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Abstract

Recent years have seen a growing interest in Scene
Graph Generation (SGG), a comprehensive visual scene
understanding task that aims to predict entity relationships
using a relation encoder-decoder pipeline stacked on top of
an object encoder-decoder backbone. Unfortunately, cur-
rent SGG methods suffer from an information loss regarding
the entities’ local-level cues during the relation encoding
process. To mitigate this, we introduce the Vision rElation
TransfOrmer (VETO), consisting of a novel local-level en-
tity relation encoder. We further observe that many existing
SGG methods claim to be unbiased, but are still biased to-
wards either head or tail classes. To overcome this bias, we
introduce a Mutually Exclusive ExperT (MEET) learning
strategy that captures important relation features without
bias towards head or tail classes. Experimental results on
the VG and GQA datasets demonstrate that VETO + MEET
boosts the predictive performance by up to 47% over the
state of the art while being ~ 10x smallenﬂ

1. Introduction

Visual scene understanding has made great strides in re-
cent years, extending beyond standard object detection and
recognition tasks to tackle more complex problems such as
visual question answering and image captioning [TT].
One powerful tool for scene understanding is Scene Graph
Generation (SGG), which aims to identify the relationships
between entities in a scene [23]. However, despite recent
advancements, SGG models still have significant limita-
tions when it comes to real-world applications.

Conventional SGG approaches, as shown in Fig.[I] (panel
3), generate global-level entity patches for relation encod-
ing. Yet, during the relation encoding process, they lose
local-level entity information. As illustrated in Fig. 2a]
we humans have a tendency to focus on the critical local-
level information necessary to construct relations between

ICode is available at https: //github.com/visinf/veto
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Figure 1. VETO-MEET vs. Conventional SGG. (/) VETO: En-
hancing the information flow from entity features to relationship
prediction by using a local-level entity relation encoder that con-
ducts relation and modality fusion of local-level entity patches.
The local-level components (green ticks) keep the model light-
weight while reducing information loss. A (blue) and B (green)
denote example relation classes taken from the corresponding col-
ored region in the predicate frequency histogram of the VG dataset
[T7]. (2) MEET: Debiased relation decoder that employs out-of-
distribution aware mutually exclusive experts (E1-E3). Grey A
and B denote an out-of-distribution prediction discarded by the
model. (3) Conventional SGG: The projection components (red
crosses) yield a computationally expensive model and the global-
level entity patches result in a local-level information loss.

things in a scene, which is overlooked by current SGG ap-
proaches. Moreover, the major parameter count of current
SGG models stems from projections (red-crossed compo-
nents in Fig.[I)) involved in global-level entity patch genera-
tion. Another challenge with existing SGG approaches, de-
spite efforts to enhance scene graphs using additional cues
like depth maps and knowledge graphs [27,/48], is that they
are either resource intensive or limited in exploiting cross-
modal information.

Finally but crucially, SGG training setups are challenged
by the strong bias of the visual world around us towards a
few frequently occurring relationships, leaving a long tail
of under-represented relations. This is also the case with
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Figure 2. Challenges in SGG. (a) For establishing the attached to
relation between Handle and Basket, the attention should be on the
corner regions of the object. () R@100 drop (%) and mR@ 100
increase (%) of unbiased SGG methods Motifs and VCTree rela-
tive to their vanilla versions. The R@ 100 metric measures the av-
erage recall of all predictions, which is higher for models that over-
fit to the head classes, while mR @100 denotes the per-predicate
class mean and is higher for models that overfit to the tail classes.

benchmark SGG datasets, e.g., Visual Genome (VG) [[17]],
as depicted by the predicateﬂ class frequency distribution in
Fig.[T} Due to the dominance of few head predicates, con-
ventional SGG models [31./49]] are biased towards the head
classes. Though several unbiased SGG methods have been
proposed [7,30,46] to overcome this issue, they are prone to
over-fitting to the tail classes at the expense of head classes
(cf. Fig.[2b). Despite recent efforts [7]] to fix this bias issue
using multi-expert learning strategies, we find that they still
over-fit to the tail classes (“GCL” in Fig. @) Overall, there
are two main problems with present unbiased SGG meth-
ods: (1) Conventional methods, including debiased models,
can only learn a limited range of predicates. (2) Existing
multi-expert SGG models lack adequate exclusivity to en-
hance both head and tail classes at the same time.
Consequently, we propose the Vision rElation Trans-
fOrmer (VETO). Inspired by Vision Transformers [8] that
use image-level patches for classification, VETO generates
local-level entity patches for the relation prediction task.
This improves the information flow from entity features to
relationship prediction by channeling the attention towards
fused local feature cues of subject and object entities (Re-
lation Fusion in Fig. [T) and using a local-level entity re-
lation encoder, which processes entity features at the sub-
region level. To strengthen the encoder further, we infuse
geometric cues into VETO using a Modality Fusion com-

