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Abstract

While deep learning models have become the predomi-
nant method for medical image segmentation, they are typ-
ically not capable of generalizing to unseen segmentation
tasks involving new anatomies, image modalities, or labels.
Given a new segmentation task, researchers generally have
to train or fine-tune models, which is time-consuming and
poses a substantial barrier for clinical researchers, who of-
ten lack the resources and expertise to train neural networks.
We present UniverSeg, a method for solving unseen medi-
cal segmentation tasks without additional training. Given a
query image and example set of image-label pairs that define
a new segmentation task, UniverSeg employs a new Cross-
Block mechanism to produce accurate segmentation maps
without the need for additional training. To achieve general-
ization to new tasks, we have gathered and standardized a
collection of 53 open-access medical segmentation datasets
with over 22,000 scans, which we refer to as MegaMedical.
We used this collection to train UniverSeg on a diverse set
of anatomies and imaging modalities. We demonstrate that

*Denotes equal contribution

UniverSeg substantially outperforms several related methods
on unseen tasks, and thoroughly analyze and draw insights
about important aspects of the proposed system. The Uni-
verSeg source code and model weights are freely available
at https://universeg.csail.mit.edu

1. Introduction
Image segmentation is a widely studied problem in com-

puter vision and a central challenge in medical image analy-
sis. Medical segmentation tasks can involve diverse imaging
modalities, such as magnetic resonance imaging (MRI), X-
ray, computerized tomography (CT), and microscopy; differ-
ent biomedical domains, such as the abdomen, chest, brain,
retina, or individual cells; and different labels within a re-
gion, such as heart valves or chambers (Figure 1). This di-
versity has inspired a wide array of segmentation tools, each
usually tackling one task or a small set of closely related
tasks [14, 20, 38, 39, 83, 90]. In recent years, deep-learning
models have become the predominant strategy for medical
image segmentation [42, 71, 83].

A key problem in image segmentation is domain shift,

Train Segmentation Tasks Test Segmentation Tasks

Figure 1: Medical segmentation involves many imaging types, biomedical domains, and target labels. We employ a large
diverse set of training tasks (blue) to build a model that can segment unseen tasks (orange) without additional training.
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Traditional Approach UniverSeg Approach

1. Design and train a task-specific model. With a trained UniverSeg model, predict new images for the new 
task from a few labeled pairs without retraining.

2. Predict new images with the trained model.

Query Image

Support Set

Figure 2: Workflow for inference on a new task, from an unseen dataset. Given a new task, traditional models (left) are
trained before making predictions. UniverSeg (right) employs a single trained model which can make predictions for images
(queries) from the new task with a few labeled examples as input (support set), without additional fine-tuning.

where models often perform poorly given out-of-distribution
examples. This is especially problematic in the medical
domain where clinical researchers or other scientists are con-
stantly defining new segmentation tasks driven by evolving
populations, and scientific and clinical goals. To solve these
problems they need to either train models from scratch or
fine-tune existing models. Unfortunately, training neural net-
works requires machine learning expertise, computational
resources, and human labor. This is infeasible for most
clinical researchers or other scientists, who do not possess
the expertise or resources to train models. In practice, this
substantially slows scientific development. We therefore
focus on avoiding the need to do any training given a new
segmentation tasks.

Fine-tuning models trained on the natural image domain
can be unhelpful in the medical domain [82], likely due to
the differences in data sizes, features, and task specifications
between domains, and importantly still requires substan-
tial retraining. Some few-shot semantic segmentation ap-
proaches attempt to predict novel classes without fine-tuning
in limited data regimes, but mostly focus on classification
tasks, or segmentation of new classes within the same input
domain, and do not generalize across anatomies or imaging
modalities.

In this paper, we present UniverSeg – an approach to
learning a single general medical-image segmentation model
that performs well on a variety of tasks without any retrain-
ing, including tasks that are substantially different from those
seen at training time. UniverSeg learns how to exploit an
input set of labeled examples that specify the segmentation
task, to segment a new biomedical image in one forward
pass. We make the following contributions.

• We propose UniverSeg – a framework that enables solv-
ing new segmentation tasks without retraining, using
a novel flexible CrossBlock mechanism that transfers
information from the example set to the new image.

• We demonstrate that UniverSeg substantially outper-
forms several models across diverse held-out segmen-
tation tasks involving unseen anatomies, and even ap-
proaches the performance of fully-supervised networks
trained specifically for those tasks.
• In extensive analysis, we show that the generalization

capabilities of UniverSeg are linked to task diversity
during training and image diversity during inference.

UniverSeg source code and model weights are available
at https://universeg.csail.mit.edu

2. Related Works

Medical Image Segmentation. Medical image segmenta-
tion has been widely studied, with state-of-the-art meth-
ods training convolutional neural networks in a super-
vised fashion, predicting a label map for a given input im-
age [20, 38, 39, 43, 83]. For a new segmentation problem,
models are typically trained from scratch, requiring substan-
tial design and tuning.

Recent strategies, such as the nnUNet [39], automate
some design decisions such as data processing or model
architecture, but still incur substantial overhead from training.
In contrast to these methods, UniverSeg generalizes to new
medical segmentation tasks without training or fine-tuning.

Multi-task Learning. Multi-Task Learning (MTL) frame-
works learn several tasks simultaneously [13, 21, 86]. For
medical imaging, this can involve multiple modalities [72],
population centers [61], or anatomies [73]. However, the
tasks are always pre-determined by design: once trained,
each network can only solve tasks presented during training.
UniverSeg overcomes this limitation, enabling tasks to be
dynamically specified during inference.

Transfer Learning. Transfer learning strategies involve
fine-tuning pre-trained models, often from a different do-
main [63, 97]. This is used in medical image segmentation

https://universeg.csail.mit.edu
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Figure 3: A UniverSeg network (left) takes as input a query image and a support set of image and label-maps (pairwise
concatenated in the channel dimension) and employs multi-scale CrossBlock features. A CrossBlock (right) takes as input
representations of the query u and support set V = {vi}, and interacts u with each support entry vi to produce u′ and V ′.

starting with models trained on natural images [3, 24, 41,
106, 109], where the amount of data far exceeds the amount
in the target biomedical domain. However, this technique
still involves substantial training for each new task, which
UniverSeg avoids. Additionally, the differences between
medical and natural images often make transfer learning
from large pre-trained models unhelpful [82].

Optimization-based Meta-Learning. Optimization-based
meta-learning techniques often learn representations that
minimize downstream fine-tuning steps by using a few ex-
amples per task, sometimes referred to as few-shot learn-
ing [22, 75, 100, 94]. Meta-learning via fine-tuning has been
studied in medical image segmentation to handle multiple im-
age modalities [105], anatomies [103], and generalization to
different targets [48, 49, 93]. While these strategies reduce
the amount of data and training required for downstream
tasks [30], fine-tuning these models nevertheless requires
machine learning expertise and computational resources,
which are often not available to medical researchers.

Few-shot Semantic Segmentation. Few-shot (FS) meth-
ods adapt to new tasks from few training examples, often
by fine-tuning pretrained networks [22, 75, 100, 94]. Some
few-shot semantic segmentation models generate predic-
tions for new images (queries) containing unseen classes
from just a few labeled examples (support) without addi-
tional retraining. One strategy prevalent in both natural
image [74, 87, 102] and medical image [19, 59, 77, 91] FS
segmentation methods is to employ large pre-trained models
to extract deep features from the query and support images.
These methods often involve learning meaningful prototyp-
ical representations for each label [101]. Another medical
FS segmentation strategy uses self-supervised learning to
make up for the lack of training data and tasks [29, 76]. In
contrast to UniverSeg, these methods, focused on limited

data regimes, tackle specific tasks involving generalizing to
new classes in a particular subdomain, like abdominal CT or
MRI scans [29, 76, 84, 98].

In our work, we focus on avoiding any fine-tuning, even
when given many examples for a new task, to avoid requir-
ing the clinical or scientific user to have machine learning
expertise and compute resources. Our proposed framework
draws inspiration from ideas from some few-shot learning
solutions, but aims to generalize to a universally broad set of
anatomies, modalities, and datasets – even those completely
unseen during training.

3. UniverSeg Method
Let t be a segmentation task comprised of a set of image-

label pairs {(xti, yti)}Ni=1. Common segmentation strategies
learn parametric functions ŷ = f tθ(x), where f tθ is most often
modeled using a convolutional neural network that estimates
a label map ŷ given an input image x. By construction, f tθ
only learns to predict segmentations for task t.

In contrast, we learn a universal function ŷ = fθ(x
t, St)

that predicts a label map for input xt of task t, according to
the task-specifying support St = {(xtj , ytj)}nj=1 comprised
of example image-label pairs available for t.

3.1. Model

We implement fθ using a fully convolutional neural net-
work illustrated in Figure 3. We first introduce the pro-
posed building blocks: the cross-convolution layer and the
CrossBlock module. We then specify how we combine these
blocks into a complete segmentation network.

