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Abstract

Large-scale noisy web image-text datasets have been
proven to be efficient for learning robust vision-language
models. However, when transferring them to the task of
video retrieval, models still need to be fine-tuned on hand-
curated paired text-video data to adapt to the diverse styles
of video descriptions. To address this problem without the
need for hand-annotated pairs, we propose a new setting,
text-video retrieval with uncurated & unpaired data, that
during training utilizes only text queries together with un-
curated web videos without any paired text-video data. To
this end, we propose an approach, In-Style, that learns the
style of the text queries and transfers it to uncurated web
videos. Moreover, to improve generalization, we show that
one model can be trained with multiple text styles. To this
end, we introduce a multi-style contrastive training proce-
dure that improves the generalizability over several datasets
simultaneously. We evaluate our model on retrieval per-
formance over multiple datasets to demonstrate the advan-
tages of our style transfer framework on the new task of un-
curated & unpaired text-video retrieval and improve state-
of-the-art performance on zero-shot text-video retrieval. 1

1. Introduction
Vision-language retrieval refers to the task of retrieving

an image or a video from a large data pool given a textual
description of the content. The field of text-image retrieval
has seen remarkable progress, mainly spurred by the combi-
nation of image and text models trained on large-scale web
collections [50, 31] of image-text pairs. While advances
in video retrieval also rely on pre-trained image-language
models, which serve for better task transfer, most systems
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Figure 1: Training data for supervised and our uncurated &
unpaired settings for text-video retrieval. Left: standard su-
pervised text-video retrieval. Aligned and paired data is given for
training with the same distribution as the target test set. Right: our
uncurated & unpaired text-video retrieval. No paired data is avail-
able during training, only text queries, whereas to support training,
we use uncurated web videos.

still require a fine-tuning on downstream data. This requires
hand-annotated text-video pairs, namely trimmed segments
of larger videos that are precisely described by the corre-
sponding texts, for the training and testing of each target
downstream dataset. Collecting such aligned pairs of text
and videos can be time- and cost-intensive, and particularly
gathering videos that comply with national regulations and
copyright can be a challenge. Also, in the case of relying on
free web content, some videos can become unavailable over
time while the respective curated annotations stay available
for download but do not have matching videos.

To address this problem, we propose a new setup, text-
video retrieval with uncurated & unpaired data, assum-
ing the availability of text queries only and without related
videos during training (Figure 1). The setting is motivated
by the fact that it can be considered easier to collect or gen-
erate text data, e.g., by producing topic-specific text queries
rather than providing a video to match a specific context.
To allow the training of a text-video retrieval system based
on the given text, we assume to have access to an uncurated
video collection as the only source of available videos.

As different domains and datasets contain diverse styles
of textual descriptions of videos, we propose a novel
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method, In-Style, to transfer the caption style of given text
queries to uncurated web videos, which can be from a devi-
ating distribution compared to the given text queries. To
transfer the style of the text queries, we leverage large
image-language models [31, 50] by creating pseudo pairs
that correspond to the given text queries and videos from
the uncurated collection by matching them in the shared
embedding space [50]. Thus, we identify a subset of videos
that have more similarity to the text queries than the rest
of the videos. We then adopt an image-to-text captioning
model (a captioner) to mimic the style of our text queries by
training with these pseudo pairs. The stylized captioner is
now capable of producing relevant video descriptions in the
desired style; therefore, we re-annotate the web videos with
the captioner to obtain aligned paired data; we call them
generated pairs. Finally, we show that generated pairs help
to adapt models pre-trained on large-scale web data [31, 55]
to the desired single or multiple styles of given text queries.

We evaluate our model on text-video retrieval over
5 benchmark datasets. Specifically, we demonstrate the
advantages of the In-Style method on the new task of
uncurated & unpaired text-video retrieval with image-
language [31] and video-language [55] pre-trained back-
bones. We show the generalization of the proposed ap-
proach by training a single model for multiple datasets at
once leading to an improved state-of-the-art zero-shot text-
video retrieval performance.

We summarize our contributions in the following: (i) we
introduce a new task of text-video retrieval with uncurated
& unpaired data where during training, only text queries
are available, whereas for the standard text-video retrieval
task, paired text-video data is used; (ii) we propose a novel
method, In-Style, to transfer the style of text queries in an
unsupervised way, showing that style is an important com-
ponent for language-based retrieval tasks; therefore, we re-
purpose large pre-trained image-language models to gen-
erate pseudo-captions of the same style for uncurated web
videos; (iii) we demonstrate the advantages of our In-Style
method for the new task over 5 different datasets with in-
dividual models for each dataset as well as one generalized
model and we achieve state-of-the-art performance on zero-
shot text-video retrieval.

