4

http://dgtal.org
http://dgtal.org

(33]

(34]
(35]

[36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

Punam K Saha et al. A survey on skeletonization algorithms
and their applications. Pattern recognition letters, 76:3—12,
2016. 1,3, 8

Robin Sandkiihler et al. Airlab: autograd image registration
laboratory. arXiv preprint arXiv:1806.09907, 2018. 8
Doron Shaked et al. Pruning medial axes. Computer vision
and image understanding, 69(2):156-169, 1998. 4

Wei Shen et al. Skeleton pruning as trade-off between skele-
ton simplicity and reconstruction error. Science China Infor-
mation Sciences, 56:1-14, 2013. 8

Wei Shen et al. Object skeleton extraction in natural images
by fusing scale-associated deep side outputs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 222-230, 2016. 1

Wei Shen et al. Deepskeleton: Learning multi-task scale-
associated deep side outputs for object skeleton extraction
in natural images. IEEE Transactions on Image Processing,
26(11):5298-5311, 2017. 1

Suprosanna Shit et al. cldice-a novel topology-preserving loss
function for tubular structure segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16560-16569, 2021. 1, 6,7, 11, 13

Joes Staal et al. Ridge-based vessel segmentation in color
images of the retina. IEEE transactions on medical imaging,
23(4):501-509, 2004. 5, 11

David Thibault et al. Terrain reconstruction from contours by
skeleton construction. Geolnformatica, 4:349-373, 2000. 1
Mihail Ivilinov Todorov et al. Machine learning analysis of
whole mouse brain vasculature. Nature methods, 17(4):442—
449, 2020. 5, 11

YF Tsao et al. A parallel thinning algorithm for 3-D pictures.
Computer graphics and image processing, 17(4):315-331,
1981. 1,4

David Vazquez et al. Virtual and real world adaptation for
pedestrian detection. IEEE transactions on pattern analysis
and machine intelligence, 36(4):797-809, 2013. 1

Mario Viti et al. Coronary artery centerline tracking with the
morphological skeleton loss. In Proc. ICIP, pages 2741-2745,
2022. 1,6, 13

Feng Zhao et al. Preprocessing and postprocessing for
skeleton-based fingerprint minutiae extraction. Pattern Recog-
nition, 40(4):1270-1281, 2007. 1

Yong Zhou et al. Efficient skeletonization of volumetric
objects. IEEE Transactions on visualization and computer
graphics, 5(3):196-209, 1999. 1,4, 8

Supplementary Material
Used datasets

DRIVE The widely used DRIVE dataset consists of 40 two-
dimensional retinal color fundus photographs and matching
annotations of the visible blood vessels [40]. We normalize
the images to an intensity range between 0 and 1 and crop
them to a size of 512 x 512 pixel. Then, we divide the
dataset into training, validation and testing splits with a ratio
of 60% to 20% to 20%.

VesSAP The VesSAP dataset contains 24 three-dimensional
light-sheet microscopy images of murine brains after tissue
clearing, staining, and labeling of the vascular network. It
has been made publicly available and has been extensively
described by Todorov et al. [42]. We split the 500 x 500 x
50 voxel large images into non-overlapping patches of size
50 x 50 x 50. We remove the patches that only contain
background. Finally, we split the remaining ones into a
training, validation and testing partition with a ratio of 80%
to 10% to 10%, while ensuring a subject-wise split.
Mandible The mandible dataset consists of 34 matched CT
and MR images of the lower head and neck. In all images
the mandible bone was outlined by a clinical expert. We
resample all images to a resolution of 0.25 x 0.25 x 0.25
cm? and subsequently remove all smaller cavities of the
segmentation mask by alternatingly applying dilation and
erosion operations. For the benchmarking experiments of the
skeletonization algorithm we exclusively use the CT images
(cf. Section 4.1 of the main paper). For the multimodal
registration workflow that incorporates our skeletonization
module we use the matched image pairs (cf. Section 4.3 of
the main paper).