CrossBlock. To transfer information between the support
set and query image, we introduce a cross-convolution layer
that interacts a query feature map u with a set of support



feature maps V = {vi}ni=1:

CrossConv(u, V ; θz) = {zi}ni=1,

for zi = Conv(u||vi; θz),
(1)

where || is the concatenation operation along the feature
dimension and Conv(x; θz) is a convolutional layer with
learnable parameters θz . Due to the weight reuse of θz ,
cross-convolution operations are permutation invariant with
respect to V . From this layer, we design a higher-level
building block that produces updated versions of query rep-
resentation u and support V at each step in the network:

CrossBlock(u, V ; θz, θv) = (u′, V ′),where: (2)
zi = A(CrossConv(u, vi; θz)) for i = 1, 2, . . . , n

u′ = 1/n
∑n
i=1 zi

v′i = A(Conv(zi; θv)) for i = 1, 2, . . . , n,

where A(x) is a non-linear activation function. This strat-
egy enables the representations of each support set entry
and query to interact with the others through their average
representation, and facilitates variably sized support sets.

Network. To integrate information across spatial scales, we
compose the CrossBlock modules in an encoder-decoder
structure with residual connections, similarly to the popular
UNet architecture (Figure 3). The network takes as input
the query image xt and support set St = {(xti, yti)}ni=1 of
image and label-map pairs, each concatenated channel-wise,
and outputs the segmentation prediction map ŷt.

Each level in the encoder path consists of a CrossBlock
followed by a spatial down-sampling operation of both query
and support set representations. Each level in the expansive
path consists of up-sampling both representations, which
double their spatial resolutions, concatenating them with
the equivalently-sized representation in the encoding path,
followed by a CrossBlock. We perform a single 1x1 convo-
lution to map the final query representation to a prediction.

3.2. Training

Algorithm 1 describes UniverSeg training using a large
and varied set of training tasks T and the loss

L(θ; T ) = Et∈T E(xt,yt),St

[
Lseg(fθ(x

t, St), yt)
]
, (3)

where xt /∈ St, and Lseg(ŷ, y
t) is a standard segmentation

loss like cross-entropy or soft Dice [71], capturing the agree-
ment between the predicted ŷ and ground truth yt.

Data Augmentation. We employ data augmentation to grow
the diversity of training tasks and increase the number of
effective training examples belonging to any particular task.

In-Task Augmentation (Augt(x, y)). To reduce overfitting
to individual subjects, we perform standard data augmen-
tation operations, like affine transformations, elastic defor-
mation, or adding image noise to the query image and each
entry of the support set independently.

Algorithm 1 UniverSeg Training Loop using SGD with
learning rate η over tasks T , main architecture fθ, in-task
augmentations Augt and task augmentations AugT

for k = 1, . . . ,NumTrainSteps do
t ∼ T . Sample Task
(xti, y

t
i) ∼ t . Sample Query

St ← {(xtj , ytj)}nj 6=i . Sample Support
xti, y

t
i ← Augt(x

t
i, y

t
i) . Augment Query

St ← {Augt(x
t
j , y

t
j)}nj . Augment Support

xti, y
t
i , S

t ← AugT (x
t
i, y

t
i , S

t) . Task Aug
ŷi ← fθ(x

t
i, S

t) . Predict label map
`← Lseg(ŷi, y

t
i) . Compute loss

θ ← θ − η∇θ` . Gradient step
end for

Task Augmentation (AugT (x, y, S)). Similar to standard
data augmentation that reduces overfitting to training exam-
ples, augmenting the training tasks is useful for generalizing
to new tasks, especially those far from the training task dis-
tribution. We introduce task augmentation – alterations that
modify all query and support images, and/or all segmentation
maps, with the same type of task-changing transformation.
Example task augmentations include edge detection of the
segmentation maps or a horizontal flip to all images and
labels. We provide a list of all augmentations and the param-
eters we used in the supplemental Section C.

3.3. Inference

For a given query image xt, UniverSeg predicts segmen-
tation ŷ = fθ(x

t, St) given a support set St , where the
prediction quality depends on the choice of the support
set St. To reduce this dependence, and to take advantage
of more data when memory constraints limit the support
set size at inference, we combine predictions from an en-
semble of K independently sampled support sets {Sti}Ki=1

as their the pixel-wise average to produce the prediction
ŷ = 1

K

∑K
k=1 fθ(x, S

t
k).

4. MegaMedical Dataset

To train our universal model fθ, we employ a set of seg-
mentation tasks that is large and diverse, so that it is able to
generalize to new tasks. We compiled MegaMedical – an
extensive collection of open-access medical segmentation
datasets with diverse anatomies, imaging modalities, and
labels. It is constructed from 53 datasets encompassing 26
medical domains and 16 imaging modalities.

We standardize data across the wildly diverse formats of
original datasets, processed images, and label maps. We also
expand the training data using synthetic segmentation tasks
to further increase the training task diversity. Because of
individual dataset agreements, we are prohibited from re-



releasing our processed version of the datasets. Instead, we
will provide data processing code to construct MegaMedical
from its source datasets.

Datasets. MegaMedical features a wide array of biomedical
domains, such as eyes [37, 58, 66, 80, 95], lungs [85, 89, 92],
spine vertebrae [107], white blood cells [108], abdominal [9,
11, 32, 40, 46, 54, 55, 57, 60, 64, 65, 81, 92], and brain [4,
25, 33, 52, 53, 67, 68, 69, 92], among others. Supplemental
Table 3 provides a detailed list of MegaMedical datasets.
Acquisition details, subject age ranges, and health conditions
are different for each dataset. We provide preprocessing and
data normalization details in supplemental Section A.

Medical Image Task Creation. While datasets in
MegaMedical feature a variety of imaging tasks and label
protocols, in this work we focus on the general problem
of 2D binary segmentation. For datasets featuring 3D data,
for each subject, we extract the 2D mid-slice of the vol-
ume along all the major axes. When multiple modalities
are present, we include each modality as a new task. For
datasets containing multiple segmentation labels, we create
as many binary segmentation tasks as available labels. All
images are resized to 128 × 128 pixels and intensities are
normalized to the range [0,1].

Synthetic Task Generation. We adapt the image generation
procedure involving random synthetic shapes described in
SynthMorph [34] to produce a thousand synthetic tasks to be
used alongside the medical tasks during training. We detail
the generation process and include examples of synthetic
tasks in supplemental Section D.

5. Experiments
We start by describing experimental details. The first set

of experiments compares the performance of UniverSeg in
the held-out datasets against several single-pass methods
used in few-shot learning. We then report on a variety of
analyses, including ablations of modeling decisions, and the
effect of training task diversity, support set size, and number
of examples available for a new task.

5.1. Experimental Setup

Model. We implement the network in UniverSeg (Fig-
ure 3) using an encoder with 5 CrossBlock stages and a
decoder with 4 stages, with 64 output features per stage and
LeakyReLU non-linearities after each convolution. We use
bilinear interpolation when downsampling or upsampling.

Data. For each dataset d, we construct three disjoint splits
d = {dsupport, ddev, dtest} with 60%, 20%, and 20% of the
subjects, respectively. Similar to dataset generalization [99],
we divide the available datasets into a training set DT and a
held-out test set DH . We train models using the support and
development splits of the training datasets {dsupport|d ∈ DT }.

We performed model selection and hyper-parameter tuning
using the development split of held-out dataset WBC, and
trained models until they stopped improving in the ddev split,
averaged across the held-out datasets. We report results using
the unseen test split of the held-out datasets {dtest|d ∈ DH}.
Support set image-label pairs are sampled with replacement
from each dataset’s support split.

For held-out datasets, we evaluated three datasets contain-
ing anatomies represented in the training datasets (ACDC [8]
and SCD [81] (heart), and STARE[37] (retinal blood ves-
sels)), and three datasets of anatomies not covered by the rest
of MegaMedical (PanDental [2] (mandible), SpineWeb [107]
(vertebrae), and WBC [108] (white blood cells).

Few-Shot Baselines. We compare UniverSeg models to
three segmentation methods from the few-shot (FS) litera-
ture, since these approaches also predict the segmentation
of a query image given a support set of image-label pairs,
although they were designed for the low-data regime. SE-
net [84] features a fully-convolutional network, squeeze-
excitation blocks, and a UNet-like model architecture. ALP-
Net [76] and PANet [101], employ prototypical networks
that extract prototypes from their inputs to match the given
query with the support set. While ALPNet also employs a
self-supervised method to generate additional label maps in
settings with few tasks, we omit this step since MegaMedical
includes a large collection of tasks.

Unlike UniverSeg, these methods were designed to gen-
eralize to similar tasks, such as different labels in the same
anatomy and image type, or different modalities for the same
anatomy. To make the comparison to UniverSeg fair, we
make several additions to the training and inference proce-
dures of these baselines as described below, and chose the
best performing variant of each baseline.

Supervised Task-Specific Models. While it is often im-
practical for clinical researchers to train individual networks
for each task, for evaluation we train a set of task-specific
networks to serve as an upper bound of supervised perfor-
mance on the held-out datasets. We employ the widely-used
nnUNet [39], which automatically configures the model and
training pipeline based on data properties. Each model is
task-specific, using the support and development splits for
training and model selection, respectively. We report results
on the test split.