2. Related Work

Text-Video Retrieval. Text-video retrieval methods usu-
ally focus on learning modules that are able to capture
relations between features from text and video modali-
ties [66, 34, 17, 9, 12, 15, 60]. Currently, many approaches
leverage pre-training on large-scale video-text [3, 43, 42] or
image-text [29, 31] datasets with a further adaptation of the
backbone to individually downstream datasets. In this con-
text, ClipBERT [29] proposed sparse sampling instead of
using dense full-length videos that allow lightweight train-

ing. However, foundation models [5] such as CLIP [50],
combine the success of transformer architectures [14] us-
ing a contrastive objective [46] and being trained on large
collections of text-image pairs from the web, providing a
strong zero-shot [38, 49] baseline on downstream tasks that
outperforms many previous methods. Therefore, more re-
cent approaches focus on adapting text-image CLIP pre-
trained models for text-video retrieval [20, 4, 16, 18, 35].
X-pool [20] introduces cross-modal attention to reason be-
tween text and frames of a video, TS2-Net [35] proposes
dynamic adjustments over temporal and spatial token di-
mensions, which allows fine-tuning spatial model on video
data without architecture changes. Another way to lever-
age foundation models is to enhance training data [61, 68].
Cap4Video [61] generates auxiliary captions for available
curated training videos by using ZeroCap [57] that op-
timizes GPT-2 [51] text generation using a CLIP-based
loss [50]. LaViLa [68] proposes to generate additional nar-
rations for a dense coverage of long videos from the Ego4D
dataset [11, 21] by fine-tuning a pre-trained large language
model [51] on existing annotated text-video paired data. In
contrast, we propose to exclude pre-annotated text-video
paired data from the training and, relying on text descrip-
tions only, generate text-video pairs leveraging uncurated
web videos while transferring the style of original captions.

Large-scale Multimodal Pre-training. Representation
learning [50, 31, 10, 23, 68, 6, 65] aims to obtain general
representations that improve performance on downstream
tasks such as retrieval [38, 49, 65, 31], classification [10,
68, 6], segmentation [6], question-answering [31, 65] and
captioning [31, 65]. While some methods rely only on one
modality such as images [6, 23] or text [51], there is also
increasing interest in multi-modal representations [50, 30,
56, 32, 37, 55] which require multi-modal aligned pairs.
However, the acquisition of human-annotated paired data
is expensive; therefore, noisy web data [50, 43] allows for
significant scaling of such datasets. Many methods success-
fully utilize web image-text pairs [50, 25, 65], whereas un-
curated video-text pairs are not only harder to collect but
are also more prone to misalignments. Therefore, efforts
are made to align ASR (automatic speech recognition) with
video frames via contrastive learning [43, 42, 63, 67] or in
an unsupervised way [22]. To overcome those issues, we
propose to generate synthetic video descriptions with the
desired caption style and train models on those captions in-
stead of raw ASR text.

For contrastive-based vision-language representation
learning methods, the dual-encoder architecture is a com-
mon choice as it features two parallel branches for two
modalities, which are contrasted against each other to
learn a joint embedding space [50, 56, 32, 37]. Recently,
BLIP [31] and CoCa [65] propose a unified multi-task
contrastive-generative framework that combines contrastive



and captioning objectives. These methods rely on both cu-
rated image-text and uncurated web image datasets, with
BLIP additionally iteratively applying the generation and
filtering of synthetic captions. Compared to those works,
we adopt pre-trained image-language models for uncurated
& unpaired text-video retrieval by transferring the caption
style directly on uncurated videos without any aligned data
during training.

3. Uncurated & Unpaired Text-Video Retrieval

In this section, we introduce the proposed uncurated &
unpaired text-video retrieval training setup. Typically, mod-
els for text-video retrieval are trained on paired text-video
data. Given a set of pairs of captions ti and corresponding
videos vi: {(ti, vi)} ∈ D, where D is a data distribution,
the goal is to learn a similarity function s(ti, vj) that calcu-
lates the similarity between the caption ti and the video vj .
The training can be done from scratch, but typically pre-
trained image-language [50, 31] or video-language mod-
els [37, 43] are fine-tuned on the target paired text-video
data and then evaluated on the test set from the same distri-
bution D [35, 16]. If the evaluation is performed on multi-
ple datasets, the model is usually fine-tuned for each dataset
individually.