Neural network architecture and training

This work uses neural networks either for explicit skele-
tonization (cf. Section 4.1 of the main paper) or for vessel
segmentation (cf. Section 4.2 of the main paper). In the
first case networks are provided with a binary mask and
asked to provide the ground truth skeleton while being eval-
uated using the Dice loss. In the second case the neural net-
work is provided images from either the DRIVE or VesSAP
dataset and trained to output a blood vessel segmentation
map. Hereby, we use the topology-preserving clDice loss in
combination with various skeletonization algorithms [39].

The two neural-network-based skeletonization methods
are implemented according to the works and accompanying
public software code by Panichev et al. [27] and Nguyen
[25], respectively. In order to facilitate processing of volu-
metric images we replace all two-dimensional operations,
such as convolutions, pooling and normalization network
layers, with their three-dimensional equivalents.

The segmentation neural networks follow a basic U-Net
architecture with four downsampling and four upsampling

blocks with skip connections [29]. Each block consists of
two sequences of convolutional layer (either two- or three-
dimensional convolutions, kernel size: 3, same padding),
instance normalization layer and leaky-ReLU non-linearity
(slope: 0.01). Downsampling is achieved by using a stride
of 2 in the second convolutional layer of each block. At
each downsampling step, the number of feature maps is
also doubled and copied to the skip connection. Upsam-
pling is achieved via a transposed convolution with a kernel
size of 2 and stride of 2. After upsampling, the respective
skip connection is concatenated with the main feature map.
Network weights are optimized using the ADAM optimizer
with a learning rate of 10~% [14]. In experiments using the
DRIVE dataset, networks are trained with a batch size of 2
for 1,000 epochs. We apply random shifts (+10%) and rota-
tions (£45°) as data augmentation. For the VesSAP dataset,
networks are trained with a batch size of 16 for 200 epochs.
In each case, we pick the best performing network based
on the validation dataset before reporting the results on the
test dataset. All experiments are repeated three times using
different random seeds.

Additional qualitative skeletonization results

Figure 11 presents additional representative results of
applying the five skeletonization algorithms to the three
datasets (cf. Section 4.1 of the main paper).

Experiments using the SkelNetOn dataset

The SkelNetOn dataset was published in the scope of the
Deep Learning for Geometric Shape Understanding work-
shop held in conjunction with the 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition [9].
It consists of binary images depicting a range of stylized
objects and their corresponding skeletons. Compared to
the complex topologies of biological structures, the dataset
exclusively features closed two-dimensional surfaces.

We repeat the same benchmarking experiments as de-
scribed in Section 4.1 of the main paper using the SkelNe-
tOn dataset. At the time of our study the challenge’s public
leaderboard had been taken offline, so that we could not
use the official test split to benchmark our skeletonization
algorithms. Instead, we split the training dataset into a train-
ing, validation and testing partition. We observe the same
characteristic behavior of all skeletonization algorithms as in
the experiments with the other three datasets (see Figure 12).
Both morphological baseline algorithms introduce breaks
along the skeleton and in some cases omit large parts of the
medial axis. The neural-network-based solutions also alter
the topology of the object, whereas our skeletonization algo-
rithms result in a topologically correct, thin skeleton. This is
also reflected in the quantitative measurements reported in
Table 4.

Morphological — Neural network — Neural network — Our skeletonization ~ Our skeletonization
Viti et al. Panichev et al. Nguyen (Euler characteristic) (Boolean)
{ g / \ o g

Non-differentiable — Morphological —
Bertrand et al. Shit et al.
\\ i ‘\ \

ood vessels

S’
PN
< Sln %\G.

Brain vasculature

Insufficient Insufficient
training data training data

Mandible

Insufficient Insufficient
training data training data

Figure 11. Additional results of applying the seven tested skeletonization algorithm to representative samples of three diverse datasets. Of
the six algorithms that are compatible with gradient-based optimization, only our two methods are able to extract a thin, topology-preserving
skeleton, similar to the one obtained using the non-differential baseline.