Evaluation. We evaluate models on the held-out datasets
DH using the test split for query images and the support split
for support-sets. For all methods, unless specified otherwise,
we perform 5 independent predictions per test subject using
randomly drawn support sets, and ensemble the predictions.
We enforce that the same random support sets are used for all
methods. We evaluate predictions using the Dice score [18]
(0 - 100, 0=no overlap, 100=perfect match), which quantifies
the region overlap between two regions and is widely used
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Figure 4: Average Dice score per each held out dataset. Performance of UniverSeg and several few-shot baselines, and the
upper bound of each dataset determined by the individual fully-trained networks. For each of the unseen datasets, we average
across tasks and subjects, and show the bootstrap variability in the error bars.

Figure 5: Example model predictions for unseen tasks. For a randomly sampled image per held-out task, we visualize the
predictions of UniverSeg, few-shot baselines, and individually trained nnUNet models, along with ground truth maps.

in medical segmentation. For tasks with more than one label,
we average Dice across all labels. For datasets with multiple
tasks, we average performance across all tasks. We estimate
prediction variability using subject bootstrapping, with 1,000
independent repetitions. At each repetition, we treat each
task independently, sampling subjects with replacement, and
report the standard deviation across bootstrapped estimates.

Training. We train networks with the Adam optimizer [50]
and soft Dice loss [71, 96]. For the ALPNet and PANet
baselines, we add an additional prototypical loss term as

described in their original works. Models trained with cross-
entropy performed substantially worse than soft Dice.

While the original baseline methods were not introduced
with significant data augmentation, we trained all UniverSeg
and FS models with and without the proposed augmentation
transformations, and report results on the best-performing
setting. Unless specified otherwise, models are trained using
a support size of 64. While the baselines were originally
designed with small support sizes (1 or 5) as they tackled
the few-shot setting, we found that training and evaluating
them with larger support sizes improved their performance.



Model #Params Runtime ms Dice Score
PANet 14.71 240.0 ± 1.8 41.8 ± 1.3
ALPNet 43.02 527.7 ± 8.7 47.8 ± 1.1
SENet 0.92 4.1 ± 0.8 50.1 ± 1.3
UniverSeg (ours) 1.18 142.0 ± 0.4 71.8 ± 0.9

nnUNet (sup.) 17× 1.87 17× 1.4·107 84.4 ± 1.0

Table 1: Performance Summary. For UniverSeg and each
FS baseline we report model size (in millions), inference run-
time, and average held-out Dice score (with bootstrapping
standard deviation) . As an upper bound, we include the set
of 17 individually trained task-specific nnUNets for the 6
held-out datasets, where their run-time is their cumulative
required training time.

Implementation. We provide additional implementation
and experimental details in supplemental Section B. Code
and pre-trained model weights for UniverSeg are available
at https://universeg.csail.mit.edu.

5.2. Task Generalization Results

First, we compare the segmentation quality of UniverSeg
with FS baselines and the task-specific upper bounds. Our
primary goal is to assess the effectiveness of UniverSeg
in solving tasks from unseen datasets. Figure 4 presents
the average Dice scores per dataset for each method, and
Figure 5 presents example segmentation results for each
method and dataset.

Few-shot methods. UniverSeg significantly outperforms all
FS methods in all held-out datasets. For each FS method,
we report the best-performing model, which involved adding
components of the UniverSeg training pipeline. In the sup-
plemental material, we show that few-shot methods perform
worse when trained with a support set size of 1 and without
ensembling, as they were originally introduced.

UniverSeg outperforms the highest performing baseline
for all datasets with Dice improvements ranging from 7.3 to
34.9. Figure 5 also shows clear qualitative improvements in
the predicted segmentations. Given the similarities between
SENet and UniverSeg (fully convolutional UNet-like struc-
ture), these results suggest that the proposed CrossBlock
is better suited to transferring spatial information from the
support set to the dquery. Table 1 shows that UniverSeg also
requires fewer model parameters than PANet, ALPNet, and
the nnUNets, and a similar number to SENet.

Task-specific networks. For some datasets like PanDen-
tal or WBC, UniverSeg performs competitively with the
supervised task-specific networks, which were extensively
trained on each of the held-out tasks, and are unfeasible to
run in many clinical research settings. Moreover, from the
qualitative results of Figure 5, we observe that segmenta-
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Figure 6: Average held-out Dice versus the number of
training tasks. Points represent individual UniverSeg net-
works trained on a percentage of available training datasets
and shown in terms of the number of underlying training
tasks. In blue, we report a logarithmic fit to the data and 95%
confidence intervals obtained by bootstrapped fits.

tions produced by UniverSeg more closely match those of
the supervised baselines than those of any other few-shot
segmentation task, especially in challenging datasets like
SpineWeb or STARE.

5.3. Analysis

We analyze how several of the data, model, and training
decisions affect the performance of UniverSeg.

Task Quantity and Diversity. We study the effect of the
number of datasets and individual tasks used for training
UniverSeg. We leave out synthetic tasks for this experiment,
and train models on random subsets of the MegaMedical
training datasets.

Figure 6 presents performance on the held-out datasets
for different random subsets of training datasets. We find
that having more training tasks improves the performance
on held-out tasks. In some scenarios, the choice of datasets
has a substantial effect. For instance, for models trained
with 10% of the datasets, the best model outperforms the
worst one by 17.3 Dice points, and comparing those subsets
we find that the best performing one was trained on a broad
set of anatomies including heart, abdomen, brain, and eyes;
while the least accurate model was trained on less common
lesion tasks, leading to worse generalization.

Ablation of Training Strategies. We perform an ablation
study over the three main techniques we employ for increas-
ing data and task diversity during training: in-task augmen-
tation, task augmentation, and synthetic tasks.

Table 2 shows that all proposed strategies lead to improve-
ments in model performance, with the best results achieved

https://universeg.csail.mit.edu


Synth Medical In-Task Task Dice Score
X 61.7 ± 1.5

X 62.7 ± 1.1
X X 64.5 ± 1.0

X X 67.0 ± 0.9
X X 70.4 ± 1.3
X X X 70.0 ± 1.5

X X X X 71.8 ± 0.9

Table 2: Training Strategies Ablation. Average held-out
Dice for UniverSeg models trained with different combi-
nations of the proposed techniques to increase task diver-
sity: in-task augmentation, task augmentation, and synthetic
tasks.
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Figure 7: Effects of support size. Relationship between
models trained at certain support sizes and their average
held-out Dice score. Results improve with higher support
size, with ensembling consistently helping.

when using all strategies jointly, providing a boost of 9 Dice
points over no augmentations or synthetic tasks. Incorpo-
rating task augmentation leads to the largest individual im-
provement of 7.7 Dice points. Remarkably, the model trained
using only synthetic data performs surprisingly well on the
medical held-out tasks despite having never been exposed to
medical training data. These results suggest that increasing
image and task diversity during training, even artificially, has
a substantial effect on how the model generalizes to unseen
segmentation tasks.

Support Set Size. We study the effect of support size on
models trained with support sizes N from 1 to 64.

Figure 7 shows that the best results are achieved with large
training support set sizes, with the average held-out Dice
rapidly improving from 53.7 to 69.9 for supports sizes from
1 to 16, and then providing diminishing returns at greater
support sizes, with a maximum of 71 Dice at support size
64. We find that ensembling predictions leads to consistent
improvements in all cases, with greater improvements of
2.4-3.1 Dice points for small support sets (N < 16).
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Figure 8: Effect of available data at inference. UniverSeg
predictions using a limited dsupport example pool on the held-
out WBC and PanDental datasets. For each size, we perform
100 repetitions using different random subsets.

Limited Example Data. Since manually annotating ex-
amples from new tasks is expensive for medical data, we
investigate how the number of labeled images affects the
performance of UniverSeg. We study UniverSeg when using
a limited amount of labeled examples N at inference, for
N = 1, 2, . . . , 64. We perform 100 repetitions for each size,
each corresponding to an independent random subset of the
data. Here, the support set contains all available data for
inference, and thus we do not perform ensembling.

Figure 8 presents results for the WBC and PanDental
held-out datasets, which have 108 and 116 examples in their
dsupport splits respectively. For small values of support sizeN ,
we observe a large variance caused by very diverse support
sets. As N increases, we observe that average segmentation
quality monotonically improves and the variance from the
sample of available data examples is greatly reduced. We
include analogous figures in the supplement for the other
held-out datasets, where we find similar trends.

Support Set Ensembling. We study the effect of varying
the support sizeN at inference, and numberK of predictions
being ensembled. We first sample 100 independent support
sets for each inference support size N . Then, for each en-
sembling amount K, we compute ensembled predictions by
averaging K independently drawn predictions.