In contrast, we propose a text-video retrieval with uncu-
rated & unpaired data, where only target text queries are
available during training without any videos. More pre-
cisely, given a set of text descriptions {ti} from data dis-
tribution D, we aim to learn useful information about the
similarity s(ti, vj) in D relying only on the textual descrip-
tions. We further assume that a large set of freely accessi-
ble web videos V ′ = {v′j} ∈ D′ without any paired text
is available to support the training (such as videos of the
HowTo100M dataset [43]). We note that the data distribu-
tion D′ in the support video dataset can deviate from the
distribution D.

Finally, to avoid training different models individually
for each target dataset, we further consider learning a gen-
eralized model that maintains the performance of individual
models over a set of K datasets of different caption styles
and coming from different data distributions D1, ..., DK .

4. In-Style Method

To address the task of uncurated & unpaired text-video
retrieval, we aim to transfer the style of the text queries (the
only available curated information) to an uncurated web
video dataset. To this end, we rely on web-scale pre-trained
image-language models as a supervisory signal and lever-
age them as a matching module and pre-trained captioning
model that we adapt throughout the training process. The
steps of the proposed In-Style method are shown in Fig-
ure 2. The first step is Pseudo Matching, described in Sec-

tion 4.1, which matches the given text queries to the most
relevant videos from the set of all uncurated web videos.
The following Style Transfer step (Section 4.2) adapts the
pre-trained captioning model (the captioner) to the target
text style by training it on the previously obtained pseudo
pairs. The captioner is then used to generate new style-
adapted captions for all available web videos, which are
then filtered to avoid too noisy pairs; we refer to the result-
ing filtered web videos with style-adapted video descrip-
tions as generated pairs. Finally, we adapt a pre-trained
vision-language model for the task of text-video retrieval on
the generated pairs (Section 4.3). Moreover, in Section 4.3,
we propose the training of a generalized model on multi-
ple styles of text queries at the same time and introduce a
new contrastive objective, In-Style, that improves training
on more than one text style at once.

4.1. Pseudo Matching

First, we obtain pseudo video-text pairs, with each pair
containing one of the available text queries and the most
relevant uncurated video from the web collection. For
pseudo matching, we leverage image-language models such
as CLIP [50] or BLIP [31] that excel in zero-shot retrieval
performance [38]. Such models usually follow a dual-
encoder architecture: encoders ft and fv projects text t and
image x into a common multimodal embedding space. The
similarity of text and image is computed as a cosine sim-
ilarity in this common space: sim(t, x) = ft(t)

⊤fv(x)
∥ft(t)∥∥fv(x)∥ .

We use this metric to match the available text queries to the
closest video.

Since available videos can vary in overall duration (for
example, five or more minutes) and cover a lot of differ-
ent actions, we divide all videos into non-overlapping clips
of s-seconds. We denote V ′ = {v′j} as a set of all such
video clips. Then, we calculate a multimodal representa-
tion for each video clip v′j as an average representation of
m uniformly sampled frames of a video (see supplement).
Using precomputed embeddings, we connect every caption
ti with a video v′ with maximum similarity from available
set of videos V ′, such as:

vpi = argmax
v′
j∈V ′

sim(ti, v
′
j). (1)

To increase the diversity of matched videos, we do not al-
low multiple captions to match the same video clip; there-
fore, when video clip vpi is matched, we exclude it from
V ′. Thus, we obtain a set of pseudo text-video pairs Pps =
{(ti, vpi )}. In Section 5, we show that this step allows us
to introduce a weak supervision that may not find the exact
match but provides a basis for further style transfer.
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Figure 2: The proposed In-Style method. First, in the pseudo matching step, pseudo pairs Pps, which consist of text queries and the
most related web videos from the support set, are created. Style Transfer: the captioner is tuned with the obtained pseudo pairs Pps to adapt
to the style of the given text queries. Next, new stylized captions are generated for all videos in the support set and then filtered to avoid
noisy captions; the resulting set of the generated pairs Pgen contains web videos and aligned captions of the desired style. To complete the
retrieval task, we adapt the dual video-text encoder model with the generated pairs Pgen and evaluate it on the curated paired test set.

