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Abstract

Multi-task visual learning is a critical aspect of com-
puter vision. Current research, however, predominantly
concentrates on the multi-task dense prediction setting,
which overlooks the intrinsic 3D world and its multi-view
consistent structures, and lacks the capability for versatile
imagination. In response to these limitations, we present a
novel problem setting – multi-task view synthesis (MTVS),
which reinterprets multi-task prediction as a set of novel-
view synthesis tasks for multiple scene properties, includ-
ing RGB. To tackle the MTVS problem, we propose Mu-
vieNeRF, a framework that incorporates both multi-task and
cross-view knowledge to simultaneously synthesize multi-
ple scene properties. MuvieNeRF integrates two key mod-
ules, the Cross-Task Attention (CTA) and Cross-View Atten-
tion (CVA) modules, enabling the efficient use of informa-
tion across multiple views and tasks. Extensive evaluation
on both synthetic and realistic benchmarks demonstrates
that MuvieNeRF is capable of simultaneously synthesiz-
ing different scene properties with promising visual qual-
ity, even outperforming conventional discriminative mod-
els in various settings. Notably, we show that MuvieNeRF
exhibits universal applicability across a range of NeRF
backbones. Our code is available at https://github.
com/zsh2000/MuvieNeRF.

1. Introduction

When observing a given scene, human minds exhibit
a remarkable capability to mentally simulate the objects
within it from a novel viewpoint in a versatile manner [48].
It not only includes imagination of the colors of objects, but
also extends to numerous associated scene properties such
as surface orientation, semantic segmentation, and edge pat-
terns. Prompted by this, a burgeoning interest has emerged,
seeking to equip modern robotic systems with similar ca-
pabilities for handling multiple tasks. Nevertheless, con-
temporary research [40, 75, 76] has primarily centered on
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(a) Conventional multi-task learning setting

(b) Our multi-task view synthesis pipeline

Figure 1. Comparison between (a) the conventional multi-task
learning scheme and (b) our multi-task view synthesis setting. The
conventional “discriminative” multi-task learning makes predic-
tions for single images while multi-task view synthesis aims to
render visualizations for multiple scene properties at novel views.

the multi-task dense prediction setting, which employs a
conventional discriminative model to simultaneously pre-
dict multiple pixel-level scene properties using given RGB
images (refer to Figure 1(a)). Yet, the methodologies arising
from this context often demonstrate practical limitations,
primarily due to their tendency to treat each image as a sep-
arate entity, without constructing an explicit 3D model that
adheres to the principle of multi-view consistency. Even
more critically, they lack the ability to “imagine” – they
are incapable of inferring scene properties from an unseen
viewpoint, as these models invariably require RGB images.

To circumvent these constraints, we propose a novel ap-
proach that revisits multi-task learning (MTL) [6] from a
synthesis perspective. This leads to a more flexible prob-
lem setting that reinterprets multi-task visual learning as a
collection of novel-view synthesis problems, which we re-
fer to as multi-task view synthesis (MTVS) (refer to Fig-
ure 1(b)). As an illustration, the task of predicting surface
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normals for a given image could be reframed as visualiz-
ing a three-channel “image” with the given pose and cam-
era parameters. With the achievements of Neural Radiance
Fields (NeRF) [39], the implicit scene representation of-
fers an effective solution to synthesize scene properties be-
yond RGB [78]. Importantly, this scene representation takes
multi-view geometry into account, which consequently en-
hances the performance of all tasks.

Diverging from [78], we make the exploration that min-
ing multi-task knowledge can simultaneously enhance the
learning of different tasks, extending beyond discriminative
models [55, 76] to include synthesis models as well. Fur-
thermore, we argue that the alignment of features across
multiple reference views and the target view can rein-
force cross-view consistency, thereby bolstering the implicit
scene representation learning. Informed by this insight, we
propose MuvieNeRF, a unified framework for the MTVS
task, which incorporates Multi-task and cross-view knowl-
edge, thus enabling the simultaneous synthesis of multiple
scene properties through a shared implicit scene representa-
tion. MuvieNeRF can be applied to an arbitrary conditional
NeRF architecture and features a unified decoder with two
key modules: Cross-Task Attention (CTA) module, which
investigates relationships among different scene properties,
and Cross-View Attention (CVA) module, which aligns fea-
tures across multiple views. The integration of these two
modules within MuvieNeRF facilitates the efficient utiliza-
tion of information from multiple views and tasks, leading
to better performance across all tasks.

To demonstrate the effectiveness of our approach, we
first instantiate our MuvieNeRF with GeoNeRF [26], a
state-of-the-art conditional NeRF model, and conduct com-
prehensive evaluations on both synthetic and real-world
benchmarks. The results illustrate that MuvieNeRF is ca-
pable of solving multi-task learning in a synthesis man-
ner, even outperforming several competitive discriminative
models in different settings. Moreover, we ablate the choice
of conditional NeRF backbones to illustrate the broad appli-
cability of our framework. We further validate the individ-
ual contributions of the CVA and CTA modules by building
and comparing different variants of MuvieNeRF. Finally,
we demonstrate the broader applications and analysis of
MuvieNeRF, such as generalization on out-of-distribution
datasets.

In summary, our contributions are three-fold: (1) We
pioneer a novel problem definition, multi-task view synthe-
sis (MTVS), which reconsiders multi-task visual learning
as a set of view synthesis tasks. The introduction of MTVS
paves the way for robots to emulate human-like mental sim-
ulation capabilities by utilizing the implicit scene repre-
sentation offered by Neural Radiance Fields (NeRF). (2)
We present MuvieNeRF, a unified framework that em-
ploys Cross-Task Attention (CTA) and Cross-View Atten-

tion (CVA) modules to leverage cross-view and cross-task
information for the MTVS problem. (3) Comprehensive ex-
perimental evaluations demonstrate that MuvieNeRF shows
promising results for MTVS, and greatly outperforms con-
ventional discriminative models across diverse settings.

2. Related Work

In this work, we propose the MuvieNeRF model which
leverages both multi-task and cross-view information for
multi-task view synthesis. We review the most relevant work
in the areas below.
View Synthesis aims to generate a target image with an
arbitrary camera pose by referring to source images [60].
Numerous existing methods have delivered promising re-
sults in this area [2, 41, 54, 67, 73]. However, unlike
these conventional approaches, MTVS endeavors to syn-
thesize multiple scene properties, including RGB, from
novel viewpoints. In pursuit of a similar goal, another
group of methods seeks to render multiple annotations for
novel views, following a first-reconstruct-then-render strat-
egy [14, 15, 23, 30]. These methods typically collect or con-
struct a 3D scene representation (e.g., mesh or point cloud)
and subsequently render multiple scene properties using
3D-to-2D projection. In contrast, our work constructs an
implicit 3D scene representation using a NeRF-style model
based on 2D data. This approach is more computationally
efficient and, importantly, our implicit representation pro-
vides an opportunity to further model task relationships, an
advantage the aforementioned methods do not possess.
Neural Radiance Fields are originally designed for syn-
thesizing novel-view images with ray tracing and volume
rendering technologies [39]. Follow-up work [3, 12, 16,
22, 31, 36, 42, 43, 46, 47, 49, 59, 66, 68] further improves
the image quality, optimization, and compositionality. In
addition, several approaches [7, 26, 58, 74], namely condi-
tional NeRFs, encode the scene information to enable the
conditional generalization to novel scenes, which are more
aligned with our setting. Our MuvieNeRF takes the en-
coders from these conditional NeRFs as backbones. Some
work has also paid attention to synthesizing other properties
of scenes [13, 45, 63, 70, 78, 79]. Among them, Semantic-
NeRF [79] extends NeRF from synthesizing RGB images
to additionally synthesizing semantic labels. SS-NeRF [78]
further generalizes the NeRF architecture to simultaneously
render RGB and different scene properties with a shared
scene representation. Panoptic 3D volumetric representa-
tion [52] is introduced to jointly synthesize RGB and panop-
tic segmentation for in-the-wild images. Different from
them, we tackle the novel MTVS task and leverage both
cross-view and cross-task information.
Multi-task Learning aims to leverage shared knowledge
across different tasks to achieve optimal performance on