Figure 9 shows that given a certain support size, increas-
ing the ensemble size leads to monotonic improvements
and reduced variance, likely by being less dependent on
the specific examples in the support set. The performance
also monotonically improves with increased support size N ,
which has a significantly larger effect on segmentation ac-
curacy than increasing the ensemble size. For instance,
non-ensembled predictions with support size 64 (N = 64,
K = 1) are better than heavily ensembled predictions with
smaller support sizes (N = 2, 4, 8 and K = 64), even
though the latter uses more support examples. This suggests
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Figure 9: Ensembling predictions at different inference support sizes. Average held-out test Dice Score for different
settings of ensembling and support size. For each inference support size N , we report the results (in average held-out Dice
Score) of taking 100 predictions (K = 1) and ensembling by averaging in groups of size K, performing 100 repetitions for
each K. The value boxes report quantiles over the 100 values for each setting and find that increasing either K or N leads to
improved model performance, with N having a significantly larger effect than K.

that UniverSeg models exploit information coming from
the support examples in a fundamentally different way than
existing ensembling techniques used in FS learning.

6. Discussion and Conclusion
We introduce UniverSeg, an approach for learning a sin-

gle task-agnostic model for medical image segmentation.
We use a large and diverse collection of open-access medical
segmentation datasets to train UniverSeg, which is capable
of generalizing to unseen anatomies and tasks. We introduce
a novel cross-convolution operation that interacts the query
and support representations at different scales.

In our experiments, UniverSeg substantially outperforms
existing few-shot methods in all held-out datasets. Through
extensive ablation studies, we conclude that UniverSeg per-
formance is strongly dependent on task diversity during
training and support set diversity during inference. This
highlights the utility of UniverSeg facilitating variably-sized
support sets, enabling flexibility to potential users’ datasets.

Limitations. In this work, we focused on demonstrating
and thoroughly analyzing the core idea of UniverSeg, using
2D data and single labels. We are excited by future exten-
sions to segment 3D volumes using 2.5D or 3D models and
multi-label maps, and further closing the gap with the upper
bounds.

Outlook. UniverSeg promises to easily adapt to new seg-
mentation tasks determined by scientists and clinical re-
searchers, without model retraining that is often impractical
for them.
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A. MegaMedical

Preprocessing. Medical images involve large variations of voxel or pixel values. For example, MRI intensities in MegaMedical
range from [0, 800], CT intensities range from [-2000, 2000], while other modalities might already be in the [0, 1] range.

To normalize data across the diverse datasets, we apply several preprocessing steps for each modality. For MRI datasets,
we clip the intensity to [0.5, 99.5] percentiles for non-zero voxels. For CT images, we clip intensity values to the range
[−500, 1000]. We min-max normalize all resulting volumes to [0, 1] and resize them to 128 × 128 × 128. From any 3D
volumes, we extract two different kinds of slices: mid-slices and max-slices.

Slicing. For mid-slices, from any 3D image and label volumes we extract the middle slice along each axis, resulting in a
representative 128× 128 slice. This strategy avoids biasing the data toward knowing the location of labels in the scans. This is
especially important for inference, where the location of the foreground label would not be known in a 3D volume.

For training, we also extract max slices. For each label l of a dataset, we find the slice (along each axis) in each volume that
contains the most voxels with that label. We extract this slice from both volume and label map and repeat this for all labels in
the dataset. These slices provide additional training data, and we do not use them during evaluation.

Label Maps. Most datasets include label maps that were either manually obtained, or manually curated after being obtained
using an automatic tool. For adult brain datasets [25, 67, 68], we follow recent large-scale analyses [6, 35] and obtain semantic
sub-cortical segmentations using FreeSurfer [23].

Datasets can often contain multiple tasks – such as segmenting both lesions and anatomy – and the same task can appear in
different datasets – like segmenting the hippocampus in different MRI collections. Certain labels can sometimes tackle the
same anatomical region of interest but be defined differently in two different datasets. In this work, we focus on single-label,
single-modality, and 2D segmentation.

Medical Task Creation. To create a task, the subjects of dataset d can contain labels for either a particular biomedical
target (e.g. eye-vessels [95], vertebrae [107], white blood cells [108]) or a set of targets (e.g. abdominal organs [46], brain
regions [67]), and an imaging modality m ∈Md (e.g. CT, MRI, X-Ray). If d is multi-class, we split it into several single-label
l ∈ Ld tasks. If d is a 3D dataset, we extract different axes a ∈ Ad as different tasks. Following this construction, each task
can be described using a unique tuple t = (d,m, l, a).



Table 3: We assembled the following set of datasets to train UniverSeg. For the relative size of datasets, we have included the
number of unique scans (subject and modality pairs) that each dataset has.

Dataset Name Description # of Scans Image Modalities
AbdomenCT-1K [65] Abdominal organ segmentation (overlap

with KiTS, MSD)
361 CT

ACDC [8] Left and right ventricular endocardium 99 cine-MRI
AMOS [40] Abdominal organ segmentation 240 CT, MRI
BBBC003 [62] Mouse embryos 15 Microscopy
BrainDevelopment [26, 27, 53, 88] Adult and Neonatal Brain Atlases 53 multi-modal MRI
BRATS [4, 5, 70] Brain tumors 6,096 multi-modal MRI
BTCV [55] Abdominal Organs 30 CT
BUS [104] Breast tumor 163 Ultrasound
CAMUS [56] Four-chamber and Apical two-chamber

heart
500 Ultrasound

CDemris [44] Human Left Atrial Wall 60 CMR
CHAOS [45, 47] Abdominal organs (liver, kidneys, spleen) 40 CT, T2-weighted MRI
CheXplanation [85] Chest X-Ray observations 170 X-Ray
CoNSeP [28] Histopathology Nuclei 27 Microscopy
DRIVE [95] Blood vessels in retinal images 20 Optical camera
EOphtha [16] Eye Microaneurysms and Diabetic

Retinopathy
102 Optical camera

FeTA [79] Fetal brain structures 80 Fetal MRI
FetoPlac [7] Placenta vessel 6 Fetoscopic optical camera
HMC-QU [17, 51] 4-chamber (A4C) and apical 2-chamber

(A2C) left wall
292 Ultrasound

I2CVB [57] Prostate (peripheral zone, central gland) 19 T2-weighted MRI
IDRID [80] Diabetic Retinopathy 54 Optical camera
ISLES [33] Ischemic stroke lesion 180 multi-modal MRI
KiTS [32] Kidney and kidney tumor 210 CT
LGGFlair [12, 69] TCIA lower-grade glioma brain tumor 110 MRI
LiTS [9] Liver Tumor 131 CT
LUNA [89] Lungs 888 CT
MCIC [25] Multi-site Brain regions of Schizophrenic

patients
390 T1-weighted MRI

MSD [92] Large-scale collection of 10 Medical Seg-
mentation Datasets

3,225 CT, multi-modal MRI

NCI-ISBI [11] Prostate 30 T2-weighted MRI
OASIS [35, 67] Brain anatomy 414 T1-weighted MRI
OCTA500 [58] Retinal vascular 500 OCT/OCTA
PanDental [2] Mandible and Teeth 215 X-Ray
PROMISE12 [60] Prostate 37 T2-weighted MRI
PPMI [68, 15] Brain regions of Parkinson patients 1,130 T1-weighted MRI
ROSE [66] Retinal vessel 117 OCT/OCTA
SCD [81] Sunnybrook Cardiac Multi-Dataset Collec-

tion
100 cine-MRI

SegTHOR [54] Thoracic organs (heart, trachea, esophagus) 40 CT
SpineWeb [107] Vertebrae 15 T2-weighted MRI
STARE [37] Blood vessels in retinal images 20 Optical camera
TUCC [1] Thyroid nodules 167 Ultrasound cine-clip
WBC [108] White blood cell and nucleus 400 Microscopy
WMH [52] White matter hyper-intensities 60 multi-modal MRI
WORD [64] Organ segmentation 120 CT



B. Additional Implementation Details
Data Storage. For each gradient step, a UniverSeg model needs to load B × (N + 1)× 2 images, where B is the batch

size, N is the support size, and the factor of 2 corresponds to the combination of the image and label map. This can pose
a serious challenge for traditional data loading strategies, especially as N increases. Therefore, we store data samples in a
highly optimized way to ensure that I/O does not bottleneck the training process, using LMDB data stores that are optimized
for read-only access. Within the database, data is encoded using msgpack and compressed with the LZ4 codec for fast
decompression. We find that this setup exceeds regular file-system random access by over two orders of magnitude.

Task Sampling. To ensure task and data heterogeneity during training, we do not sample all tasks equally. Some datasets
contain substantially more tasks than others, and we aim to avoid overfitting medical domains where tasks are abundant (such
as neuroimaging tasks). Instead, we perform hierarchical uniform sampling with multiple stages: dataset, subject group,
acquisition modality, axis, and label. We first sample the dataset uniformly from all datasets, then sample a task among the
tasks from that dataset, and so on.

Model. We implemented UniverSeg in PyTorch [78] and used the official implementations for the baselines (ALPNet,
PANet, and SENet) and supervised network nnUNet. Based on the experimental details in the ALPNet work, we used an
off-the-shelf ResNet101 [31] for both the pre-trained encoder for ALPNet and PANet. For these two methods, because their
feature encoder expects three-channel inputs, we duplicate the input dimension 1× 128× 128 three times channel-wise to get
inputs of dimension 3× 128× 128.