4.2. Style Transfer

We aim to transfer the style of the given text queries to
other unrelated web videos by generating new captions with
the desired style. Inspired by the ability of language mod-
els conditioned on visual input [31] to generate plausible
descriptions for diverse visual inputs, we propose to adapt
the pre-trained image captioner g using the obtained set of
noisy pseudo text-video pairs Pps. By doing this, we adapt
the captioner to both the style of the captions as well as the
style of the web videos. This allows us to generate new
stylized captions Pgen for the full support set of videos V ′

using this captioner.

Captioner. More specifically, we follow the BLIP [31] cap-
tioner architecture, which we extend for video captioning
by conditioning the model not only on a single image but
on a number of video frames. To this end, we apply the
image encoder on each frame individually and inject a joint
set of visual tokens into the text decoder model, which pro-
duces text in an autoregressive manner. We provide further
details in the supplement. To train the captioner g on the
pseudo text-video pairs Pps, we utilize the common lan-
guage model loss that optimizes cross-entropy loss between
ground truth and predicted probabilities of the next token
given a correct set of previous tokens in the sentence. Fol-
lowing BLIP, we also use label smoothing with parameter
0.1 while calculating cross-entropy.

Stylization of Captions. For each video v′i ∈ V ′, we gen-
erate a caption tgi = g(v′i) with a captioner g trained on
pseudo pairs by using a nucleus sampling [24]. Nucleus
sampling was shown to generate more diverse and detailed
captions than a beam search [58, 31].

Filtering. As the captioner g is adapted on pseudo pairs and
shifts the model closer to a vocabulary of given text queries
D, some of the generated captions tgi might be noisy and not
descriptive for the web videos. Therefore, we further filter
the generated pairs based on a similarity score s(tgi , v

′
i) uti-

lizing the large pre-trained image-language dual encoders
the same way as it was used for creating pseudo text-video
pairs (Section 4.1). Leaving only pairs with similarity
higher a threshold s(tgj , v

′
j) > th, we obtain a paired set of

web videos and stylized related captions Pgen = {(tgj , v′j)}.
In Section 5.7, we show that even a noisy set of pseudo pairs
is enough to adapt a captioner for generating captions in a
desired text style and that stylized captions combined with
the following filtering provide a strong learning signal to
boost the performance of retrieval in target distribution D.

4.3. Training and Retrieval

Single-Style Training. To allow for text-video retrieval
based on the stylized captions and the paired video data,
we train a dual-encoder architecture [31] on the set of gen-
erated pairs Pgen with the contrastive loss [46]. We show
that Pgen provides better supervision than Pps or even a
combination Pgen + Pps. Practically, we consider several
pre-trained models: the image-text model BLIP [31], which
we adapted for video as described in Section 4.1, as well
as video-text model EAO [55], which is pre-trained on the
HowTo100M dataset with ASR-video pairs, which serve as
noisy supervision. Following previous works, we use sym-
metric contrastive loss, which brings together text tgi and
video vi from a text-video pair (tgi , vi) ∈ Pgen (a positive
pair) in shared video-text embedding space, and contrasting
them on video and text from different pairs (negatives), that
are pushed apart:

L = − 1

2B

B∑
i=1

(log
exp(

s(t
g
i ,v

′
i)

τ
)

B∑
j=1

exp(
s(t

g
i ,v

′
j)

τ
)

+ log
exp(

s(v′
i,t

g
i )

τ
)

B∑
j=1

exp(
s(v′

i,t
g
j )

τ
)

)

(2)

where τ denotes a temperature parameter and B is a num-
ber of pairs.

For the fine-tuning of the BLIP model, we follow the
original setup and utilize the extension of contrastive train-
ing with a momentum encoder and a queue that keeps more



web video text styles

Standard In-Style

data for one batch

text

text

text

a brown rat goes 
into someone’s hand 

then onto a cage.

a chipmunk is eating

a dog is barking

text

text

text text

text

text

text31
text11

text22

text21

text12
text32

text33

text11

text31
text21

text22

text31
text21

text22
text31

text21

text22

text31
text21

text22

Figure 3: Multi-dataset training. Left: Standard contrastive
training with multiple datasets. Right: Our In-Style training pro-
cedure. Each batch consists of text queries that belong only to the
same style. Note that we use only web videos from the support
set; therefore, all videos are from the same distribution.