2We use the terms predicate/relation interchangeably in this paper.

ponent (cf. Fig.[I), which unites visual and geometric fea-
tures to yield local-level entity patches. Finally, to suc-
cessfully debias VETO, we propose a multi-expert learning
strategy termed Mutually Exclusive ExperTs (MEET). After
splitting the predicate classes into subgroups, we perform
in-distribution and out-of-distribution (OOD) sampling for
each subgroup. Then we train each expert on every pred-
icate class but each expert will be responsible for only a
subset of predicates with out-of-distribution prediction han-
dling predicates outside its subgroup. In contrast to exist-
ing multi-expert methods [7]], where expert classifiers are
co-dependent to distill knowledge, OOD sampling enables
experts to independently interpret every inference sample.

Contributions. Let us summarize: (/) We propose a
novel SGG method with a local-level entity relation encod-
ing, which is light-weight and reduces the local-level in-
formation loss of entities. (2) To strengthen the encoder
further, we propose an effective strategy to infuse addi-
tional geometric cues. (3) We devise a mutually exclusive
multi-expert learning strategy that effectively exploits our
relation network design by learning subgroup-specific di-
verse feature representations and discriminating from sam-
ples outside its subgroups. (4) Our extensive experimenta-
tion shows the significance of both VETO and MEET.

2. Related Work

Scene Graph Generation (SGG) is a tool for under-
standing scenes by simplifying the visual relationships into
a summary graph. SGG has been receiving increased at-
tention from the research community due to its potential
usability in assisting downstream visual reasoning tasks
[16}28,[36]]. While SGG aims to provide a comprehen-
sive view of relationships between objects in a visual scene,
there is another set of research that represents interactions
as relationships between humans and objects called Human-
object Interaction (HOI) [9L|13}/32,39]. In this work, the fo-
cus is on SGG and its associated literature, emphasizing the
study of object relationships within visual scenes.

The SGG task was first introduced by Lu et al. [23].
Early approaches mainly focused on including additional
features from various sources other than the visual con-
text, resulting in sub-optimal performance [5,21},23]]. Later
work proposed more powerful relation encoders with rich
contextual information by employing message passing [40],
sequential LSTMs [31, 49], and fully-connected graphs
[13115,[201/36.(37,140.44,/48]]. Recent advancements in atten-
tion techniques have also resulted in attention-based SGG
methods. Earlier work [43] in this direction used graph at-
tention networks (GAT) [34] to capture object-level visual
similarity. Recently, Transformers [33]] have also been used
for SGG [7}/1522}24] after their successful adoption across
computer vision [2}/8L25]]. Current transformer-based SGG
methods use attention to capture global context and improve



the visual and semantic modality fusion. Lu et al. [24] used
sequential decoding to capture context, while Dong et al. [[7]]
employed self- and cross-attention to fuse visual and se-
mantic cues. Deviating from this, we use transformers to
capture local-level relation cues as well as joint visual and
geometric cues.

Scene Graphs with additional knowledge. Due to the
long-tail distribution of the relationships, it is difficult to
obtain enough training data for every relation. To over-
come this, using additional knowledge in the form of knowl-
edge graphs [10, 47, /48], depth maps [27,42], and data
transfer [50]] was proposed. Knowledge graph-based works
refine features for relation prediction by reasoning using
knowledge from large-scale databases. Yang et al. [42] and
Sharifzahed et al. [27]] use a monocular depth estimator to
infer additional depth cues for relation prediction by fusing
with visual features. Zhang et al. [5S0] expanded the dataset
by increasing the SGG annotations through internal and ex-
ternal data transfer. Our approach can also use depth maps
to provide additional geometric knowledge. However, in-
troducing additional knowledge can increase the parameter
count and computation time of the model. To tackle this
problem, we strategically prune the parameters, resulting in
a light-weight yet powerful SGG model.