We efficiently perform the CrossConvolution operation by exploiting the batch dimension. Instead of performing N
convolutions with the same learnable parameters, we perform a single convolution by tiling the inputs along the batch
dimension. We use the same strategy for the convolutions predicting the CrossBlock outputs V ′.

Optimization. For all models during training, we minimize the soft Dice loss:

LDice(yt, ŷ) =
2
∑
yt � ŷ∑

y2t +
∑
ŷ2
, (4)

using a learning rate of η = 10−4, the Adam optimizer[50], and a batch size of 1. We searched learning rates over the range
[10−5, 10−2] and found the best results on the validation split of the training datasets with learning rates around 10−4 and set
on 10−4 for comparison and reproducibility purposes.

Evaluation. We evaluate predicted label maps ŷ using the Dice score [18], which quantifies the overlap between two
regions and is widely used in the segmentation literature:

Dice(yt, ŷ) = 100 ∗ 2|yt ∩ ŷ|
|yt|2 + |ŷ|2

(5)

where y is the ground truth segmentation map and ŷ is the predicted segmentation map. A Dice score of 100 indicates perfectly
overlapping regions, while 0 indicates no overlap.

Task-Specific Networks The nnUNet framework trains 5 networks per task using multiple folds of the support data for
training, and ensemble their predictions at inference. We apply the nnUNet framework independently for each held-out task,
which corresponds to a set of subjects and the segmentation labels for a particular binary task.

We also designed and trained additional individual U-Net networks. For the majority of the tasks, we found the best
results after searching batch sizes and augmentation policies. We omitted these as we found that the nnUNets performed very
similarly.



C. Data Augmentation
During UniverSeg training, we found that using substantial data augmentation was important. Augmentation techniques

enable UniverSeg to see effectively both a greater diversity of tasks as well as a greater number of examples of each. We
separate these two kinds of augmentations into Task and In-Task.

In Table 4, we detail included augmentations. During model development, we experimented to find the hyperparameters
which worked best for each kind of augmentation. Several augmentations are repeated (although with different parameters)
across task and in-task sections of Table 4.

Table 4: List of augmentations used in model training.

Augmentation Aug Type Parameter Details
Flip Intensities Task p = 0.50
Flip Labels Task p = 0.50
Horizontal/Vertical Flip Task p = 0.50
Sobel-Edge Label Task p = 0.50
Task Affine Shift Task p = 0.50 degrees = [0, 360] translate = [0, 0.2] scale = [0.8, 1.1]
Task Brightness Contrast Change Task p = 0.50 brightness = [−0.1, 0.1] contrast = [0.8, 1.2]
Task Elastic Warp Task p = 0.25 α = [1, 2] σ = [6, 8]
Task Gaussian Blur Task p = 0.50 k-size = 5 σ = [0.1, 1.1]
Task Gaussian Noise Task p = 0.50 µ = [0, 0.05] σ2 = [0, 0.05]
Task Sharpness Change Task p = 0.50 sharpness = 5
Example Affine Shift In-Task p = 0.50 degrees = [0, 360] translate = [0, 0.2] scale = [0.8, 1.1]
Example Brightness Contrast Change In-Task p = 0.25 brightness = [−0.1, 0.1] contrast = [0.5, 1.5]
Example Gaussian Blur In-Task p = 0.25 k-size = 5 σ = [0.1, 1.1]
Example Gaussian Noise In-Task p = 0.25 µ = [0, 0.05] σ2 = [0, 0.05]
Example Sharpness Change In-Task p = 0.25 sharpness = 5
Example Variable Elastic Warp In-Task p = 0.80 α = [1, 2.5] σ = [7, 8]

We briefly describe each augmentation and its parameters. Each augmentation also has a parameter p which controls the
probability that augmentation is applied at each iteration. For in-task augmentation, this probability controls whether or not
all of the support set entries are individually augmented or not. For operations that we developed, we include examples in
Figure 10.

• Flip Intensities (Task): Flip the intensity values for all images (query and support), but not the label maps, using 1 - image
for each.

• Flip Labels (Task): Reverse the foreground and background in the segmentation maps.

• Horizontal/Vertical Flip (Task): Flip all entries in the support horizontally or vertically (all flipped in the same way).

• Sobel-Edge Label (Task): We propose an operation that increases the number of tasks with thin segmentation structures.
We apply a Sobel filter to each label map in the x and y directions, compute the squared norm, which becomes our new
label map.

• Affine Shift (Task, In-Task): Apply a consistent random affine transformation to all entries in the support set; degrees
controls how much to randomly rotate, translate controls how far the images and labels can shift, and scale controls the
amount of zoom.

• Brightness Contrast Change (Task, In-Task): Apply a random brightness and contrast change to all images; how much
brightness can change is controlled by brightness and contrast is controlled by the parameter contrast.

• Elastic Warp (Task, In-Task): Apply a consistent elastic deformation warp to all entries in the support and to the query; α
controls the strength of the warp and σ controls the smoothness of the warp.

• Gaussian Blur (Task, In-Task): Apply a convolutional Gaussian blur to each image in the support set and the query with a
certain kernel size, k-size, and standard-deviation σ.



Figure 10: Example augmentation operations applied to the WBC Dataset. We visualize several examples of unique task
augmentations we apply during training.

• Gaussian Noise (Task, In-Task): Apply Gaussian noise to all images in the support set and query with mean µ and
variance σ2.

• Sharpness Change (Task, In-Task): Apply a sharpness filter to the images (query and support), where the sharpness
strength is controlled by sharpness.



D. Synthetic Tasks
We found improvement in held-out performance by introducing synthetic tasks during training, building on recent methods

that use synthetic medical images to solve specific tasks [10, 34, 36], especially the synthetic shapes in SynthMorph [34]. We
generate 1,000 new tasks with high diversity (Figure 12). As shown in Figure 11, for each task, we first synthesize a label map
of 16 random shapes, representing 16 regions of interest. We deform this label map with 100 random smooth deformation
fields, representing 100 subjects with the same simulated anatomy. We then add texture to the resulting images by filling in
each region of interest with slightly varied intensities around a sampled mean and adding Gaussian and Perlin noise.

Step 1: Generate Shape 
Image

Step 3: Fill Each Shape with 
Unique GMM

Step 2: Generate 100 shape 
images by warping original

Figure 11: Generation process for synthetic tasks. For a new synthetic task, we first generate random shapes to obtain a
label map, then synthesize 100 spatial variations on this label map, and finally synthesize resulting intensity images. We repeat
this process for 1000 tasks.

Figure 12: Examples of Synthetically Generated Tasks. We visualize 10 of the 1000 synthetically generated tasks, involving
varying shapes, textures, and label shapes.



E. Extended Results
E.1. Main Results

We include detailed numbers corresponding to figures in the main body of the paper.

• Method Comparison. Table 5 reports test performance numbers of the results from Figure 1 and Table 1, comparing the
segmentation results of UniverSeg to the FS baselines and the supervised nnUNet upper bounds.

• Training Strategies Ablation. Table 6 reports per-dataset test performance numbers for the results of Table 2 comparing
several ways of augmenting the task diversity artificially. While the overall trend holds for most datasets, we find that the
increase in task diversity has a detrimental effect on the STARE eye vessel segmentation task.

• Model Support Size. Table 7 reports held-out test performance numbers of the results from Figure 7 along with per-
dataset breakdowns. We find that the global trend holds for each individual dataset, with larger support sizes achieving
better results and ensembling (with K = 10) consistently improving predictions.

• Available Data for Inference Ablation. Table 8 reports extended results from Figure 8 with per-task results as we
change the size of the support example pool. All tasks showcase the same trend with consistent improvements as more
support examples are used during inference and with a reduced variance across random subsets of the support split.

• Support Set Ensembling. Table 9 reports results for the support set ensembling experiment. We observe a clear
difference between N = 1 and N > 1 for ensembled predictions. For N = 1 ensembling leads to small improvements
that eventually decline as K grows. In contrast for N > 1, ensembling leads to substantial improvements that also reduce
the variance of the distribution, limiting the dependence on the specific subset used for the support set.

• Number of Tasks Ablation. Table 10 reports the per-dataset and global dice numbers for the models trained with a
subset of the training datasets.

Table 5: Method Comparison. Test Dice Score for the baselines, UniverSeg, and the nnUNet upper bounds in each of the
held-out datasets. Standard deviation is computed by bootstrapping subjects before hierarchically averaging the data.