negatives as well as soft labels. To fine-tune the EAO
model, we follow the respective setup without a momentum
encoder or soft labels.
Multi-Style Training. Finally, we consider training a
generalized model on multiple sources of text queries com-
ing from different data distributions D1, ..., DK . Let’s de-
note P 1

gen, ..., P
N
gen set of generated pairs for the captions

from D1, ..., DN respectively. Here, different sources can
have various styles that might highlight different aspects
of videos in their captions (Table 3). As an example,
captions in the YouCook2 dataset [69] are more “action”-
oriented, e.g., “combine macaroni sauce and cheese” or
“stir in crushed tomatos”, while captions of the LSMDC
dataset [52] are third-person descriptions, e.g., “Someone
gazes at the beautiful animal” or “Someone chews the
sweet’. In standard training [31], all different styles with
their matching videos would be present in contrastive loss
together, which can lead to a mixture of different visual top-
ics and text styles, which are easy to separate and which
might include only a few hard negatives per sample. To
avoid this possibly noisy setting, we propose to modify the
training procedure and select video-caption pairs with cap-
tions from the same data source for contrastive loss. For-
mally, during training, we iterate over generated sets of pair
P 1
gen, ..., P

N
gen sampling a minibatch {(tgi , v′i)}Bi=1 from a

single set Pgen ∈ {P 1
gen, ..., P

N
gen} and calculating loss

L({(tgi , v′i)}Bi=1) performing one optimization step with a
minibatch (Figure 3). We note that for BLIP training, we
keep separate queues for each set Pgen.

We show in Section 5.4 that this setting can be beneficial
for learning a generalized model. Our intuition is that text
queries with the same style provide stronger negatives for
the model, allowing the model to concentrate on the content
of the captions rather than a style.

5. Experimental Evaluation
We evaluate the proposed uncurated & unpaired text-

video retrieval approach on five popular benchmark
datasets: MSR-VTT [64], YouCook2 [69], MSVD [8],

LSMDC [52], and DiDeMo [2]. All datasets cover different
styles of captions and videos, which include YouTube and
Flickr videos on various topics and video clips from movies.
As a source of support videos, we use the large-scale web
dataset HowTo100M [43]. We additionally test our model
with text queries from the VATEX dataset [59] as well as
with third-party text queries (not video captions), specifi-
cally with the recipe steps from Food.com dataset [39] and
task descriptions from WikiHow dataset [27].

5.1. Dataset Details

MSR-VTT [64] contains in total 10k videos on various top-
ics and 200K captions. More precisely, every 20 captions
describe the same video in different words. We use split
9K+1K [17] in evaluation, resulting in 180K captions for
training and 1K text-video pairs for testing.
YouCook2 [69] is a dataset of 13.5K cooking instructional
video clips, where each clip is annotated with a short cook-
ing recipe step. Following [43, 55], we use a 10K+3.5K
training-testing split, leveraging 10K captions for training.
MSVD [8] contains 2K video snippets, where each is asso-
ciated with approximately 40 sentences. The standard split
consists of 1200 videos for training, 100 for validation, and
670 for testing. The training set contains 48K captions.
LSMDC [52] is a collection of 202 movies sliced into 118K
movie clips with one description per clip and with about
100K clips used for training, and 7408 and 1000 text-video
pairs used for validation and testing, respectively.
DiDeMo [2] is a fine-grained text-video dataset. 10K Flickr
videos are paired with multiple detailed sentences (40K sen-
tences in total). During training, we use single sentences
(33K captions), whereas for evaluation on the test set, we
follow [3] and concatenate all the descriptions for video into
one paragraph, acting as a video-paragraph retrieval task
(we do not use ground truth time-stamp annotations).
VATEX [59] dataset contains 35K video clips with multi-
ple annotated captions for a video, covering 600 different
human activities. The training set contains 260K captions.
Food.com [39] is a text dataset that contains more than
230K recipe texts with over 2.2M recipe steps crawled from
websites. We use recipe steps as text queries in our training.
WikiHow [27] is a large-scale text dataset using the online
WikiHow knowledge base. The dataset contains more than
230K articles covering a variety of topics/tasks and descrip-
tions of steps to solve these tasks. We use only headline
steps as text quires, which gives us 1.7M captions.
HowTo100M [43] is a dataset of instructional videos that
cover a large variety of topics. The dataset consists of more
than 1M videos that were collected by querying on YouTube
23,000 different “how to” tasks. In our setup, we use 8-
second non-overlapping clips from a 100K random subset
of videos (no more than 15 clips per video) as a support
video dataset, resulting in ∼1.4M video clips.