all the tasks. Recent work improves multi-task learn-
ing performance by focusing on better optimization strate-
gies [1, 8, 9, 18, 24, 25, 33] and exploring more efficient
multi-task architectures [4, 27, 57, 64].
Cross-task Relationship is an interesting topic in multi-
task learning, which aims to explore the underlying task
relationships among different visual tasks [28]. Taking
the task relationship into consideration, cross-stitch net-
works [40] adopt a learnable parameter-sharing strategy for
multi-task learning. Taskonomy and its follow-up work [55,
75, 76] systematically study the internal task relationships
and design the optimal multi-task learning schemes accord-
ingly to obtain the best performance. Inspired by them,
we also investigate how to better model multi-task learn-
ing but in a synthesis framework with our model-agnostic
MuvieNeRF.

3. Method

In this section, we first describe our novel multi-task
view synthesis problem in Section 3.1. Next, we briefly
review conditional neural radiance fields (NeRFs) and vol-
ume rendering in Section 3.2. In Section 3.3, we explain
the proposed MuvieNeRF (as shown in Figure 2) in detail.
Finally, we discuss how we handle a more challenging set-
ting without access to source-view annotations at test time
in Section 3.4.

3.1. Multi-task View Synthesis Problem

Different from conventional multi-task learning settings,
our goal is to jointly synthesize multiple scene properties in-
cluding RGB images from novel views. Therefore, we aim
to learn a model Φ which takes a set of V source-view task
annotations with camera poses as reference, and predicts the
task annotations for a novel view given camera pose (Infer-
ence Setting I):

YT = Φ
(
{(Yi,Pi)}Vi=1 ,PT

)
, (1)

where Yi =
[
xi,y

1
i , · · · ,yK

i

]
denotes RGB images xi and

K other multi-task annotations {yj
i }Kj=1 in the ith source

view. Pi is the ith source camera pose, and PT is the target
camera pose. During the evaluation, Φ is supposed to be
generalized to novel scenes that are not seen during train-
ing.

For the evaluation of those novel scenes, we also pro-
vide a more challenging setting lacking source-view anno-
tations during the inference time with the assumption that
the model may not get access to additional annotations other
than RGB during inference (Inference Setting II):

YT = Φ
(
{(xi,Pi)}Vi=1 ,PT

)
. (2)

With the above two settings, Inference Setting I allows
us to better evaluate the task relationships in our synthesis
framework in a cleaner manner, so it is the focused setting
in our paper; Inference Setting II is more aligned with real
practice, for which we also propose a solution which is dis-
cussed in Sections 3.4 and 4.5.

3.2. Preliminary: Conditional Neural Radiance
Fields and Volume Rendering

Neural radiance fields (NeRFs) [39] propose a power-
ful solution for implicit scene representation, and are widely
used in novel view image synthesis. Given the 3D posi-
tion of a point q = (x, y, z) in the scene and the 2D view-
ing direction d = (θ, ϕ), NeRFs learn a mapping function
(c, σ) = F (q,d), which maps the 5D input (q,d) to RGB
color c = (r, g, b) and density σ.

To enhance the generalizability of NeRFs, conditional
NeRFs [7, 26, 58, 74] learn a scene representation across
multiple scenes. They first extract a feature volume W =
E(x) for each input image x of a scene. Next, for an ar-
bitrary point q on a camera ray with direction d, they are
able to retrieve the corresponding image feature on W by
projecting q onto the image plane with known pose P. We
treat the above part as the conditional NeRF encoder, which
returns:

fscene = Fenc({xi,Pi}Vi=1 ,q). (3)

We have fscene ∈ RV×dscene , which contains the scene rep-
resentation from V views. Next, the conditional NeRFs fur-
ther learn a decoder (c, σ) = Fdec(q,d, fscene) to predict
the color and density.

Given the color and density of 3D points, NeRFs render
the 2D images by running volume rendering for each pixel
with ray tracing. Every time when rendering a pixel in a cer-
tain view, a ray r(t) = o+ td which origins from the center
o of the camera plane in the direction d is traced. NeRFs
randomly sample M points {tm}Mm=1 with color c(tm) and
density σ(tm) between the near boundary tn and far bound-
ary tf . The RGB value of the pixel is given by:

Ĉ(r) =

M∑
m=1

T̂ (tm)α(δmσ(tm))c(tm), (4)

where δm is the distance between two consecutive sampled
points (δm = ∥tm+1 − tm∥), α(d) = 1− exp(−d), and

T̂ (tm) = exp

−
m−1∑
j=1

δjσ(tj)

 (5)

denotes the accumulated transmittance. The same technique
can be used to render an arbitrary scene property yj by:

Ŷj(r) =

M∑
m=1

T̂ (tm)α(δmσ(tm))yj(tm). (6)



Cross-View
Attention (CVA)

Cross-Task
Attention (CTA)

w11 w12 … w1V

w21 w22 … w2V

… … … …

wK1 wK2 … wKV

…

Split for 
Multi-view

…

Separate 
Decoders

Attention
Q

K, V

M
L

P

A
ttention

y11 y12 … y1V

y21 y22 … y2V

… … … …

yK1 yK2 … yKV

Weighted Sum

…

…

Feature

Task Prompts

Positional Encoding

MuvieNeRF Pipeline

M
L

P

A
ttention

CVA Module CTA Module

Projection

× α × β

Figure 2. Model architecture. MuvieNeRF is a unified framework for multi-task view synthesis equipped with Cross-View Attention (CVA)
and Cross-Task Attention (CTA) modules. It predicts multiple scene properties for arbitrary 3D coordinates with source-view annotations.

3.3. MuvieNeRF

As illustrated in Figure 2, MuvieNeRF first fetches
the scene representation fscene from the conditional
NeRF encoder, then predicts multiple scene properties[
x(q),y1(q), · · · ,yK(q)

]
for arbitrary 3D coordinate q.

The final annotations are rendered by Equation 6. We ex-
plain how to predict multiple scene properties with fscene
and source annotations [(Y1,P1), · · · , (YV ,PV )] as fol-
lows. The full detailed architecture is included in the ap-
pendix.

3.3.1 Cross-View Attention Module

The cross-view attention (CVA) module (Figure 2 bottom
left) leverages the multi-view information for MuvieNeRF.
To start, we first concatenate fscene with a positional em-
bedding derived from the target ray and the source-view
image plane: fpos

scene = [fscene; γ(θn,v)], where γ(·) is the
positional encoding proposed in [39], and θn,v is the angle
between the novel camera ray r and the line that connects
the camera center of view v and the point qn in the queried
ray, which measures the similarity between the source view
v and the target view.

Next, α CVA modules are used to leverage the cross-
view information. Concretely, in each module, we have one
self-attention union followed by a multi-layer perceptron
(MLP): fCVA = MLPCVA(f

pos
scene +MHA(fpos

scene, f
pos
scene)),

where MHA(a, b) denotes multi-head attention [62] with a
as query and b as key and value.