Model ACDC PanDental SCD STARE SpineWeb WBC All (avg.)
ALPNet 34.6 ± 2.4 72.9 ± 0.8 53.4 ± 3.0 17.8 ± 1.9 31.6 ± 4.6 76.2 ± 1.1 47.8 ± 1.1
PANet 27.8 ± 4.3 67.7 ± 0.8 58.9 ± 3.4 20.1 ± 3.2 21.8 ± 0.4 54.7 ± 1.6 41.8 ± 1.3
SENet 40.1 ± 2.0 81.1 ± 0.9 55.4 ± 3.3 35.2 ± 2.2 18.3 ± 4.0 70.8 ± 1.3 50.1 ± 1.3
UniverSeg (ours) 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1 71.8 ± 0.9

nnUNet (sup.) 82.5 ± 2.3 92.9 ± 1.1 75.0 ± 3.4 65.5 ± 1.1 91.2 ± 2.3 95.1 ± 0.7 84.4 ± 1.0

Table 6: Training Stategies Ablation. Per dataset held-out Dice for UniverSeg models trained with different combinations of
the proposed techniques to increase task diversity: in-task augmentation, task augmentation, and synthetic tasks.

Synth Medical In-Task Task ACDC PanDental SCD STARE SpineWeb WBC

X 55.4 ± 3.4 80.6 ± 1.3 55.7 ± 2.4 42.6 ± 2.5 50.1 ± 6.5 86.0 ± 1.4
X 44.9 ± 1.8 85.3 ± 0.9 59.9 ± 1.9 63.8 ± 0.9 40.3 ± 6.0 82.0 ± 1.6

X X 50.6 ± 2.9 85.7 ± 0.9 59.0 ± 1.9 61.9 ± 1.6 45.6 ± 4.8 84.2 ± 1.4
X X 52.3 ± 4.3 86.5 ± 0.9 64.9 ± 2.7 56.0 ± 2.3 57.2 ± 3.7 85.1 ± 1.4
X X 68.0 ± 3.0 87.5 ± 1.0 63.5 ± 2.3 56.6 ± 2.1 57.8 ± 6.6 89.2 ± 1.3
X X X 70.0 ± 2.8 88.0 ± 0.9 71.2 ± 3.1 42.2 ± 2.1 58.4 ± 8.5 90.3 ± 1.2

X X X X 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1



Table 7: Model Support Size. Comparison of predictions for models trained with various of support sizes N and evaluated
with and without ensembling K = 10 predictions. We report results on each held-out dataset as well as the global average.
Standard deviation is computed by bootstrapping subjects before hierarchically averaging the data. For all datasets, we find
that increasing the support size leads to better predictions, with diminishing returns after N > 16. Ensembling predictions
significantly improve performance in the majority of settings (paired t-test).

N K ACDC PanDental SCD STARE SpineWeb WBC All (avg.)

1
1 41.3 ± 1.3 76.3 ± 0.9 60.2 ± 1.8 37.4 ± 3.8 30.4 ± 5.5 74.0 ± 1.2 53.3 ± 1.0

10 44.5 ± 2.4 79.1 ± 1.0 60.0 ± 1.9 38.5 ± 4.0 32.4 ± 6.6 79.4 ± 1.4 55.7 ± 1.1

2
1 41.3 ± 2.6 80.0 ± 1.0 63.5 ± 2.0 40.4 ± 2.1 38.0 ± 4.3 77.6 ± 1.1 56.8 ± 1.0

10 42.8 ± 3.2 82.4 ± 1.1 68.0 ± 2.5 40.7 ± 2.3 43.4 ± 4.1 82.3 ± 1.4 60.0 ± 1.2

4
1 53.9 ± 1.9 83.9 ± 1.0 64.7 ± 1.7 47.9 ± 2.9 45.5 ± 4.0 82.7 ± 1.4 63.1 ± 0.8

10 57.0 ± 2.6 84.6 ± 1.1 66.4 ± 2.8 48.6 ± 2.9 50.8 ± 4.1 85.7 ± 1.5 65.5 ± 0.8

8
1 57.0 ± 2.5 85.0 ± 0.9 66.9 ± 3.2 45.9 ± 3.5 57.3 ± 6.5 83.7 ± 1.5 66.0 ± 1.3

10 61.6 ± 3.3 86.1 ± 0.9 69.0 ± 4.1 47.1 ± 3.5 62.3 ± 6.0 85.9 ± 1.5 68.6 ± 1.3

16
1 64.1 ± 2.4 86.1 ± 0.9 69.1 ± 3.1 48.8 ± 3.0 64.4 ± 5.8 86.9 ± 1.4 69.9 ± 1.0

10 66.8 ± 2.5 86.7 ± 0.9 68.7 ± 3.5 49.7 ± 2.8 66.8 ± 5.7 88.3 ± 1.5 71.2 ± 1.0

32
1 65.6 ± 3.0 87.1 ± 0.9 69.0 ± 2.0 45.7 ± 2.2 65.8 ± 4.6 87.6 ± 1.3 70.1 ± 0.9

10 69.3 ± 2.9 87.6 ± 0.9 69.5 ± 1.9 46.4 ± 2.1 66.4 ± 4.3 88.9 ± 1.4 71.4 ± 0.8

64
1 69.0 ± 2.9 87.2 ± 0.9 68.7 ± 2.9 47.2 ± 2.2 64.2 ± 5.5 89.7 ± 1.1 71.0 ± 1.0

10 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1 71.8 ± 0.9

Table 8: Limited Example Data. UniverSeg predictions using a limited dsupport example pool for each held-out task. For each
size, we perform 100 repetitions using different random subsets, reporting the mean and standard deviation across them. Since
some tasks do not have enough subjects to be evaluated for all values of N , we report min(N, |dsupport|) and omit repeated
settings where N > |dsupport|.

Task N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64

ACDC 22.9 ± 5.5 38.5 ± 6.9 51.4 ± 4.7 59.1 ± 3.0 64.4 ± 2.2 68.6 ± 1.4 71.0 ± 0.0
PanDental0 59.1 ± 7.4 73.3 ± 4.2 77.6 ± 1.6 80.1 ± 0.8 82.1 ± 0.5 83.2 ± 0.3 83.7 ± 0.1
PanDental1 65.5 ± 3.9 84.1 ± 2.2 87.5 ± 2.7 89.5 ± 1.2 90.6 ± 0.5 91.1 ± 0.3 91.3 ± 0.0
SCD0 34.3 ± 9.2 63.1 ± 5.1 70.8 ± 2.5 73.1 ± 1.2 74.3 ± 0.4 74.2 ± 0.0
SCD1 33.0 ± 10.4 61.8 ± 9.4 72.8 ± 5.0 76.7 ± 2.4 78.5 ± 0.8 78.6 ± 0.0
SCD2 45.0 ± 11.4 71.5 ± 12.7 80.6 ± 7.2 84.8 ± 0.0
SCD3 30.5 ± 9.3 47.1 ± 6.5 54.9 ± 4.5 63.0 ± 2.3 64.2 ± 0.0
SCD4 9.2 ± 4.4 13.3 ± 8.3 25.9 ± 7.8 39.0 ± 3.1 41.0 ± 0.0
STARE 25.5 ± 3.5 33.5 ± 2.0 40.2 ± 1.2 45.2 ± 0.5 47.7 ± 0.0
SpineWeb 28.1 ± 2.1 39.3 ± 6.1 52.1 ± 7.0 63.1 ± 3.3 64.7 ± 0.0
WBC0 49.4 ± 4.5 65.0 ± 4.3 74.8 ± 3.0 81.0 ± 1.9 85.0 ± 1.2 87.5 ± 0.8 88.8 ± 0.0
WBC1 57.4 ± 4.8 75.2 ± 3.5 83.0 ± 2.1 87.4 ± 1.0 89.9 ± 0.4 91.3 ± 0.3 91.9 ± 0.2



Table 9: Ensembling predictions at different inference support sizes. For each inference support size N , we report the
results (in average held-out Dice Score) of taking 100 predictions (K = 1) and ensembling by averaging in groups of size K,
performing 100 repetitions for each K. We report the mean and standard deviation across the 100 values for each setting and
find that increasing either K or N leads to improved model performance, with N having a significantly larger effect than K.

N K = 1 K = 2 K = 4 K = 8 K = 16 K = 32 K = 64
1 36.9 ± 2.0 39.4 ± 2.3 40.7 ± 2.0 40.9 ± 1.6 40.3 ± 1.1 39.4 ± 0.7 38.3 ± 0.4
2 51.0 ± 3.2 56.3 ± 2.2 59.5 ± 1.6 61.0 ± 1.2 61.9 ± 0.9 62.3 ± 0.6 62.4 ± 0.3
4 59.4 ± 2.3 63.7 ± 1.5 66.2 ± 1.0 67.5 ± 0.7 68.2 ± 0.4 68.6 ± 0.3 68.8 ± 0.2
8 64.8 ± 1.9 68.0 ± 1.1 69.6 ± 0.6 70.5 ± 0.4 71.1 ± 0.2 71.3 ± 0.2 71.4 ± 0.1

16 68.4 ± 1.1 70.1 ± 0.5 71.0 ± 0.4 71.5 ± 0.3 71.8 ± 0.2 71.9 ± 0.1 72.0 ± 0.1
32 70.1 ± 0.6 71.0 ± 0.3 71.5 ± 0.2 71.7 ± 0.1 71.8 ± 0.1 71.9 ± 0.1 71.9 ± 0.0
64 71.0 ± 0.3 71.4 ± 0.2 71.6 ± 0.2 71.7 ± 0.1 71.8 ± 0.1 71.8 ± 0.1 71.8 ± 0.0

Table 10: Number of Training Datasets and Tasks. Test Dice score results for models trained with ND datasets comprising
NT tasks. The subsets of the training datasets are chosen randomly so we report three realizations for each ND, except for the
case where all datasets are included. Each row corresponds to a separate UniverSeg model.