Unbiased Scene Graph Generation. The SGG re-
search community started paying attention to the prob-
lem of class imbalance only after the introduction of the
less biased mean recall metric by Chen et al. [3] and
Tang et al. [31]. Subsequently, various unbiasing strate-
gies [4,7L|19L[29L|30L |35, /41,46, |50] were proposed, many
of which can be used in a model-agnostic fashion. Tang et
al. [31]] used counterfactuals from causal inference to disen-
tangle unbiased representations from the biased ones. Yu et
al. [46] utilized tree structures to filter irrelevant predicates.
Zareian et al. [48|] and Yan et al. [41] used re-weighting
strategies while Li et al. [19] employed a re-sampling strat-
egy. Dong et al. [7] used a multi-expert learning setup
that leverages knowledge distillation. However, while these
methods attain high performance on unbiased metrics, they
reduce the head class performance significantly as seen in
Fig. @ Hence, to attain an effective balance between the
head and tail classes, we propose a mutually exclusive ex-
pert learning setup. Our model not only achieves better head
and tail class balance but also sets a new state of the art.

3. Vision rElation TransfOrmer (VETO)

Our goal is to improve the Scene Graph Generation task
that parses an input image to generate a structured graphi-
cal representation of entities and their relationships. In par-
ticular, we focus on enhancing the overall performance of
SGG by improving the prediction on both the head and tail
relations. To this end, we introduce a relation network that
learns richer entity/predicate representations by focusing on

local-level entity features and devise a multi-expert learning
strategy to achieve a better relation prediction trade-off.

3.1. Problem setting

For a given image I, the goal of SGG is to create a sum-
mary graph G that adequately summarizes the information
present in the image. At first, we detect all the entities
within image I, denoted as & = {e;}~,. Then we pre-
dict the predicates p;_,; for each subject-object entity pair
(e;, e;). Finally, we construct the scene graph G using the
triplet form of the predictions (e;, p;—;,€;) as

G ={(ei,pisj. ) | eive; €E pisj €PY. (D)
3.2. The VETO backbone

Roughly speaking, as shown in Fig.[3] the VETO model
comprises a feature extraction and a proposal network as the
backbone, which are fed to the relation network.

Feature extraction. Following previous work, our fea-
ture extraction backbone comprises an RGB feature extrac-
tor, which is pre-trained and kept frozen [19}30], and a
depth feature extractor, which is trained from scratch dur-
ing SGG training [27]).

Proposal network. We use Faster R-CNN [26] as our
object detector. Entity proposals are obtained directly from
the output of object detection, which includes their cate-
gories and classification scores. We use the entity proposals
to extract scaled RGB features r; and their corresponding
geometric features g; from the depth map. We denote the
proposal bounding box as b, and its detected class as c;.

Before explaining the proposed VETO local-level en-
tity generator, let us briefly revisit a conventional SGG [[19]
pipeline that uses global-level entity projection.

Entity global-level patch generator. Given the ex-
tracted RGB features r;, a global-level patch generator in
conventional SGG [19,31,49] would first densely project
the r; to a lower-dimensional visual representation h; as

h; = fra (fr1 (ri)), ()

where f1 and fro are two fully-connected layers. This
global-level projection (Fig. [T} panel 3) of visual features
is not only parameter heavy but can also result in a local-
level information loss of entities (Fig. [2a).

Given the entity details (h;, b;, c;), conventional SGG
then computes a combined entity representation q; using
another fully-connected network f, as

q=fo(h;el, &w;), 3)

where 1; is a location feature based on the bounding box b,
w; is a semantic feature based on a word embedding of its
class c;, and & is the concatenation operation.

To yield a relationship proposal from entity ¢ to j, con-
ventional SGG [[19] has an additional entity-level projection
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Figure 3. VETO architecture. An object detector yields entity proposals and entity features r. Moreover, a depth map is estimated from
the RGB input, which is also passed through the feature extractor to obtain geometric features g. Then, for each entity pair, a sequence of
local-level patches are generated, which are passed through the transformer-based relation encoder to yield a relation prediction.

(Fig. [1] panel 3), comprising convolutional features of the
union region of entity bounding boxes b; and b;, denoted
as u;;. The predicate representation p;_, ; is then computed
as pi—j = fu (W) + fp (@i ® q;), where q; @ q; denotes
the joint representation of entities e; and e;, and f,,, f, are
two fully-connected networks.

3.3. The VETO entity local-level patch generator

In contrast to the entity-level patch generator of conven-
tional SGG, the local-level entity patch generator of VETO
can inculcate local-level and geometric cues of entities for
relation prediction to learn richer visual representations and
reduce crucial information loss during relation prediction.
It consists of a two-stage local-level entity patch genera-
tor followed by a transformer-based relation encoder and a
fully-connected relation decoder. In particular, our network
replaces the parameter heavy and computationally expen-
sive fully-connected layers in the conventional relation net-
work resulting from a global entity-level projection (Eq. 2))
with less expensive local-level entity projections.