Pre-trained Method Supervision MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean
Model R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

BLIP [31]
Zero-shot none 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32.5 24.3 44.5 53.4 22.5
In-Style (ours) only text 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14
GT fine-tuning T-V pairs 42.9 69.7 78.9 2 12.6 32.0 43.6 15 40.2 70.6 79.3 2 48.1 76.6 85.0 2 23.8 41.1 50.9 10 33.5 58.0 67.5 6.2

EAO [55]
Zero-shot none 9.9 24.0 32.6 28 19.8 42.9 55.1 8 6.6 19.0 26.8 42 18.0 40.4 52.3 9 3.6 8.5 13.0 177 11.6 27.0 36.0 52.8
In-Style (ours) only text 16.4 35.8 48.9 10 20.3 46.4 58.8 7 13.2 31.6 44 15 23.4 50 62.4 5 4.9 12.3 16.7 94 15.64 35.22 46.16 26.2
GT fine-tuning T-V pairs 22.8 47.8 60.3 6 26.7 55.9 68.6 4 19.2 43.1 54.4 8 25.1 53.6 65.7 5 8.9 21.2 29.4 40 20.5 44.3 55.7 12.6

Table 1: Text-video retrieval with style transfer. Comparison between the upper bound, where the retrieval model trained with ground
truth aligned text-video pairs (T-V pairs), zero-shot respective models (no style transfer or tuning), and our In-Style method, where we
follow our new setting of uncurated & unpaired text-video retrieval for style transfer based only on input text queries.

Training Dataset MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

MSR-VTT 36.2 61.8 71.9 3 7.6 18.8 25.9 62 29.0 54.5 65.4 4 43.3 70.7 79.9 2 15.2 28.5 35.3 31 26.3 46.9 55.7 20.4
YouCook2 31.5 55.5 64.4 4 8.6 21.6 30.0 37 25.1 53.9 65.2 4 41.1 67.3 76.8 2 14.2 28.8 36.9 30 24.1 45.4 54.7 15.4
Didemo 34.0 58.5 68.9 3 6.8 17.2 24.5 69 32.1 61.9 71.2 3 43.7 71.6 80.5 2 16.6 30.5 38.4 28 26.6 47.9 56.7 21
MSVD 36.0 59.4 69.5 3 6.4 16.4 23.6 70 27.0 54.9 65.0 4 44.8 72.5 81.2 2 14.5 27.4 34.8 32 25.7 46.1 54.8 22.2
LSMDC 33.9 60.3 69.9 3 7.1 18.1 25.6 68 31.7 59.9 69.1 3 44.6 71.7 80.0 2 16.1 33.6 39.7 25 26.6 48.7 56.8 20.2
Target dataset (mean over diagonal) - - - - - - - - - - - - - - - - - - - - 27.5 50.3 58.8 14

All five datasets – standard training 36.4 62.1 71.8 3 8.7 21.4 29.4 44 31.4 62.5 71.2 3 44.7 72.9 81.5 2 16.3 31.9 39.5 25 27.5 50.2 58.7 15.4
All five datasets – In-Style (ours) 36.7 61.9 72.3 3 8.5 21.8 30.4 38.5 32.6 61.8 71.2 3 44.7 73.1 82.0 2 16.6 32.2 39.8 26 27.8 50.2 59.1 14.5

Table 2: Generalization performance of different models over all datasets. Mean denotes an average of R1, R5, R10, MR over 5
datasets, correspondingly. Top: the proposed In-Style method with the input text queries only from one respective training dataset.
Bottom: training with 5 different text query styles. Comparison between standard multi-dataset training and proposed In-Style procedure.

5.2. Implementation Details

Model. We leverage the pre-trained dual-encoder CLIP
(ViT-B/32) model [50] in the matching module and the
filtering module. Captioner weights are initialized with
BLIP (ViT-B/16) captioner [31], which is pre-trained on five
different image-text datasets, including LAION [53] with
129M images. For retrieval, we consider two architectures:
dual encoder image-text initialized with BLIP (ViT-B/16)
and dual encoder video-text architecture initialized from
EAO [55] pre-trained on HowTo100M with noisy ASR nar-
rations. We follow [55] and use a model with a S3D [62]
feature extractor and weights that were pre-trained with a
video-text-audio triplet, but only utilize the video-text en-
coder and report all results without audio.