After these processes, we apply (K +1) different MLPs
(corresponding to K vision tasks in multi-task view syn-

thesis plus the RGB synthesis task) to broadcast the shared
feature, leading to the (K + 1)-branch feature ftask ∈
R(K+1)×V×dtask .

3.3.2 Cross-Task Attention Module

In order to simultaneously benefit all the downstream tasks,
we propose a novel cross-task attention (CTA) module (Fig-
ure 2 bottom right) to facilitate knowledge sharing and in-
formation flow among all the tasks. The CTA module
has two attention components with shared learnable task
prompts [72], pt ∈ R(K+1)×dt , where dt is the dimen-
sion of task prompts. The first attention component applies
cross-attention between features from each branch and the
task prompts fstage1 = ftask + MHA(ftask, pt). In this
stage, we run K MHA individually for each task branch
with the shared task prompts. After the cross-attention, we
further concatenate f j

stage1 for task Tj and the correspond-
ing task prompt pjt to obtain fstage1′ .

Next, we apply the second component to use β self-
attention modules for all the branches jointly to lever-
age the cross-task features. The final feature represen-
tation is obtained by: fstage2 = MLPCTA(fstage1′ +
MHA(fstage1′ , fstage1′)).

Finally, to predict the task annotations of the target view,
we adopt the formulation of GeoNeRF [26]. The prediction
ŷj of task Tj on the target view is the weighted sum of the
source views:

ŷj =

V∑
i=1

w[j, i] · y[j, i], (7)



Evaluation Type Training scene evaluation Testing scene evaluation
Task RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Replica

Heuristic 29.60 0.0272 0.0482 0.0214 0.0049 0.9325 20.86 0.0395 0.0515 0.0471 0.0097 0.8543
Semantic-NeRF 33.60 0.0211 0.0403 0.0128 0.0037 0.9507 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
SS-NeRF 33.76 0.0212 0.0383 0.0116 0.0035 0.9533 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
MuvieNeRF 34.92 0.0193 0.0345 0.0100 0.0034 0.9582 28.55 0.0201 0.0408 0.0162 0.0051 0.9563

SceneNet
RGB-D

Heuristic 22.66 0.0496 - 0.0521 0.0093 0.8687 22.02 0.0394 - 0.0525 0.0124 0.8917
Semantic-NeRF 28.29 0.0248 - 0.0212 0.0050 0.9152 28.85 0.0186 - 0.0198 0.0051 0.9417
SS-NeRF 28.93 0.0244 - 0.0216 0.0050 0.9175 29.18 0.0182 - 0.0197 0.0052 0.9510
MuvieNeRF 29.29 0.0237 - 0.0207 0.0049 0.9190 29.56 0.0173 - 0.0189 0.0050 0.9556

Table 1. Averaged performance of MuvieNeRF on Replica [56] and SceneNet RGB-D [37] datasets on both training scenes and testing
scenes. Full results with multiple runs are provided in the appendix, our model consistently outperforms both the single-task Semantic-
NeRF baseline and multi-task SS-NeRF baseline, owing to the proposed CVA and CTA modules.

where the matrix y is made of input view annotations
{Yi}Vi=1 and w is obtained by an additional MLP layer
which processes fstage2.

3.3.3 Optimization

For the set of K tasks T = {T1, T2, · · · , TK} including the
RGB colors, we apply their objectives individually and the
final objective is formulated as

LMT =
∑
Tj∈T

λTjLTj , (8)

where λTj is the weight for the corresponding task Tj . For
each task, LTj is formulated as:

LTj =
∑
r∈R

Lj(ŷ
j(r),yj(r)), (9)

where yj(r), ŷj(r) are the ground-truth and prediction for
a single pixel regarding task Tj . R is the set of rays r for
all training views. Lj is chosen from L1 loss, L2 loss,
and cross-entropy loss according to the characteristics of
the tasks.

3.4. Tackling without Source-view Annotations

The proposed model is based on the assumption that
source-view task annotations are available during inference
time. The assumption rules out the influence of inaccurate
source-view task information, which sets a cleaner environ-
ment to excavate multi-task synergy in a synthesis frame-
work for the MTVS problem. However, from the real ap-
plication perspective, traditional discriminative models only
take RGB images as input without any task annotations. To
demonstrate that our model is able to be applied in real sce-
narios, we introduce the more challenging Inference Set-
ting II formulated by Equation 2 and provide a solution
by incorporating a U-Net [50] shaped module FUNet into
our MuvieNeRF architecture. The detailed architecture of
FUNet is shown in the appendix.

Conceptually, FUNet takes RGB images from the V
source views {xi}Vi=1 as input and produces the corre-
sponding multi-task annotations {Ỹi}Vi=1, where Ỹi =
[ỹ1

i , · · · , ỹK
i ]. Next, similar to the conditional NeRF en-

coder, we retrieve the corresponding multi-task annotations
{Ỹi(q)}Vi=1 for an arbitrary point q by projection.

During training time, FUNet is trained with pixel-wise
task-specific losses. Concretely, for task Tj , we have:

LUj
=

∑
r∈R

V∑
i=1

Lj(ỹ
j
i (r),y

j
i (r)). (10)

The final loss becomes Lfinal =
∑

Tj∈T λTj
(LTj

+ LUj
),

for which we take the ground-truth multi-task annotations
to learn the weights during training. However, we instead
use the predictions produced by FUNet for inference:

ŷj =

V∑
i=1

w[j, i] · ỹ[j, i]. (11)

4. Experimental Evaluation
In this section, we start with main evaluation from Sec-

tions 4.1 to 4.3, including experimental setting, quantitative
and qualitative results, and comparison with conventional
discriminative multi-task models. Next, we make further
investigations in Sections 4.4 and 4.5, including ablation
studies and additional explorations. Finally, we discuss the
limitations and future work in Section 4.6.

4.1. Experimental Setting

Model Instantiation: As illustrated in Section 3, our model
can build upon arbitrary conditional NeRF encoders. For
the main evaluation, we instantiate our model with state-of-
the-art GeoNeRF [26]. We use α = 4 and β = 2 for the
number of self-attention unions in the CVA and CTA mod-
ules, respectively. We additionally show the performance
with other NeRF encoders in the ablation study.
Benchmarks: We take two benchmarks for our main eval-
uation. Replica [56] is a commonly-used indoor scene



Model RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
MuvieNeRFw/o SH 28.26 0.0204 - 0.0171 0.0051 0.9557
MuvieNeRFw/o KP 27.96 0.0212 0.0423 0.0181 - 0.9519
MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563

Table 2. Additional test scene evaluation for our variants without
SH (MuvieNeRFw/o SH) and KP (MuvieNeRFw/o KP) tasks on
the Replica dataset. These two tasks work as a role of auxiliary
tasks.

dataset containing high-quality photo-realistic 3D mod-
elling of 18 scenes. Following the data acquisition method
as [79], we collect 22 sequences from the scenes, each con-
taining 50 frames at a resolution of 640 × 480. SceneNet
RGB-D [37] is a large-scale photorealistic indoor scene
dataset expanding from SceneNet [19]. We include 32
scenes with 40 frames of each at a resolution of 320 × 240
in our evaluation. In addition to the above two datasets,
we further evaluate zero-shot adaptation on four out-of-
distribution datasets: LLFF [38], TartanAir [65], Scan-
Net [11], and BlendedMVS [69].
Task Selection: We select six representative tasks to eval-
uate our method following previous multi-task learning
pipelines [55, 78]. The tasks are Surface Normal Predic-
tion (SN), Shading Estimation (SH), Edges Detection (ED),
Keypoints Detection (KP), and Semantic Labeling (SL),
together with RGB synthesis. For the SceneNet RGB-D
dataset, we drop the SH task due to missing annotations.
Evaluation Setup: For the Replica dataset, we divide the
22 scenes into 18, 1, and 3 for training, validation, and test-
ing, respectively. For SceneNet RGB-D, we split 26 scenes
for training, 2 for validation, and 4 for testing. For each
scene, we hold out every 8 frames as testing views.