For a given image I and its depth-map, we extract the
RGB features r with ¢, channels of size w x h and the ge-
ometric features g with ¢4 channels and the same size. Our
relation network starts with the patch generation and fusion
modules, which we call Cross-Relation Patch Generation

(CRPG) and Cross-Modality Patch Fusion (CMPF).

Cross-Relation Patch Generation module. In order
to strengthen our transformer-based relation encoder with
local-level entity feature dependencies, we introduce a
Cross-Relation Patch Generation module (Fig. [3). It gen-
erates combined subject-object local-level patches.

We preserve the local-level entity information by divid-
ing the RGB features r € R *"** and geometric features
g € R*"X® into p x p blocks and then average pooling r
and g features within each block to summarize the average
presence of the features that are crucial for relation predic-
tion. Now for a given subject-object entity pair (e;, ;) the
resultant pooled RGB features v € R *P*P from both en-
tities are fused channel-wise (Relation Fusion) as

Vij = C(Vi,Vj) S R2cv><p><p7

v=pool(r), @

where C (-) denotes concatenation along the channel di-
mension and pool refers to average pooling. We then split
v;; spatially into sequential patches as

pa __
Vi

= {vi erEEE 1o}, )
where p denotes the pooled width and height of v, v* refers
to the /" patch, and k is the patch size (in terms of blocks).
Thus, the CRPG module produces (p/k)? patches for v;;.



Similar to v;;, we obtain combined depth features d;; €
R?“¢*PXP and depth patches d; € R?“***k with depth
patch size 2¢4 x k x k by repeating Eqs. (@) and (3)) for the
pooled geometric features d € R¢*P*P,

Cross-Modality Patch Fusion module. In order to re-
duce the model parameters and computational expense fur-
ther and to strengthen the encoder with additional modality
cues, we introduce a Cross-Modality Patch Fusion module.
It first projects the v}; and dj; from the CRPG module to a
lower dimensionality:

px); = f. (x55,p%), xe€{v,d}. 6)

The resulting pv}; and pd}; denote the locally projected
entity patches for RGB and depth features, f, in Eq. (6 is
a fully-connected network, which should be understood as
fz(y,M) = Wy, wherey € RY and W € RM*N,

Then we fuse the corresponding patches v and d of both
modalities to capture their dependencies while also further
reducing the parameters and computational complexity by
reducing the length of the token sequence from 2 (p/k)” to
(/k)?. This ensures that dependent modality information
is closely knit to be efficiently exploited by the subsequent
relation encoder:

2P = {(pvfj @ pdfj) ‘ (=1,..., (P/k)2} )

where zb' represents the patch-based input embedding to-

kens to the first layer of our transformer-based relation en-
coder and & denotes the concatenation operation.

Overall, the local-level entity projections in VETO en-
able capturing the crucial local-level cues that global-level
entity projection may overlook while simultaneously reduc-
ing the overall number of parameters.

Additional cues. Unlike conventional SGG in which lo-
cation features 1 and semantic features w are fused with
RGB features to form the entity representation, c¢f. Eq. (3),
we fuse them separately for each subject-object pair and use
them as additional input tokens to our relation encoder:

2 = h(h e, +pY) ®
2 = h(fu (wid Wi +p7), O

where f;(-) and f,,(+) are fully-connected networks and /(")
is a non-linear function.

Relation encoder. We use a transformer-based relation
encoder architecture. The key to successfully capturing the
relationship between subject-object pairs in SGG is to ad-
equately express the subject-object joint features that ac-
count for their intricate relationship. The Multi-head Self
Attention (MSA) component of the transformer can jointly
attend to diverse features by enabling each head to focus
on a different subspace with distinct semantic or syntac-
tic meanings. Hence, we propose to capture the subject-
object inductive bias in SGG with a MSA component

by feeding it embedding tokens z}" enriched with local-

level subject-object information. MSA can be formalized
as MSA(Q, K,V) = Concat (SA1,SAs,...,SA,) W©

T
where SA; = softmax (Q:/I% ) V; denotes self-attention,

Q, K, and V refer to query, key, and value, and WO are
trainable parameters. The input token to the transformer is
split into multiple heads to be attended to in parallel.