Training. For training, we uniformly sample m = 8
frames per video with a resolution of 224× 224 augmented
with RandAugment [13]. For captioner training and BLIP-
architecture retrieval model training, we use AdamW opti-
mizer [36] with a weight decay of 0.05, a batch size of 128,
and a learning rate 1.0e−05 for captioner and 1.0e−06 for
retrieval. For the EAO model following [55], we use Adam
optimizer [26] without weight decay. More training details
can be found in the supplement.

Evaluation. For testing, we use m = 64 frames for the
fine-grained DiDeMo dataset, and m = 12 for all others,
following [38]. For text-video retrieval, we report standard
recall metrics for R1, R5, R10, and the median rank (MR).

5.3. Text Query Style

We consider text style as a set of attributes and proper-
ties of the text shared across a text corpus. Such properties
might be the usage of stop words, sentence construction,
sentiment, text length, etc. To highlight those differences,
we show three text examples from the different datasets
in Table 3. The respective word clouds for these datasets
with and without stop words can be found in Figure 6 in
the supplement. It shows that the sentence structure and
most frequent words change across datasets. For example,
the YouCook2 test queries always start with an action verb,
while in other datasets, the subject+verb+object structure
is mostly used. While in the MSR-VTT dataset, frequent
words are third-person nouns like “man”, “woman”, “per-
son”, “people”, the DiDeMo uses more words about cam-
era position like “camera”, “left”, “right”, “screen”, “view”,
and the LSMDC mostly describes a subject as “someone”.
While the MSR-VTT and the MSVD datasets might look
similar, Table 3 shows that sentences in the MSR-VTT are
1.5 times longer than in the MSVD on average. We consider
such properties as style properties of the text.

5.4. Uncurated & Unpaired Text-Video Retrieval

Single Dataset Training. First, we demonstrate the effi-
ciency of the proposed style transfer method in uncurated &
unpaired text-video retrieval on five different downstream
datasets in Table 1. We present results for the image-text
pre-trained BLIP [31] model as well as for the video-text
pre-trained EAO [55] model. We consider three evalua-
tion scenarios: 1) zero-shot performance; 2) the perfor-



Dataset Examples

1) The peoples are sharing their view on this car of
MSR-VTT different models

(∼43 symbols 2) Someone is showing the ingredients for a dish
in a text) they are going to make

3) A man is playing an instrument

YouCook2 1) Combine macaroni sauce and cheese
(∼39 symbols 2) Grate and cube potatoes

in a text) 3) Stir in crushed tomatos

1) A dog runs down a hill and stop behind a shrub.
Dog sniffs and chews at patch of grass on rock. the

DiDeMo dog approaches, then begins to sniff the cluster of
(∼147 symbols plants first time hand is seen petting dog.

in a text) 2) Only big screen is visible the camera first pans
to the large screen. The view shifts from the bas-
ketball court to the fans in the seats across the sta-
dium. Camera goes to the bigscreens the dancers
are shown on the jumbotraun.
3) A bus stops. The bus stops at the end of the drive-
way. A kid is coming out of a school bus. School
bus doors open.

MSVD 1) The cats are fighting
(∼31 symbols 2) The lady sliced a vegetable

in a text) 3) A man is eating a pizza

1) SOMEONE goes to the kitchen, wets a towel,
LSMDC comes back to the bed, kneels it, places the towel

(∼46 symbols on SOMEONE’s brow.
in a text) 2) He slaps SOMEONE again.

3) SOMEONE moves off through the crowd.

Table 3: Three random examples of text descriptions in dif-
ferent datasets. With the dataset name, we also report the
median length of a text in the dataset.

mance of our style transfer method in the text-video re-
trieval task with uncurated & unpaired data where only text
queries are available during training; 3) training with the
ground truth aligned text-video pairs, which can be consid-
ered as an upper bound for our task. It shows that the pro-
posed In-Style method significantly outperforms zero-shot
performance even without using any aligned training sam-
ples from the target distribution. This supports the hypoth-
esis that the style of the text queries is an important compo-
nent of text-video retrieval. Moreover, we observe that the
gap between training with ground truth aligned pairs and
the style transfer can be remarkably small, especially on the
MSVD dataset, indicating the benefits with respect to a po-
tential annotation cost reduction in the proposed setup.