For these held-out views, we provide two types of eval-
uation: Training scene evaluation is conducted on novel
views from the training scenes; Testing scene evaluation
runs on novel scenes and is used to evaluate the general-
ization capability of the compared models.
Evaluation Metrics: For RGB synthesis, we measure Peak
Signal-to-Noise Ratio (PSNR) for evaluation. For seman-
tic segmentation, we take mean Intersection-over-Union
(mIoU). For the other tasks, we evaluate the L1 error.
Baselines: We consider synthesis baselines for the main
evaluation. Semantic-NeRF [79] extends NeRF for the se-
mantic segmentation task. We further extend this model in
the same way for other tasks, which only considers single-
task learning in a NeRF style. SS-NeRF [78] considers
multi-task learning in a NeRF style, but ignores the cross-
view and cross-task information. We equip both models
with the same GeoNeRF backbone as our model. Follow-
ing [78], we also include a Heuristic baseline which es-
timates the annotations of the test view by projecting the
source labels from the nearest training view to the target
view.

Implementation Details: We set the weights for the six
chosen tasks as λRGB = 1, λSN = 1, λSL = 0.04,
λSH = 0.1, λKP = 2, and λED = 0.4 based on empirical
observations. We use the Adam [29] optimizer with an ini-
tial learning rate of 5× 10−4 and set β1 = 0.9, β2 = 0.999.
During training, each iteration contains a batch size of 1,024
rays randomly sampled from all training scenes.

More details about our encoder architectures, dataset
processing, out-of-distribution analysis, and implementa-
tion are included in the appendix.

4.2. MuvieNeRF Is Capable of Solving MTVS

In Table 1, we present the average results derived from
the held-out views across both the training and testing
scenes. The key observations are, firstly, it is clear that our
problem statement is non-trivial as evidenced by the no-
tably inferior performance exhibited by the simple heuris-
tic baseline when compared to the other models. Secondly,
SS-NeRF surpasses Semantic-NeRF on average, indicating
the contribution of multi-task learning. Lastly, our model
consistently outperforms all the baselines, reaffirming that
cross-view and cross-task information are invariably bene-
ficial within our framework.

Interestingly, we note that MuvieNeRF exhibits a per-
formance closely comparable to the two NeRF baselines
on novel scenes for the KP and SH tasks. To decipher
the underlying reason, we carry out an additional evalua-
tion on two variants of our model without the two tasks,
MuvieNeRFw/o KP and MuvieNeRFw/o SH, on the test
scenes of Replica in Table 2. Our findings indicate that
the KP and SH tasks indeed enhance the learning of other
tasks, serving as effective auxiliary tasks. This conclusion
aligns with previous studies on traditional multi-task learn-
ing models as reported by [55].

Figure 3 showcases a comparative analysis of the qual-
itative results. It is evident that our predictions supersede
those of other baselines in terms of precision and clarity.
This superior performance can be attributed to the addi-
tional information provided by shared cross-view and cross-
task knowledge, which proves beneficial for the target tasks.

4.3. MuvieNeRF Beats Discriminative Models

Although conventional discriminative models fall short
in addressing the proposed MTVS problem, we have ex-
plored several hybrid settings to facilitate a comparison be-
tween our MuvieNeRF and these discriminative models.
Hybrid Setup: We provide additional RGB images from
novel views to the discriminative models under three set-
tings with different choices of RGB images. (1) We train on
ground truth (GT) pairs and evaluate on novel view RGB
images generated by a NeRF (NeRF’s Images (No Tuned));
(2) We additionally fine-tune the discriminative models with
paired NeRF’s images and corresponding GT (NeRF’s Im-
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Figure 3. Visual comparisons of our model and baselines on a test scene of Replica dataset [56]. Our predictions are sharper and more
accurate compared with other baselines. The underlying reason is that shared cross-view and cross-task knowledge can provide additional
information for the target tasks.

Model NeRF’s Images (No Tuned) NeRF’s Images (Tuned) GT Images (Upper Bound)
SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Taskgrouping 0.0568 0.0707 0.0408 0.0089 0.5361 0.0530 0.0677 0.0423 0.0090 0.5590 0.0496 0.0607 0.0298 0.0060 0.6191
MTI-Net 0.0560 0.0636 0.0418 0.0078 0.5440 0.0486 0.0549 0.0389 0.0078 0.6753 0.0422 0.0498 0.0281 0.0050 0.7196
InvPT 0.0479 0.0618 0.0400 0.0091 0.7139 0.0474 0.0587 0.0328 0.0074 0.7084 0.0409 0.0484 0.0282 0.0055 0.8158
Ours 0.0201 0.0408 0.0162 0.0051 0.9563 - - - - - - - - - -

Table 3. Comparison to the discriminative models for the test scenes on Replica [56] dataset. MuvieNeRF clearly beats all the discriminative
models in all three settings, indicating that our model is more capable of both performance and generalizability.

Model RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
MuvieNeRFw/o CTA 27.55 0.0214 0.0424 0.0198 0.0056 0.9501
MuvieNeRFw/o CVA 28.25 0.0206 0.0407 0.0170 0.0052 0.9557
MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563

Table 4. Ablation study with CTA and CVA modules on
Replica [56] dataset. MuvieNeRFw/o CTA is the variant with-
out CTA module; MuvieNeRFw/o CVA is the variant without CVA
module. The CTA module is more crucial compared to the CVA
module while combining them leads to the best performance.

ages (Tuned)); (3) We evaluate on GT images from novel
views as the performance upper bound (GT Images (Upper
Bound)). For all the settings, we train the discriminative
models on both training and testing scenes (training views
only) to make sure that they get access to the same number
of data as MuvieNeRF.

Discriminative Baselines: We select three representative
baselines of different architectures. Taskgrouping [55]
leverages an encoder-decoder architecture with a shared

Backbone RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
PixelNeRF + SS-NeRF 23.21 0.0328 0.0457 0.0376 0.0074 0.8620
PixelNeRF + Ours 24.14 0.0302 0.0420 0.0342 0.0068 0.8961
GNT + SS-NeRF 21.51 0.0405 0.0497 0.0420 0.0096 0.8302
GNT + Ours 22.67 0.0333 0.0455 0.0384 0.0076 0.8686
MVSNeRF + SS-NeRF 25.27 0.0261 0.0419 0.0248 0.0061 0.9294
MVSNeRF + Ours 25.73 0.0248 0.0408 0.0227 0.0056 0.9303
GeoNeRF + SS-NeRF 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
GeoNeRF + Ours 28.55 0.0201 0.0408 0.0162 0.0051 0.9563

Table 5. Ablation study with different choices of conditional NeRF
encoders. The proposed MuvieNeRF is universally beneficial to
different encoders, owing to the proposed CTA and CVA modules.

Model SN (↓) ED (↓) KP (↓)
Discriminative 0.0778 0.0355 0.0086
MuvieNeRFD 0.0605 0.0230 0.0074

Table 6. Results for the setting with unknown nearby-view anno-
tations. MuvieNeRFD still outperforms the hybrid discriminative
model with a similar backbone.

representation. MTI-Net [61] adopts a convolutional neural
network backbone and enables multi-scale task interactions.