We prepend the entity local-level information enriched
input patches z)" from the CMPF module with a learnable
class token zg. Additionally, a learnable 1D positional em-
bedding zP* is added to each token to preserve the subject-
object positional information. The resultant sequence is
passed as input to the encoder. The transformer consists of
L encoder layers, each with MSA and MLP blocks. Each
encoder layer also contains a LayerNorm (LN) before every
block and residual connections after every block:

o (A o
z; = MSA (LN (z¢-1)) +2z¢—1, ¢=1...L(1)
z¢ = MLP(LN(z)+z, f(=1...L (12

y = LN(z), (13)

where 205 € R(®/®°+3)x(p"+7%) and I denotes the num-
ber of total encoder layers. Each encoder layer contains
MSA, MLP, and LN blocks as well as residual connections.
Finally, y is linearly projected to the total number of predi-
cate relations, forming the relation classification head.

4. MEET: Mutually Exclusive ExperT learning

As pointed out by Dong et al. [7]], a single classifier can-
not achieve satisfactory performance on all the predicate
classes due to the extreme unbalance of SGG datasets. To
tackle this issue, they propose to deploy multiple classifiers.
However, their classifiers are not mutually exclusive and re-
sult in a significant deterioration of head class performance
(“GCL” in Fig. [2b)), as they distill knowledge from head to
tail classifiers. We hypothesise that learning mutually ex-
clusive experts, each responsible for a predicate subgroup,
can reduce model bias towards a specific set of predicates.

Therefore, we propose Mutually Exclusive-ExperT
learning (MEET). MEET splits the predicate classes into
balanced groups based on the predicate frequency in the
training set. First, we sort the predicate classes according
to their frequency in descending order into Py = {p; } ;.
The sorted set is split into G predicate groups {Psg(,n}?:l.
We use the same class split as [[7], yet in contrast, MEET de-
ploys mutually exclusive classifier experts { E? }!(];:1 respon-
sible for classification within each predicate group PJ .

Unfortunately, training each expert exclusively on a sub-
group of predicates P2, can be challenged during the eval-
uation stage with samples out of its classification space, re-
sulting in uncertain predictions. To overcome this issue,



Algorithm 1 MEET: Mutually Exclusive ExperT learning

1: Input: predicate classes P = {pi}ﬁl, experts E =
{E}gzl, where GG denotes the total number of experts
Psort < sorted predicate set P
PI . < g™ sorted predicate group of Pyor
89 « relation representation sample z9 of g™ group
fs (z,y) = max (min ($/y, 1.0),0.01)
for g =1to G do
Indez + index of the central predicate in PJ
centre < Freq(P2(Index))
12, = {f. (centre, Freq (p)) | ¥p € Py}
Ol = 1] (et Freay) 1 ¢ PL),
_ groy _ J Index(p) in Py,  forp € Py
n yip) = { ool +1, forpd Py

R e A A o

_.
=4

12: Sample from distribution: SJ ~ I, S5 ~ Of
13: w9 =E9({S%;5%.:}) > expert output

14: end forG
15: L=3 ", Log (W9,y9)

16: Evaluation stage:
g] |ps€)rl‘

1 ]i=1 c
18: Reont = {max; wf}g:1

. G

. 1
19: Rigbel = {775011 (arg max; WY + Z?:o \Pﬁon]) } )
9=

> multi-expert loss

17: w9 = [w > discard OOD predictions

we train out-of-distribution aware experts. We summarize
MEET in Algorithm [I} (Lines 9-10): During training, we
adjust the in-distribution I, and out-of-distribution Of,
sampling frequency within each expert to prevent the ex-
perts from being overwhelmed with OOD samples. Freq (-)
denotes the frequency count of a predicate class. (Line 11):
We re-map the relation labels to accommodate an out-of-
distribution pseudo-label for every expert group. (Lines 12,
13, 15): For a given image I, each expert EY is trained on
the in-distribution and out-of-distribution samples S; and
83, respectively. (Lines 17-19): During the evaluation
stage, we discard the OOD predictions from each group and
map the prediction labels back to the original labels.

5. Experimental Evaluation

We aim to answer the following questions: (Q1) Does
VETO + MEET improve the SOTA in unbiased SGG?
(Q2) What is the impact of MEET on other SGG meth-
ods? (Q3) Does local-level projection reduce the model
size? (Q4) Does SGG benefit from local-level patch gener-
ation? (QS5) Does a depth map improve SGG performance?