Non-differentiable — Morphological — Morphological — Neural network — Neural network — Our skeletonization ~ Our skeletonization
Bertrand et al. Shit et al. Viti et al. Panichev et al. Nguyen (Euler characteristic) (Boolean)

Input

1

SkelNetOn

Figure 12. Qualitative results of applying the seven tested skeletonization algorithm to representative samples of SkelNetOn dataset.

Table 4. Quantitative comparison of the topological accuracy of seven skeletonization algorithms on the SkelNetOn dataset.

Dataset Skeletonization algorithm #points o error [q error [z error Run time [ms]
Non-differentiable — Bertrand et al. [6] 3554206 0+0 0+0 - -
Morphological — Shit ef al. [39] 158+150 40430 0+1 - 2342
Morphological — Viti et al. [45] 3554295 545 0+1 - 26+2

SkelNetOn Neural network — Panichev et al. [27] 5244247 242 01 - 30+1
Neural network — Nguyen [25] 4944236 243 0+1 - 160+2
Ours — Euler characteristic 406+241 0+0 0+0 - 18943
Ours — Boolean 406241 0+0 0+0 - 948+5

Effect of Boltzmann temperature on learning with
the differentiable skeletonization module

The entropy of the stochastic discretization can be con-
trolled by varying either the scale of the noise 3 or the Boltz-
mann temperature 7 (cf. Equation 11 of the main paper).
We have also conducted the simple experiment presented
in Figure 6 of the main paper while varying 7 instead of
(. Hereby, an input tensor is initialized with random val-
ues and passed through our skeletonization module. Using
backpropagation, the tensor’s values are learned so that its
ultimate output resembles that of the ground truth skeleton.
Analogously to our our results with varying noise scales (cf.
Figure 7 of the main paper), we find that both a too low and
too high Boltzmann temperature inhibit efficient learning
with our skeletonization module (see Figure 13). Empiri-
cally, we find that it suffices to tune either the noise scale or
Boltzmann temperature and proceed to tune 5 throughout all
other presented experiments.

Learning progress with different levels of entropy

T
0.01
0.05
0.1
0.5
1.0
5.0
10.0
50.0

100.0

0.5

I
>

o
w

Mean squared error
©
N

0.1

0.0
10 20 30 40 50
Number of backpropagation steps

Figure 13. Effect of the Boltzmann temperature 7 on the ability
to propagate a gradient through our skeletonization module. Both
very low entropy and very high entropy inhibit learning.

Vessel segmentation in the DRIVE dataset

As described above and in Section 4.2 of the main pa-
per, we integrated our skeletonization modules with a neural
network that learns to segment blood vessels in either the Ves-
SAP or DRIVE dataset. The results on the two-dimensional

DRIVE dataset are shown in Table 5. Similar to the results
for the VesSAP dataset (see Table 2 of the main paper), we
find that using the clDice loss instead of a vanilla Dice loss
slightly improves the topological agreement between predic-
tion and ground truth as indicated by a lower error of the first
two Betti numbers (32 indicating the difference in the num-
ber of cavities is always 0 in two dimensions). Moreover,
we find that using our skeletonization methods yield slightly
better results than using a morphological skeletonization al-
gorithm. Spatial accuracy, quantified by the Dice similarity
coefficient (DSC), is nearly identical in all cases.

Table 5. Performance of the vessel segmentation network using
either a standard Dice loss (’Without’) or clDice loss with one of
three skeletonization algorithms.

Skeletonization DSC Bo error 31 error
Without 0.7940.01 135.64+5.7 23.3+2.1
Morphological [21] 0.7940.01 58.242.1 21.3£1.2
Ours (Euler) 0.794+0.01 58.3+18.6 18.6+0.5
Ours (Boolean) 0.79+0.01 49.6+8.5 20.6+2.1