Evaluation Type Training scene evaluation Testing scene evaluation
Tasks RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Replica
SS-NeRF 33.76 0.0212 0.0383 0.0116 0.0035 0.9533 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
MuvieNeRF 34.92 0.0193 0.0345 0.0100 0.0034 0.9582 28.55 0.0201 0.0408 0.0162 0.0051 0.9563
SS-NeRF (Enlarged) 34.20 0.0210 0.0388 0.0107 0.0035 0.9557 27.37 0.0226 0.0405 0.0186 0.0053 0.9498

SceneNet
RGB-D

SS-NeRF 28.93 0.0244 - 0.0216 0.0050 0.9175 29.18 0.0182 - 0.0197 0.0052 0.9510
MuvieNeRF 29.29 0.0237 - 0.0207 0.0049 0.9190 29.56 0.0173 - 0.0189 0.0050 0.9556
SS-NeRF (Enlarged) 29.03 0.0244 - 0.0215 0.0049 0.9186 29.46 0.0182 - 0.0191 0.0050 0.9520

Table 7. Comparison between MuvieNeRF and an enlarged version of SS-NeRF. our model still significantly outperforms SS-NeRF (En-
larged), indicating that the good performance of MuvieNeRF is not simply achieved by a heavier decoder, and demonstrating the effective-
ness of our module designs.

Model Runtime (Per Training Iter.) Num. of Params. FLOPs
SS-NeRF 1× 1.21M 4.57× 1011

MuvieNeRF 1.22× 1.30M 5.84× 1011

Table 8. Computational cost for SS-NeRF and MuvieNeRF on
Replica dataset. Our CTA and CVA modules are light-weight de-
signs.

InvPT [71] takes a transformer-based architecture that en-
courages long-range and global context to benefit multi-task
learning.

Table 3 details the averaged results and Figure 3 of-
fers a visual comparison. It is discernible that our Mu-
vieNeRF outstrips all the discriminative models, illustrating
that these models struggle to effectively tackle the MTVS
problem, despite fine-tuning or utilizing GT images. We
surmise that this shortcoming is rooted in the evaluation of
novel scenes, wherein the generalization capability of our
model noticeably outperforms that of discriminative ones.

4.4. Ablation Study

We consider the test scene evaluation on the Replica
dataset for the following ablation and exploration sections.
Contributions of CTA and CVA: We dissect the individ-
ual contributions of the proposed CTA and CVA modules in
Table 4. An examination of the results reveals a more sig-
nificant impact from the CTA module, when compared with
the CVA module. We postulate that this occurs because the
NeRF encoder and volume rendering have already mastered
an implicit 3D representation, albeit falling short in model-
ing task relationships. Nevertheless, the integration of both
modules yields further enhancement.
Choice of Condition NeRF: We also ablate the condi-
tional NeRF encoders with PixelNeRF [74], MVSNeRF [7],
GNT [58], and GeoNeRF [26] in Table 5. Note that we only
adopt the encoder part defined in Section 3, causing a vari-
ation in performance from the full model. Each variant un-
der our design surpasses its respective SS-NeRF baseline,
affirming the universal advantage of our proposed CTA and
CVA modules across different conditional NeRF encoders.
Effectiveness of CTA and CVA Modules: By integrating
CVA and CTA modules, we concurrently increase the num-
ber of trainable parameters. To truly assess the advance-
ments brought by the proposed CVA and CTA modules, we

Figure 4. Visualizations for the setting without nearby-view anno-
tations. our MuvieNeRFD markedly surpasses the discriminative
baseline model [55] and can generate results closely paralleling
the ground truth, indicating MuvieNeRFD is capable of tackling
the more challenging settings.

introduce an expanded version of SS-NeRF, designated as
SS-NeRF (Enlarged). This variant features a doubled latent
dimension, comprising 2.09M parameters and 6.18 × 1011

FLOPs. The outcomes, as illustrated in Table 7, confirm
that MuvieNeRF’s excellent performance is not simply the
result of a more complex decoder, thereby highlighting the
effectiveness of our module designs. Moreover, we further
list the computational cost for our model and SS-NeRF in
Table 8 to show that our CTA and CVA modules are indeed
lightweight, but effective designs.

4.5. Additional Explorations

4.5.1 Tackling Unknown Source-view Labels

In this section, we apply the variant discussed in Section 3.4
to tackle the more challenging problem setting with un-
known nearby-view annotations. In Table 6, we show the
quantitative comparisons for this variant, MuvieNeRFD,
and a hybrid baseline, Discriminative [55], which shares
almost the same architecture as our discriminative module.
We use pre-trained weights from Taskonomy [76] to initial-
ize weights for both models. Limited by the computational



GeoNeRF MuvieNeRF (Ours) Ground Truth

Figure 5. An out-of-distribution comparison on BlendedMVS
dataset [69] for GeoNeRF and our MuvieNeRF. Our model of-
fers superior visual quality and preserves sharp contours. More
visualizations about other OOD benchmarks are included in the
appendix.

constraint, we select three tasks, SN, ED, and KP with the
closest relationships [55] for demonstration in this setting.

In conjunction with the visualizations illustrated in Fig-
ure 4, it is clear that our MuvieNeRFD markedly surpasses
the discriminative baseline model [55] and can generate re-
sults closely paralleling the ground truth. This observa-
tion indicates that our model is capable of tackling more
challenging settings. We conjecture the reason is that the
weighted sum format (Equation 11) enhances the fault tol-
erance of the predictions.

4.5.2 Out-of-distribution Generalization

We demonstrate how the multi-task information learned
from one dataset can effectively be utilized to benefit other
datasets, by performing a zero-shot adaptation on out-
of-distribution datasets with our MuvieNeRF trained on
Replica. This takes a step further from investigating the
generalization ability of unseen testing scenes in previous
sections. We consider four datasets in total: LLFF [38],
TartanAir [65], ScanNet [11], and BlendedMVS [69] con-
taining indoor, outdoor, and even object-centric scenes.

As an illustrative example, we showcase the comparison
between the conditional NeRF backbone, GeoNeRF [26],
and our MuvieNeRF for the novel-view RGB synthesis task
in Table 9 and Figure 5. Evidently, our model surpasses
GeoNeRF by a significant margin, offering superior visual
quality and retaining sharp contours, likely a result of the
edge and surface normal information absorbed during the
multi-task training. These outcomes substantiate that aug-
menting the model with more tasks, as part of our multi-
task learning strategy, dramatically bolsters the generaliza-
tion capability, thereby showcasing its immense potential
for real-world applications.

4.6. Limitations and Future work

Limitations: One major limitation of this work is the re-
liance on data. MuvieNeRF requires images from dense

Model ScanNet TartanAir LLFF BlendedMVS
GeoNeRF 31.71 26.51 20.68 16.27
MuvieNeRF 32.76 30.21 22.91 20.97

Table 9. Averaged PSNR of out-of-distribution RGB synthesis
task. Our model surpasses the GeoNeRF baseline by a large mar-
gin, affirming that the inclusion of additional tasks, as part of our
approach, contributes to a substantial enhancement in the model’s
generalization capacity.

views, a requirement not fulfilled by most multi-task bench-
marks. To circumvent this limitation, techniques that allow
NeRF to learn from sparse views [42, 77] could be adopted.

Task Relationships: As elaborated in Section 4.2, SH and
KP function as auxiliary tasks within the system. A deeper
exploration into the relationships between tasks and the cor-
responding geometric underpinnings within our synthesis
framework offers intriguing avenues for future research.