5.1. Experimental setup

Dataset. We evaluate our approach on two common
SGG datasets: Visual Genome (VG) [17] and GQA [12].
For VG we adopt the popular VG150 split, which consists

of 150 object classes and 50 predicate classes in line with
previous SGG work [31|19,/22}[29-311140,/46,149]]. For GQA
we adopt the GQA200 split used by Dong et al. [7]]. For
both datasets, depth maps are generated using the monocu-
lar depth estimator of Yin et al. [45].

Evaluation protocol. We evaluate our model on the
most common SGG tasks [40,49]): (7) Predicate Classi-
fication (PredCls) predicts the relationships for all object
pairs by using both the ground-truth bounding boxes and
classes; (2) Scene Graph Classification (SGCls) predicts
both the object classes and their pairwise relationships by
using ground-truth bounding boxes; (3) Scene Graph De-
tection (SGDet) detects, classifies, and predicts the pairwise
relationships for all the objects in an image.

Evaluation metrics. Following previous work [7,/19],
we use Recall@k (R@k) and mean Recall@k (mR @k) as
our evaluation metrics. We also report the Average of recall
and mean recall (A@Xk) to show the combined performance
improvement of R@k and mR@k. The A@k metric is rel-
evant because previous models with improved mR @k have
lower R@k and vice-versa (cf. Fig. 2b).

Implementation details. We implement VETO and
MEET in PyTorch on Nvidia A100 GPUs. Following prior
work [[18/30], we adopt a ResNeXt-101-FPN [38]] back-
bone and a Faster R-CNN [26] object detector. The pa-
rameters of backbone and detector are kept frozen. VETO
contains 6 relation encoder layers with 6 attention heads for
each MSA [8] component, uses embeddings of size 576, a
patch size of 2, and a pooled entity resolution of 8 for entity
patch generation. For VETO + Rwt, we use the importance
weighting of [48]. We train our model using the Adam op-
timizer [|14]], batch size 12, and an initial learning rate of
1.2 x 1073, We apply a linear learning rate warmup over
the first 3K iterations and train for 125K iterations using
a learning rate decay with maximum decay step 3 and pa-
tience 2.

5.2. Experimental results

Using this protocol we are now able to address Qs. 1-5.

(Q1) Comparison with state of the art. As shown in
Tabs. [T and 2} our VETO + MEET model fulfills the fun-
damental requirement of unbiased SGG, i.e. it improves
on both R@k and mR @k metrics, yielding state-of-the-art-
performance in terms of the balanced A @k metric across
all tasks for both datasets (except for SGDet in VG where
we are comparable). The heat-map pattern reveals that pre-
vious models with high mR @k, e.g., SHA + GCL [7], gain
performance improvements on the under-represented pred-
icates while losing significantly on the more frequent ones
as revealed by the lower R@k. Our VETO model with a
simple re-weighting technique (VETO + Rwt, Tab. [I) al-
ready outperforms leading baselines without notably reduc-
ing the R@k metric. This is exemplified by the A@k met-



Table 1. Recall (R), mean Recall (mR), and their average (A) on VG (the higher, the better). Colors in the table vary from blue to green
to depict the performance improvement. ‘+’ denotes the combination with a model-agnostic unbiasing strategy. Double citations refer to
the original model and its reproduced variant on a ResNeXt-101-FPN backbone. The superscript ‘f” denotes the method uses Faster-RCNN

with VGG-16 as the object detector.

Model \ PredCls \ SGCls \ SGDet
‘ R@k: 50/100 mR@k: 50/100 A@k: 50/100 ‘ R@k: 50/100 mR@k: 50/100 A@k: 50/100 ‘ R@k: 50/100 mR@k: 50/100 A@k: 50/100
IMP {7129
KERN
GB-Net + Rwt' [48]
DT2-ACBS
PCPL' [41]

GPS-Net [7]22]
SG-CogTree [46)

BGNN

VTransE
VTransE + TD
VTransE + GCL 7]
VTransE + MEET (ours)

Motifs + DLFE [4]
Motifs + EMB [29]
Motifs + GCL |7]
Motifs + IETrans + Rwt
Motifs + MEET (ours)

VCTree @ 31
VCTree + Rwt [4;
VCTree + TDE
VCTree + PCPL[7}41]
VCTree + CogTree |4
VCTree + DLFE [4]
VCTree + EMB [29)]
VCTree + GCL [7]
VCTree + IETrans + Rwt
VCTree + MEET (ours)

SHA Q
SHA +GCL ﬂ
SHA + MEET (ours)
VETO (ours)

VETO (ours) + Rwt
VETO + MEET (ours)

Table 2. Recall (R), mean Recall (mR), and their average (A) on GQA (the higher, the better). Conventions as described in Tab. I

Model PredCls |

SGCls | SGDet

\ R@k: 50/100 mR@k: 50/100 A@k: 50/100 | R@k: 50/100

mR@k: 50/100 | A@k: 50/100 | R@k: 50/100 mR@k: 50/100 | A@k: 50/100

VTransE
VTransE +

VTransE + NﬂEEﬂ(OUTS) _—
Motifs |7 !