ND NT ACDC PanDental SCD STARE SpineWeb WBC All (avg)

1
25 24.7 ± 2.8 82.2 ± 0.8 43.7 ± 3.3 7.2 ± 2.5 0.2 ± 0.2 61.1 ± 1.3 36.5 ± 0.8
29 3.3 ± 2.4 18.4 ± 0.7 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 0.4

156 63.1 ± 2.7 80.0 ± 1.8 53.5 ± 5.3 17.5 ± 2.3 46.2 ± 1.6 86.2 ± 1.3 57.8 ± 1.1

2
33 41.7 ± 3.7 83.8 ± 1.0 43.9 ± 2.3 16.9 ± 1.4 22.2 ± 3.3 80.0 ± 1.5 48.1 ± 1.1
85 49.5 ± 3.5 83.1 ± 1.1 59.9 ± 2.5 22.9 ± 2.1 52.9 ± 2.1 85.5 ± 1.4 59.0 ± 1.0

131 31.9 ± 2.5 82.0 ± 0.8 42.3 ± 3.4 0.0 ± 0.0 10.2 ± 3.2 69.5 ± 1.3 39.3 ± 0.6

5
237 43.6 ± 5.5 75.3 ± 1.3 52.1 ± 2.8 26.8 ± 3.4 28.3 ± 10.1 86.3 ± 1.2 52.1 ± 2.2
710 63.9 ± 3.6 86.6 ± 1.0 63.5 ± 2.2 27.2 ± 3.3 61.1 ± 5.0 87.4 ± 1.6 64.9 ± 1.3

1117 67.4 ± 3.1 86.5 ± 1.0 62.9 ± 4.5 51.6 ± 2.4 58.4 ± 8.2 89.9 ± 1.0 69.4 ± 2.0

11
174 51.2 ± 2.8 84.0 ± 0.9 66.5 ± 2.7 22.8 ± 1.3 52.2 ± 0.4 84.5 ± 1.1 60.2 ± 0.8

1223 60.6 ± 3.6 86.8 ± 1.0 59.0 ± 4.9 29.7 ± 2.4 58.4 ± 5.6 85.5 ± 1.3 63.3 ± 1.7
1457 69.7 ± 2.8 87.5 ± 0.9 65.4 ± 3.3 40.5 ± 3.0 59.6 ± 7.0 88.6 ± 1.1 68.6 ± 1.7

23
1320 66.9 ± 3.5 85.3 ± 0.9 68.1 ± 2.4 31.2 ± 0.7 57.2 ± 5.9 88.4 ± 1.3 66.2 ± 1.1
2157 66.5 ± 3.0 86.1 ± 1.0 64.0 ± 2.3 36.9 ± 1.1 64.9 ± 5.4 89.6 ± 1.3 68.0 ± 1.1
2276 66.5 ± 3.8 86.7 ± 0.9 65.7 ± 2.8 28.1 ± 2.4 52.4 ± 6.6 89.1 ± 1.2 64.8 ± 1.4

34
3008 69.8 ± 3.0 88.8 ± 0.9 68.3 ± 2.6 42.5 ± 3.2 62.4 ± 6.1 90.0 ± 1.2 70.3 ± 1.4
3483 70.7 ± 2.9 87.1 ± 1.0 67.2 ± 3.5 46.7 ± 3.6 63.0 ± 5.0 90.7 ± 1.4 70.9 ± 1.0
3854 65.3 ± 3.6 88.2 ± 1.0 65.1 ± 1.6 43.1 ± 3.1 62.2 ± 5.5 89.0 ± 1.1 68.8 ± 1.0

46 4432 71.3 ± 2.6 87.9 ± 0.9 67.9 ± 2.5 44.9 ± 2.9 65.5 ± 4.7 91.0 ± 1.1 71.4 ± 1.1



E.2. Additional Results

Few-shot Baseline Model Variants. The FS baselines (ALPNet, PANet, and SENet) were introduced in a few-shot setting
where the underlying assumption is that any new task can only have very few examples, rather than our setting where we
avoid re-training due to the limitations of the clinical settings. These baselines were therefore presented with a support size
of 1 example. They also involved no data or task augmentation. Our ablations show that UniverSeg models performed best
with large support set sizes and increased data and task diversity from augmenting examples. Consequently, we test whether
incorporating these changes to the baseline methods leads to improved performance in the held-out datasets in our setting,
where more data *might* be available for some datasets. Similarly, we also test whether ensembling predictions from several
support sets lead to better predictions, as we do for UniverSeg.

Table 11 and Table 12 report results of the hyperparameter grid search for all the few-shot baseline models and UniverSeg.
Table 11 shows that ensembling (K = 10) and an increased support size (N = 64) leads to held-out improvements for
all methods. In contrast, augmentation strategies do not benefit all methods. While UniverSeg and SENet improve when
using augmentation strategies, PANet and ALPNet experience a decrease in performance. Table 12 shows that the best
hyperparameter setting is not consistent across held-out datasets for the baseline methods.

Table 11: FS baseline hyperparameter search. For each method, we report results for models trained with a support size
N , ensemble size K, and with and without data and task augmentation. Dice scores are averaged across all datasets and the
standard deviation is computed via subject-level bootstrapping.

No Aug Aug

Model N K=1 K=10 K=1 K=10
Model N

ALPNet 1 40.2 ± 0.9 42.3 ± 1.3 35.4 ± 0.6 37.0 ± 0.8
64 46.3 ± 1.3 47.8 ± 1.1 42.3 ± 1.0 45.2 ± 1.2

PANet 1 37.4 ± 0.7 39.3 ± 0.8 33.2 ± 1.3 34.3 ± 1.4
64 41.6 ± 1.3 41.8 ± 1.3 38.7 ± 0.9 40.8 ± 0.8

SENet 1 40.0 ± 0.9 41.2 ± 0.9 40.1 ± 1.2 41.1 ± 1.4
64 42.1 ± 0.7 42.4 ± 0.8 50.2 ± 1.1 50.1 ± 1.3

UniverSeg (ours) 1 49.7 ± 0.9 53.4 ± 1.1 51.9 ± 0.8 54.0 ± 1.0
64 64.0 ± 1.1 64.5 ± 1.0 71.0 ± 1.0 71.8 ± 0.9



Table 12: Few-shot baseline hyperparameter search per dataset. For each method, we report results for models trained
with a support size N , ensemble size K = 10, and with and without data and task augmentation. Dice score values are
averaged across all datasets and the standard deviation is computed via subject-level bootstrapping. For each dataset and
model, we highlight the setting with the best performance

Model N Aug ACDC PanDental SCD STARE SpineWeb WBC

ALPNet
1

No 22.1 ± 3.2 66.8 ± 1.0 49.1 ± 3.8 22.7 ± 2.0 29.7 ± 3.7 63.2 ± 0.9
Yes 26.7 ± 2.9 51.8 ± 1.5 41.5 ± 1.9 11.0 ± 2.8 19.7 ± 4.9 71.0 ± 1.6

64
No 34.6 ± 2.4 72.9 ± 0.8 53.4 ± 3.0 17.8 ± 1.9 31.6 ± 4.6 76.2 ± 1.1
Yes 38.3 ± 2.5 71.1 ± 1.0 56.1 ± 1.6 6.3 ± 2.2 25.5 ± 6.4 73.9 ± 1.2

PANet
1

No 33.4 ± 2.5 69.8 ± 1.3 48.7 ± 3.5 17.4 ± 4.3 25.4 ± 3.9 40.9 ± 1.8
Yes 30.3 ± 3.0 63.2 ± 1.3 48.4 ± 3.3 4.6 ± 2.9 28.6 ± 5.6 31.0 ± 2.1

64
No 27.8 ± 4.3 67.7 ± 0.8 58.9 ± 3.4 20.1 ± 3.2 21.8 ± 0.4 54.7 ± 1.6
Yes 29.6 ± 2.3 66.4 ± 1.4 46.8 ± 2.3 15.1 ± 2.1 27.9 ± 5.8 58.8 ± 1.5

SENet
1

No 17.0 ± 2.9 61.7 ± 1.1 47.5 ± 2.3 41.3 ± 2.7 21.7 ± 3.7 58.1 ± 0.9
Yes 32.2 ± 2.8 62.4 ± 1.3 48.2 ± 2.9 31.4 ± 2.1 16.8 ± 7.8 55.5 ± 1.3

64
No 32.0 ± 2.4 79.1 ± 0.8 43.8 ± 2.9 37.5 ± 2.9 3.2 ± 2.4 58.7 ± 1.1
Yes 40.1 ± 2.0 81.1 ± 0.9 55.4 ± 3.3 35.2 ± 2.2 18.3 ± 4.0 70.8 ± 1.3

UniverSeg
1

No 29.1 ± 2.0 76.1 ± 0.9 58.0 ± 2.1 54.5 ± 2.7 31.6 ± 6.4 70.9 ± 1.7
Yes 37.5 ± 2.0 76.8 ± 1.1 62.9 ± 2.6 33.9 ± 3.7 36.0 ± 5.0 76.8 ± 1.6

64
No 50.6 ± 2.9 85.7 ± 0.9 59.0 ± 1.9 61.9 ± 1.6 45.6 ± 4.8 84.2 ± 1.4
Yes 70.9 ± 2.9 87.5 ± 0.9 69.0 ± 2.9 48.1 ± 2.0 64.6 ± 5.4 90.6 ± 1.1



Using different training and inference support sizes. In Figure 13, we report dataset-level results of performing inference
with a support size of M using a UniverSeg model trained with a support size of N examples. We find that using support
sets larger than those seen in training (M > N , lower quadrant of heat-maps) leads to improvements for N ≥ 2, which
demonstrates the model is learning to interact the elements of the support set and benefits from larger amounts of examples.