Extension to Other Synthesis Models: We have demon-
strated that incorporating cross-view geometry and cross-
task knowledge can enhance multi-task learning for synthe-
sis models. We anticipate that similar strategies could be
extended to 3D synthesis models other than NeRF, such as
point clouds [67] and meshes [21, 30].

5. Conclusion

This paper introduces the novel concept of Multi-Task
View Synthesis (MTVS), recasting multi-task learning as a
set of view synthesis problems. Informed by this new per-
spective, we devise MuvieNeRF, a unified synthesis frame-
work enriched with novel Cross-View Attention and Cross-
Task Attention modules. MuvieNeRF enables the simul-
taneous synthesis of multiple scene properties from novel
viewpoints. Through extensive experimental evaluations,
we establish MuvieNeRF’s proficiency in addressing the
MTVS task, with performance exceeding that of discrim-
inative models across various settings. Our model also
demonstrates broad applicability, extending to a variety of
conditional NeRF backbones.
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Zollhöfer, and Markus Steinberger. AdaNeRF: Adaptive
sampling for real-time rendering of neural radiance fields.
In ECCV, 2022. 2

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 16

[33] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learning.
In NeurIPS, 2021. 3

[34] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,
Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and
Qiang Yang. Fedvision: An online visual object detection
platform powered by federated learning. In AAAI, 2020. 13

[35] David G. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60, 2019. 18

[36] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 2

[37] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J Davison. Scenenet RGB-D: 5M photorealistic im-



ages of synthetic indoor trajectories with ground truth. In
ICCV, 2017. 5, 6, 18

[38] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. TOG, 2019. 6,
9, 13, 16

[39] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3, 4

[40] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning. In
CVPR, 2016. 1, 3, 13, 14, 16, 17

[41] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3D representations from natural images. In ICCV,
2019. 2

[42] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi S. M. Sajjadi, Andreas Geiger, and Noha Radwan.
RegNeRF: Regularizing neural radiance fields for view syn-
thesis from sparse inputs. In CVPR, 2022. 2, 9

[43] Michael Niemeyer and Andreas Geiger. GIRAFFE: Rep-
resenting scenes as compositional generative neural feature
fields. In CVPR, 2021. 2

[44] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning deconvolution network for semantic segmentation.
In ICCV, 2015. 17

[45] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In ICCV, 2021. 2

[46] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
CVPR, 2021. 2

[47] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In ICCV, 2021. 2

[48] Etienne Pelaprat and Michael Cole. “Minding the gap”:
Imagination, creativity and human cognition. Integrative
Psychological and Behavioral Science, 2011. 1

[49] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. KiloNeRF: Speeding up neural radiance fields with
thousands of tiny MLPs. In ICCV, 2021. 2

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In MICCAI, 2015. 5, 16

[51] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 18

[52] Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Buló, Nor-
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In this appendix, we first provide additional qualita-
tive results, including more visualizations of the two main
datasets and results on other out-of-distribution datasets in
Section A. Next, we conduct additional experimental evalu-
ations to analyze the behavior of our model under different
settings in Section B. We further present the multiple run re-
sults of our model and the compared methods in Section C,
demonstrating that our MuvieNeRF consistently achieves
the best performance. Finally, we include additional details
about our model implementation and dataset processing in
Section D.

A. More Visualizations
We provide more qualitative results from the following

two aspects: (1) visual comparison with other synthesis
methods and (2) RGB synthesis results on other out-of-
distribution datasets.

A.1. Comparison with Other Synthesis Methods

Additional qualitative comparisons for all the compared
methods in the Replica and SceneNet RGB-D datasets are
shown in Figure A and Figure B, respectively. Our Mu-
vieNeRF outperforms other methods with clearer and more
accurate contours of the objects in scenes. This is because
MuvieNeRF utilizes the CTA and CVA modules to better
take advantage of the shared knowledge across different
downstream tasks and the cross-view information.

A.2. Out-of-distribution Generalization

In the main paper, we present a practical application of
our proposed MuvieNeRF to show that the multi-task in-
formation learned from one dataset can be generalized to
the scenes in other datasets. We use MuvieNeRF trained on
the Replica dataset to perform a zero-shot adaption on out-
of-distribution datasets: LLFF [38], TartanAir [65], Scan-
Net [11], and BlendedMVS [69] containing indoor, outdoor
and even object-centric scenes. The detailed information of
these four datasets is listed in Table A.

The RGB synthesis results on those out-of-distribution
datasets are shown in Figure C. We can observe that
our model renders higher-quality RGB images from novel
views with sharper contours compared to the GeoNeRF
baseline. The underlying reason lies in the joint model-
ing of edges and surface normal during training, which
makes RGB prediction more precise even for the out-of-
distribution datasets.

B. Additional Experimental Evaluation
We provide additional experimental evaluations to un-

derstand the behavior of MuvieNeRF and its capability
from various aspects: (1) we evaluate our model in a fed-
erated training setting; (2) we ablate the CTA module with

Datasets ScanNet [11] TartanAir [65] LLFF [38] BlendedMVS [69]
Number of scenes 4 4 8 2
Resolution 384×288 640×480 1008×756 768×576
Contents Indoor Indoor, Outdoor Indoor, Outdoor, Object Object

Table A. Detailed information about the four out-of-distribution
datasets, which contain indoor, outdoor, and/or even object-centric
scenes.

Index Training Scene Name SN SH ED KP SL
1 apartment 0 (a) × × ✓ × ✓
2 apartment 0 (b) ✓ × ✓ ✓ ✓
3 apartment 1 ✓ ✓ ✓ ✓ ×
4 apartment 2 (a) × ✓ ✓ ✓ ✓
5 apartment 2 (b) ✓ ✓ ✓ ✓ ✓
6 apartment 2 (c) × ✓ × ✓ ×
7 FRL apartment 0 (a) ✓ ✓ ✓ ✓ ✓
8 FRL apartment 0 (b) ✓ × × ✓ ✓
9 hotel 0 (a) × ✓ ✓ ✓ ×
10 hotel 0 (b) ✓ ✓ ✓ × ×
11 hotel 0 (c) × ✓ ✓ × ✓
12 hotel 0 (d) ✓ ✓ × ✓ ✓
13 office 0 (a) ✓ × × × ✓
14 office 0 (b) × ✓ ✓ × ✓
15 office 0 (c) ✓ ✓ × ✓ ×
16 office 2 × ✓ ✓ ✓ ✓
17 room 2 (a) ✓ ✓ ✓ × ×
18 room 2 (b) ✓ × × ✓ ✓

Table B. Simulated federated training setting where some of the
task annotations for certain training scenes are unavailable.

a lightweight choice of the cross-stitch module [40]; (3) we
report the results with a half-sized training set; (4) we pro-
vide an additional comparison for the discriminative models
with extra data; and (6) we ablate the contributions of the
proposed CTA and CVA modules in the more challenging
setting formulated by Equation 2.

B.1. Federated Training with Partial Annotations

In the real-world regime, it is not always possible to get
access to all the different types of annotations to train a
model. In this scenario, federated training [34] is widely
used. To simulate the real-world regime, we propose such a
setting where every task annotation for each training scene
has a 30% probability of being unavailable. The detailed
setting is shown in Table B, where only 2 scenes get ac-
cess to all annotations. We train our MuvieNeRF on this
subset and compare against the two NeRF-based baselines
Semantic-NeRF [79] and SS-NeRF [78] trained on the full
training set. The evaluation is conducted on the same test-
ing scenes in Replica.