Motifs + G( g

Motifs +MEET (ours)

VCTree
VCTree + E
VCTree + MEET (ours)

SHA [7]
SHA + GCL
SHA + MEE (ours)

VETO (ours)
VETO + MEET (ours)

ric and the heat-map hue having less within-row variance
than the baselines. In addition, our final model VETO +
MEET outperforms the previously best Motifs + IETrans +
Rwt [50] by a remarkable 47% and 48% relative improve-
ment on A @ 100 for PredCls for VG and GQA, respectively.
To the best of our knowledge, our VETO + MEET model is
the first to attain state-of-the-art results on both R@k and
mR @k metrics for PredCls. It also yields state-of-the-art
results on mR @100 for SGCls.

(Q2) MEET with other SGG approaches. Among
the models trained with MEET in Tabs. [T] and 2] Motifs

+ MEET and SHA + MEET show notable improvements
on the A@k metric for the PredCls and SGCls tasks. How-
ever, there is a significant performance gap in comparison to
VETO + MEET on all the metrics and tasks. This shows the
unbiasing capabilities of MEET as well as the significance
of VETO in reducing information loss by using local-level
information, resulting in improved SGG performance.

(Q3) Light-weight VETO. The comparison of SGG
models in terms of the number of trainable parameters in
Fig. 4] shows how our local-level entity projections signifi-
cantly reduce the number of parameters compared to global
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Figure 4. No. of trainable parameters (Mio.) vs. perfor-
mance (A@100) of leading SGG models (* denotes debiasing
with MEET). VETO outperforms prior work and is ~ 10X leaner.

Table 3. Ablation study of VETO on VG. L: Local-level En-
tity Patch Generation; CR: Cross-Relation Patch Generation; CM:
Cross-Modality Patch Fusion; D: Depth.

VETO Components | SGCls

L CR CM D ‘ R@k: 50/100 mR@k: 50/100 A@k: 50/100
X X X X 320 /335 76 [/ 83 198 /209
X X X v 332/ 345 70 /176 20.1 /211
X X X 348 / 362 141 / 151 245 [ 257
X X v 35.1 / 364 13.0 / 141 241 / 253
X v o/ 351 / 363 144 / 154 248 / 259
v o/ X X 354 /  36.6 152 / 16.1 253 / 264
v /7 v 7/ 351 / 363 16.1 / 17.1 256 / 267

entity-level projections (cf. Fig.[T). VETO with 20 million
parameters is 20 times lighter than GB-Net [48]], which uses
knowledge graphs as additional modality, and ~10 times
lighter than other leading SGG models. Despite this, VETO
clearly outperforms previous models in A@Xk.

(Q4) Benefit of local-level patch generation. Tab. 3]
provides an ablation study of the VETO components. The
first two rows denote a transformer-based SGG model with-
out local-level patches. We observe that introducing the
local-level patch generation (rows 3 & 4) notably improves
every metric with a ~23% improvement of A @k, highlight-
ing the significance of local-level patches. We also ob-
serve an overall improvement when incrementally adding
the VETO components in the subsequent rows. In general,
the use of local-level information and the Cross-Relation
Patch Generation (2" to last row) significantly improves
performance, with a relative improvement of approximately
28% in A@k compared to the first ablation that does not
use local-level patches. We also observe that adding the
depth map components to the final model yields an addi-
tional small improvement of the mR @k metric.

(Q5) Benefit of depth map. Comparing rows 1 and
2 of Tab. 3] shows that introducing the depth modality to
the model without local-level patches yields only a slight
R @k improvement while mR @k drops. We observe a sim-
ilar trend when comparing rows 3 and 4. However, af-
ter introducing the Cross-Modality Patch Fusion module,
mR@k and A@k improve. We also perform an exten-

Table 4. Impact of depth map quality (the higher, the better). For
fairer comparison, the Depth-VRD model [27] is reproduced on
the ResNeXt-101-FPN backbone. Both models are also debiased
using the reweighting strategy of [48].