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

41.3 35.7 31.9 28.9 28.6 28.8 28.1

36.9 41.3 44.8 45.5 46.8 47.8 48.0

41.2 49.3 53.9 56.1 58.7 59.8 59.9

29.2 44.7 54.1 57.0 61.4 63.7 64.3

29.2 45.8 55.2 58.8 64.1 66.3 67.4

12.2 34.8 49.6 55.2 61.7 65.6 68.0

24.5 39.9 51.0 56.4 62.8 66.1 69.0

ACDC

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

76.3 76.6 77.0 77.1 77.1 77.0 77.0

77.6 80.0 81.2 81.8 82.1 82.2 82.2

79.1 82.6 83.9 84.5 84.7 85.0 85.2

76.2 81.4 83.7 85.0 85.6 85.9 86.1

74.7 81.0 83.6 85.2 86.1 86.5 86.7

38.8 74.9 82.0 84.9 86.3 87.1 87.5

61.7 78.0 82.1 84.4 85.9 86.8 87.2

PanDental

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

60.2 59.3 59.1 59.8 59.0 59.3 59.0

58.2 63.5 65.9 68.4 69.5 70.2 70.7

52.2 60.7 64.7 68.5 69.0 70.2 70.3

48.7 58.2 62.4 66.9 68.7 70.5 70.9

40.2 56.8 62.7 68.0 69.1 71.0 71.8

14.1 44.9 57.7 65.2 67.3 69.0 69.5

30.8 49.4 58.6 64.2 67.3 68.6 68.7

SCD

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

37.4 38.2 36.8 35.3 34.7 33.9 33.5

38.3 40.4 41.7 42.0 42.2 41.9 42.0

40.1 44.9 47.9 48.5 48.9 49.2 49.4

34.7 41.0 44.5 45.9 46.6 46.7 46.8

30.1 42.5 46.5 48.1 48.8 49.2 49.3

22.0 33.9 40.2 43.5 44.8 45.7 46.2

25.1 32.7 38.6 42.9 45.3 46.5 47.2

STARE

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

30.4 27.3 25.7 24.5 23.3 22.9 23.0

30.9 38.0 41.2 41.6 39.4 41.1 41.3

31.2 38.7 45.5 49.6 49.8 50.5 51.0

26.1 39.9 50.3 57.3 58.6 60.0 61.2

22.4 39.4 52.5 61.1 64.4 65.3 65.8

18.3 37.6 48.9 59.2 64.2 65.8 66.1

26.1 35.3 47.6 57.5 61.9 64.0 64.2

SpineWeb

1 2 4 8 16 32 64
Inference Support Size M

1
2

4
8

16
32

64
Tr

ai
n 

Su
pp

or
t S

ize
 N

74.0 73.4 71.6 70.3 69.4 68.9 68.6

73.3 77.6 79.4 80.7 81.4 81.8 82.0

72.5 79.1 82.7 84.8 85.7 86.2 86.3

65.0 75.2 81.0 83.7 85.1 85.8 86.2

63.5 76.0 81.8 85.0 86.9 87.7 88.1

35.7 68.4 79.1 83.6 86.4 87.6 88.2

53.3 70.4 78.7 83.6 87.1 88.8 89.7

WBC

25

30

35

40

45

50

55

60

65

Te
st

 D
ice

 S
co

re

65

70

75

80

85

Te
st

 D
ice

 S
co

re

35

40

45

50

55

60

65

70

Te
st

 D
ice

 S
co

re

25

30

35

40

45

Te
st

 D
ice

 S
co

re

25

30

35

40

45

50

55

60

65

Te
st

 D
ice

 S
co

re

55

60

65

70

75

80

85

Te
st

 D
ice

 S
co

re

Figure 13: Cartesian Product of Training and Inference Support Sizes. Test results for using a UniverSeg trained with
a support size of N examples and performing inference with a support size of M examples. No ensembling is performed
(K = 1), but we perform 10 repetitions with varying support sets and report the average.



F. Additional Visualizations

Visualization of Held-Out Support Sets. UniverSeg networks take advantage of large support sets of (image, label-map)
pairs, which can be very diverse. In Figure 14, we visualize a random subset of 10 pairs for each held-out dataset. The diversity
of subjects amongst support sets differs between tasks, which likely plays a role in the number of examples required to perform
well.

Figure 14: Example Support Sets for Held-Out Datasets.



Visualization of Soft Predictions. Thresholding segmentation predictions (at 0.5) provides a binary segmentation and enables
computation of well-known metrics such as the (hard) Dice score. However, for certain regions of interest, like thin structures,
thresholding can hide network performance. In Figure 15, we show this effect visually. For example, focusing on STARE, we
see that UniverSeg networks can capture the thin structures very well, which is lost when thresholding the predictions to create
a binary segmentation.

Figure 15: Visualization of Soft (Non-Thresholded) Predictions for All Methods.



WBC task visualizations. We include some visualizations of UniverSeg’s capability to adapt based on the support set
specification. We use the WBC dataset, which presents substantial variability between support set examples.

• Figure 16 presents support set examples for the WBC Cytoplasm label as well as held-out predictions, showing that
UniverSeg closely matches the ground truth.

• Figure 17 shows how UniverSeg is equivariant with respect to the support set labels. Given the same images as in
Figure 16 but different labels, UniverSeg adapts its predictions to the nucleus label.

• Figure 18 showcases UniverSeg’s invariance to image transformations. Using the same images and label examples from
Figure 16, we invert the image data (i.e. 1− x) for both the query and support set images. UniverSeg correctly segments
the label regardless of the image transformation.

• Figure 19 shows that while UniverSeg is trained on binary segmentation tasks, it can adequately perform multi-label
segmentation. To produce multi-label predictions, we treat each label independently, and then combine the predictions for
each label using a softmax operation.

• Figure 20 shows the effect of the support set size N in the prediction results. We observe that segmentation mask quality
substantially improves as we increase the number of support set image-label pairs.

• Figure 21 shows prediction variability for predictions performed with support size N = 8 along with an ensembled
prediction.



(a) Support Set Examples - Cytoplasm Label
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(b) Predictions - Cytoplasm Label
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Figure 16: Visualization of support set examples (a) and predictions (b) for the WBC Cytoplasm label



(a) Support Set Examples - Nucleus Label
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(b) Predictions - Nucleus Label
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Figure 17: Visualization of support set examples (a) and predictions (b) for the WBC Nucleus label



(a) Support Set Examples - Inverted Images
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(b) Predictions - Inverted Images
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Figure 18: Visualization of support set examples (a) and predictions (b) for the WBC Cytoplasm label with inverted images



(a) Support Set Examples - Multi Label
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(b) Predictions - Multi Label
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Figure 19: Visualization of support set examples (a) and predictions (b) for the WBC task with multiple labels being predicted
independently. Each label is encoded using a RGB channel (Red=backgroud, Green=Cytoplasm, Blue=Nuclues), we only see
some mild nucleus-cytoplasm overlaps in cyan for one example.



(a) Predictions - Example A
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(b) Predictions - Example B
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(c) Predictions - Example C
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Figure 20: Visualization of predictions for the WBC Cytoplasm task with varying number of support set examples N . Larger
support sets lead to better segmentation masks.



(a) Predictions - Example A

Im
ag

e

Support Set 1
Dice: 88.8

Support Set 2
Dice: 83.0

Support Set 3
Dice: 87.1

Support Set 4
Dice: 87.9

Support Set 5
Dice: 86.5

5-Ensemble
Dice: 91.2

Pr
ed

ict
io

n
Gr

ou
nd

 Tr
ut

h

(b) Predictions - Example B
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(c) Predictions - Example C
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Figure 21: Visualization of predictions for the WBC Cytoplasm task with various choices of support set (N = 8) as well as
the ensembled prediction (last column). Ensembling reduces the variance of predictions.