The results are shown in Table C. We have the follow-
ing observations. First, our model still outperforms the
two baselines even with missing annotations, indicating that
leveraging multi-task and cross-view information in our
proposed MuvieNeRF is the key to the success. Second,
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Figure A. Additional qualitative results on one testing scene in the Replica dataset. Our proposed MuvieNeRF outperforms other methods
with more accurate predictions and sharper boundaries, which demonstrates the effectiveness of the multi-task and cross-view information
modeled by the CTA and CVA modules. Zoom in to better see the comparison.

Settings RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Full set + Semantic-NeRF 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
Full set + SS-NeRF 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
Full set + MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563
w/o Full set + MuvieNeRF 27.86 0.0212 0.0422 0.0185 0.0053 0.9526

Table C. Comparison between our model and two baselines in a
federated training setting. Our MuvieNeRF model still outper-
forms the two baselines and even achieves comparable results to
the model trained with the full set, indicating the effectiveness and
robustness of the proposed method.

we still achieve comparable results to the model trained
with the full training set, showing the robustness and label-
efficiency of our method.

B.2. Comparison with Lightweight Cross-task
Modules

The novel CVA and CTA modules are designed to
facilitate multi-task and cross-view information interac-
tion, which improves the performance of MuvieNeRF. In
this section, we provide an additional ablation with a
lightweight choice of CTA modules. We show in the fol-
lowing that although the simpler module reaches compara-
ble performance when modeling RGB together with two ad-
ditional tasks, its performance significantly lags behind our

novel design when handling the more challenging setting
with RGB modeled with five additional tasks. It demon-
strates that the designed CVA and CTA modules in our Mu-
vieNeRF have a larger capacity for modeling multiple tasks.

Concretely, we adopt the cross-stitch [40] module for ex-
perimental evaluation. The cross-stitch module takes a sim-
ple strategy of performing a learned combination of task-
specific features. More specifically, when applied in our
MuvieNeRF pipeline, it functions after the “separate de-
coders” as

Fout = WFin, (12)

where Fin, Fout ∈ RK×V×c are the input and output of
the cross-stitch module, respectively. W ∈ RK×K is a
learnable weight matrix with an L2 regularization for each
row. Each weight value wij measures the information the
j-th component obtained from the i-th component.

The experimental comparison of our MuvieNeRF and
the simpler cross-stitch implementation is shown in Table E.
When modeling with only two additional tasks, the cross-
stitch module could reach comparable performance to our
method. However, when the number of tasks jointly learned
with RGB increases to five, the cross-stitch implementa-
tion fails to serve as an efficient multi-task learning strategy.
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Figure B. Additional qualitative results on one testing scene in the SceneNet RGB-D dataset. Our proposed MuvieNeRF outperforms other
methods, indicating that our model benefits from the multi-task and cross-view information with the designed CTA and CVA modules.
The black regions in the surface normal visualizations are due to the missing depth values in those regions. Zoom in to better see the
comparison.

This indicates that although the simpler cross-stitch module
can afford to benefit the information exchange in the easier
cases when two tasks beyond RGB are jointly modeled, it
does not have enough capacity to handle the more compli-
cated relationships of five tasks along with RGB. In compar-
ison, our design of the CVA and CTA modules is superior,
which leads to the success of modeling more tasks.

B.3. Results with a Half-sized Training Set

We further investigate the robustness of our model by
decreasing the number of scenes in the training dataset to
only half of the original size. The results are shown in Ta-
ble F. We could observe a similar phenomenon as the feder-
ated training result in Table C: when the number of training
scenes reduces, the performance of our model only drops
slightly while still outperforming the other compared meth-
ods, demonstrating the robustness and sample-efficiency of
our method.

B.4. Additional Comparisons with Discriminative
Models

We add the following two sets of comparisons for dis-
criminative models on Table D: (1) we use 15K images ren-
dered from the Replica dataset for training; (2) we use a
pre-trained checkpoint (Taskgrouping-4M, the only avail-
able multi-task one with 4 tasks) on Taskonomy (∼4M data)
for initialization and finetune it on Replica. All these vari-
ants still cannot outperform our MuvieNeRF, indicating that
the discriminative models still lack the ability of multi-
view reasoning even when the training data increases.

B.5. Contributions of CTA and CVA Modules with
the More Challenging Setting

In Table 4 in the main paper, we dissect the individual
contributions of the proposed CTA and CVA modules with
our primary setting. We additionally ablate their contribu-
tions of them in the more challenging setting formulated by
Equation 2. The results in Table H show similar conclu-



Model NeRF’s Images (No Tuned) NeRF’s Images (Tuned) GT Images (Upper Bound)
SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)

Taskgrouping (15k) 0.0464 0.0757 0.0418 0.0088 0.6633 0.0479 0.0531 0.0388 0.0087 0.7193 0.0438 0.0509 0.0284 0.0058 0.7509
MTI-Net (15k) 0.0533 0.0676 0.0414 0.0089 0.5509 0.0463 0.0581 0.0314 0.0079 0.6821 0.0462 0.0500 0.0271 0.0050 0.7555
InvPT (15k) 0.0463 0.0580 0.0417 0.0079 0.7157 0.0399 0.0477 0.0272 0.0057 0.7719 0.0402 0.0472 0.0257 0.0047 0.7981
Taskgrouping-4M 0.0451 - 0.0350 0.0079 0.6692 0.0313 - 0.0311 0.0066 0.7818 0.0231 - 0.0112 0.0040 0.8376
MuvieNeRF 0.0201 0.0408 0.0162 0.0051 0.9563 - - - - - - - - - -

Table D. Additional comparison with discriminative models. Training discriminative models with a larger amount of data still cannot
outperform our MuvieNeRF, indicating that the discriminative models still lack the ability of multi-view reasoning even when the training
data increases.

GeoNeRF MuvieNeRF (Ours) Ground Truth

Figure C. Additional qualitative RGB synthesis results on out-of-
distribution datasets. From top to bottom: ScanNet [11], Tar-
tanAir [65], and LLFF [38]. Our MuvieNeRF yields better visual
quality, demonstrating that the multi-task and cross-view knowl-
edge learned during training can be generalized and applied to out-
of-distribution datasets. Zoom in to better see the comparison.

sions and validate the proposed CVA and CTA modules are
universally beneficial.

Tasks RGB (↑) SN (↓) SL (↑)
Cross-stitch (RGB + 2 Tasks) 27.16 0.0242 0.9519
MuvieNeRF (RGB + 2 Tasks) 26.97 0.0229 0.9476
Cross-stitch (RGB + 5 Tasks) 27.57 0.0219 0.9459
MuvieNeRF (RGB + 5 Tasks) 28.55 0.0201 0.9563

Table E. Comparison between our MuvieNeRF model design and
a simpler cross-stitch [40] multi-task module. The results are av-
eraged over the testing scenes on the Replica dataset. The simpler
cross-stitch implementation can reach comparable results when
the target is easier (RGB + 2 tasks), but fails to achieve satisfac-
tory results when the target becomes more challenging (RGB + 5
tasks). In comparison, our model is able to achieve better perfor-
mance with more tasks learned together.

Settings RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Full + Semantic-NeRF 27.08 0.0221 0.0418 0.0212 0.0055 0.9417
Full + SS-NeRF 27.22 0.0224 0.0405 0.0196 0.0053 0.9483
Full + MuvieNeRF 28.55 0.0201 0.0408 0.0162 0.0051 0.9563
Half + MuvieNeRF 28.11 0.0211 0.0427 0.0168 0.0054 0.9562

Table F. Comparison of training with only half training scenes in
Replica. Our model still achieves relatively satisfactory results
when the number of training scenes reduces to only half, indicating
the sample-efficiency and robustness of our method.