Model mR@k VG-Depth.vl VG-Depth.v2 Improvement
20 25.3 27.5 9%
VETO 50 31.2 33.1 6%
100 33.5 35.1 5%
20 17.8 18.2 2%
Depth-VRD [27] 50 21.7 21.9 1%
100 23.1 23.1 0%

Table 5. Improvement of VETO over Depth-VRD for PredCls.
Conventions as described in Tab. El

Depth Map mR@20 mR@50 mR@100
VG-Depth.vl 42% 44% 45%
VG-Depth.v2 51% 51% 52%

sive depth data analysis to investigate the modality fusion
potential of VETO. Fig. [5] shows “noisy” depth-map sam-
ples used by Sharifzadeh et al. for Depth-VRD [27] (VG-
Depth.v1); the bottom row shows the corresponding high-
quality depth maps as extracted by the monocular depth
estimator of Yin et al. [45] (VG-Depth.v2). We use VG-
Depth.v1 and VG-Depth.v2 to compare and contrast VETO
and Depth-VRD. We analyse the significance of the depth-
map quality on the SGG performance and the importance
of a careful architectural design to make use of the depth
map efficiently. As depicted in Tab. @ the performance
improvement for our model on VG-Depth.v2 generated us-
ing the monocular depth estimator of Yin et al. [45] over
VG-Depth.vl [27] is around 7%. To the contrary, Depth-
VRD shows only a minor improvement of 1% on the high-
quality VG-Depth.v2 dataset. Furthermore, the improve-
ment of VETO over Depth-VRD in Tab. |§] shows that, over-
all, VETO has a significant improvement of more than 40%
respectively 50% in mR@k over Depth-VRD for the VG-
Depth.v1 respectively VG-Depth.v2 depth maps.

5.2.1 Further results

Fig. [6] shows the predicate-specific improvement of VETO
+ MEET over SHA + GCL (sorted from frequent to less fre-
quent). Notice that VETO + MEET improves on every part
of the distribution (head, body, and tail). As emphasized
in Fig. 2a] we find an enormous performance boost over
SHA + GCL [7]] for relations that can be enhanced with
local-level information, e.g., attached to (781% improve-
ment) and part of (441% improvement). This once again
highlights the efficacy of VETO + MEET.

Fig. shows an illustrative example for the challenges of
current SGG models, e.g., SHA + GCL [[7] overfitting to the
tail classes after debiasing (panel 4) or Motifs [49] overfit-
ting to the head classes (panel 5). The generated SG from



Figure 5. Failure cases reported by . The second row shows “noisy”” depth maps from (VG-Depth.v1). The bottom row represents
the improved depth maps used in VETO (VG-Depth.v2), generated using the monocular depth estimator of .
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VETO + MEET (panel 3) attains a better balance between
the head and tail predictions.

5.2.2 SGDet sensitivity analysis

The experimental results obtained from the VG dataset in
Tab. [T)indicate that VETO’s SGDet performance is slightly
lower compared to the baselines. To explore whether our

Table 6. SGDet sensitivity analysis: Motifs vs. VETO.

A@50 drop (%) | A@100 drop (%)
Detector | mAP drop (%) | Motifs VETO | Motifs VETO
OD1 13 33 5.7 3.5 4.2
OD2 32 28.0 29.5 27.0 28.0

model’s performance is affected by the object detector’s ac-
curacy, we conducted a sensitivity analysis. Tab.[6]displays
the results of using weaker Object Detectors (OD1 & 2)
with 13% and 32% lower mAP, respectively. The resulting
drop in A @k reveals that VETO is indeed slightly more sen-
sitive to the detector accuracy. However, it is worth noting
that despite this sensitivity, our lightweight VETO outper-
forms state-of-the-art (SOTA) methods on the A@k metric
in 2 out of 3 tasks on VG and 3 out of 3 tasks on GQA.
Furthermore, VETO’s performance in SGDet (VG) is com-
parable to the SOTA methods.

6. Conclusion

We have identified three primary concerns with current
SGG models: a loss of local-level information, excessive
parameter usage, and biased relation predictions. To ad-
dress these issues, we introduce the Vision Relation Trans-
former (VETO) and the Mutually Exclusive Expert Learn-
ing (MEET) methods. In most of the cases, our approach
achieves superior performance on both biased and unbi-
ased evaluation metrics. Some interesting avenues for fu-
ture work include improving the contrasting power of multi-
experts and reducing the label dependency of experts.
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