C. Multiple Runs
To further validate the robustness and good performance

of our model against other methods, we show the re-
sults of multiple runs on the Replica dataset in Table G.
Our MuvieNeRF consistently outperforms the single-task
Semantic-NeRF [79] and the multi-task SS-NeRF [78]
baselines, demonstrating the effectiveness of our model de-
sign.

D. Implementation Details
We provide the architecture of the conditional NeRF en-

coders and the additional U-Net [50] discriminative module
we used for Section 4.5. More details of the training proce-
dure and dataset processing are also included.

D.1. Conditional NeRF Encoders

GeoNeRF [26] encoder first uses a feature pyramid net-
work [32] to encode input views of the scene to cascaded
cost volumes [17]. Next, it masks out the input view fea-
tures when the depth of the current 3D point is larger than



Tasks RGB (↑) SN (↓) SH (↓) ED (↓) KP (↓) SL (↑)
Training

scene
evaluation

Semantic-NeRF 33.79 (±0.1579) 0.0231 (±0.0013) 0.0400 (±0.0005) 0.0127 (±0.0003) 0.0037 (±0.0000) 0.9522 (±0.0017)
SS-NeRF 34.07 (±0.2572) 0.0212 (±0.0008) 0.0379 (±0.0007) 0.0113 (±0.0005) 0.0035 (±0.0000) 0.9528 (±0.0023)
MuvieNeRF 34.85 (±0.1440) 0.0197 (±0.0003) 0.0352 (±0.0006) 0.0102 (±0.0003) 0.0034 (±0.0000) 0.9589 (±0.0009)

Testing
scene

evaluation

Semantic-NeRF 26.94 (±0.3180) 0.0219 (±0.0004) 0.0410 (±0.0005) 0.0195 (±0.0018) 0.0054 (±0.0001) 0.9502 (±0.0053)
SS-NeRF 27.65 (±0.6055) 0.0216 (±0.0010) 0.0405 (±0.0004) 0.0184 (±0.0016) 0.0053 (±0.0001) 0.9503 (±0.0070)
MuvieNeRF 28.50 (±0.2127) 0.0200 (±0.0002) 0.0402 (±0.0006) 0.0164 (±0.0004) 0.0051 (±0.0001) 0.9586 (±0.0033)

Table G. Results of all the compared models with four multiple runs on the Replica dataset. Our MuvieNeRF consistently has better
performance and overall smaller deviation among multiple runs than the single-task Semantic-NeRF [79] and the multi-task SS-NeRF [78],
demonstrating the effectiveness of our model design.

Model SN (↓) ED (↓) KP (↓)
MuvieNeRFw/o CTA 0.0694 0.0256 0.0079
MuvieNeRFw/o CVA 0.0668 0.0246 0.0076
MuvieNeRFD 0.0605 0.0230 0.0074

Table H. Ablation study with CTA and CVA modules
on Replica [56] dataset with the more challenging set-
ting. MuvieNeRFw/o CTA is the variant without CTA module;
MuvieNeRFw/o CVA is the variant without CVA module. The pro-
posed CVA and CTA modules are universally beneficial for both
problem settings.

the estimated depth in the corresponding input view. Fi-
nally, four cross-view attention operations are used to pro-
cess the multi-view tokens. We refer to the official reposi-
tory 1 of GeoNeRF for our implementation.
MVSNeRF [7] encoder takes a similar architecture to the
GeoNeRF encoder only without the cross-view attention
modules. We refer to the released codes 2 for implemen-
tation.
PixelNeRF [74] encoder uses ResNet-34 [20] as the back-
bone of its feature extractor. It chooses the features prior to
the first four pooling layers and upsamples them to be in the
same shape as the input RGB images to obtain the multi-
scale features. Next, the sampled points are projected to the
image planes of the input views to obtain the projected fea-
ture from the V source views. We implement it based on
the official repository 3.
GNT [58] encoder 4 also adopts ResNet-34 as the feature
encoder to obtain the multi-view features from multi-view
RGB inputs. We apply the same strategy as the PixelNeRF
encoder to obtain the features for single 3D points. Notice
that, in the original GNT model which is solely designed for
RGB synthesis, the multi-view features further go through
a view transformer [62]. However, the output of their trans-
former is not compatible with our designed decoder pipeline
so we only treat the ResNet part as the encoder. Therefore,
the GNT encoder serves as the single-scale version of the
PixelNeRF encoder in our experiments and it can explain
the reason why the GNT encoder performs the worst in our

1https://github.com/idiap/GeoNeRF
2https://github.com/apchenstu/mvsnerf
3https://github.com/sxyu/pixel-nerf
4https://github.com/VITA-Group/GNT

main paper.

D.2. The Additional Discriminative Module

In Sections 3.4 and 4.5 we introduce the model Mu-
vieNeRF D for the more challenging problem setting with
unknown nearby-view annotations. We take the encoder-
decoder structure used in [55] for the U-Net shaped module
FUNet, which takes RGB images as the input and predicts
pixel-level scene properties.

Concretely, for the U-Net module, we use a shared en-
coder with the Xception [10] as the backbone and apply K
light-weighted deconvolutional layers [44] to predict multi-
ple scene properties. After the predictions, we use the 3D
coordinate of the queried point to project the sampled points
to the input image planes to obtain the single-pixel scene
properties for the weighted sum.

D.3. Training Details

We set the weights for the six chosen tasks as λRGB = 1,
λSN = 1, λSL = 0.04, λSH = 0.1, λKP = 2, and
λED = 0.4 based on empirical observations. We use the
Adam [29] optimizer with an initial learning rate of 5×10−4

and set β1 = 0.9, β2 = 0.999. During training, each iter-
ation contains a batch size of 1024 rays randomly sampled
from all training scenes. The number of input views is set
to 5. Following [40], we adopt a two-stage training strategy.
We first train all the parameters except for the self-attention
modules in the CTA module for 5 × 103 iterations. After-
wards, we train the parameters in the self-attention modules
along with other parameters for 1× 103 iterations. We train
our model on a single NVIDIA A100 with 40GB memory
for around 2.5 hours.

D.4. Datasets Details

Replica dataset [56] is a synthetic dataset which has ac-
curate 3D mesh, semantic annotations and depth informa-
tion. For semantic labels (SL), we map the original 88-class
semantic labels in Replica dataset to the commonly-used
13-class annotation defined in NYUv2-13 [53]. For surface
normal (SN), we derive it from depth:

SN(x, y, z) = (−dz

dx
,−dz

dy
, 1), (13)

https://github.com/idiap/GeoNeRF
https://github.com/apchenstu/mvsnerf
https://github.com/sxyu/pixel-nerf
https://github.com/VITA-Group/GNT


where (x, y, z) is the 3D coordinate and dz
dx , dz

dy are the gra-
dients of x and y with respect to z, respectively. Edge (ED)
and keypoint (KP) are rendered with Canny [5] edge detec-
tor and SIFT [35]. Shadings (SH) are obtained by XTCon-
sistency [75] which are pre-trained on indoor scenes. To
better satisfy the multi-task setting in the real world with
unknown camera poses, we generate the poses of each scene
with COLMAP [51].
SceneNet RGB-D dataset [37] is a large-scale photorealis-
tic dataset that allows rendering RGB images along with
pixel-wise semantic and depth annotations. We use the
same strategy as the Replica dataset to obtain the seman-
tic labels and surface normal for SceneNet RGB-D. We
also use Canny and SIFT to render the ED and KP anno-
tations. The pre-trained model for SH failed to work on this
dataset; therefore, we discard shadings for the evaluation on
SceneNet RGB-D.