Multi-Dataset Training. Second, we evaluate the pro-
posed multi-dataset training procedure with the In-Style
method in Table 2. Here, a minibatch is compiled from
a single text source as shown in Figure 3. This is fa-
vorable compared to the standard training, where data
points in a minibatch are randomly sampled from all data

sources together. It shows that the proposed procedure
leads to improved retrieval performance compared to in-
dividually trained models and better generalization across
all datasets compared to the standard multi-dataset training.
We attribute the performance increase compared to standard
multi-dataset training to the fact that considering the cap-
tions of only the same style in contrastive loss provides a
model with a cleaner learning signal with stronger text neg-
ative counterparts. As an example, “add sliced cucumber”
in YouCook2 style would be a stronger negative in compar-
ison to a correct “add sliced tomato” query than a “a person
in a video puts sliced cucumber in a salad” in MSR-VTT
style. More discussions of generalization can be found in
the supplement.

5.5. Comparison with SOTA

We further compare the proposed method with zero-shot
retrieval baselines in Table 4. We report the performance
of BLIP and CLIP backbones trained with text queries from
the VATEX dataset, thus text queries do not follow the dis-
tribution of any of the test datasets. The closest counter-
part to our model is Nagrani et al. method [45], which uti-
lizes the pre-trained image-text CLIP backbone, which is
further trained with the VideoCC3M dataset [45] – a video-
text dataset collected by automatic transferring image cap-
tions from text-image CC3M dataset [54]. The conceptual
difference between [45] and our method is that [45] pro-
poses to transfer image captions from the image-caption
dataset by pairing images to videos, while the proposed In-
Style method adapts the model to the video captions. While
noting that a direct comparison to different state-of-the-art
methods is limited due to different pre-training datasets, it
can be observed that the proposed In-Style method achieves
the best results on four out of five datasets, underperforming
only in YouCook2, which might benefit from HowTo100M
pre-training. We additionally validate the statement that text
queries can be used without any corresponding videos by
using texts from WikiHow [27] and Food.com [39] datasets
that contain descriptions of different actions/steps to solve
tasks or cook meals. In Table 4, we show that style transfer
from both datasets especially benefits YouCook2 retrieval
performance that we attribute to the similarity in text styles
(see the supplement). However, style transfer from the Wik-
iHow dataset, which is more diverse and covers a larger
variety of topics, also improves the performance over the
baselines on the DiDemo, MSVD, and LSMDC datasets.

5.6. Efficiency of Style Transfer

Training Pairs. In Table 5, we compare the performance
of the models trained either with pseudo pairs Pps or
with generated pairs Pgen, or with a combination of them
Pps + Pgen. All setups boost the performance of text-
video retrieval by a large margin compared to zero-shot



Method Image-Text Datasets Video-Text Datasets MSR-VTT YouCook2 DiDeMo MSVD LSMDC
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

HowTo100M [43] - HowTo100M 7.5 21.2 29.6 38 6.1 17.3 24.8 46 - - - - - - - - - - - -
SupportSet [48] - HowTo100M 8.7 23.0 31.1 31 - - - - - - - - 8.9 26.0 37.9 18 - - - -
VATT [1] HowTo100M+AS - - 29.7 49 - - 45.5 13 - - - - - - - - - - - -
EAO§ [55] - HowTo100M 9.9 24.0 32.6 28 19.8 42.9 55.1 8 6.6 19.0 26.8 42 18.0 40.4 52.3 9 3.6 8.5 13.0 177
Nagrani et al. [45] - VideoCC3M 19.4 39.5 50.3 - - - - - - - - - - - - - - - - -
Frozen in Time [3] CC+COCO WebVid-2M 24.7 46.9 57.2 7 - - - - 21.1 46.0 56.2 7 - - - - - - - -
CLIP-straight [49] WIT - 31.2 53.7 64.2 4 - - - - - - - - 37.0 64.1 73.8 2 11.3 22.7 29.2 56.5
CLIP4CLIP [38] WIT HowTo100M 32.0 57.0 66.9 4 - - - - - - - - 38.5 66.9 76.8 2 15.1 28.5 36.4 28
Nagrani et al. [45] WIT VideoCC3M 33.7 57.9 67.9 - - - - - - - - - - - - - - - - -
BLIP|| [31] CC+COCO+3more∗ - 33.3 57.3 67.5 3.5 5.8 15.0 21.9 76 24.6 50.4 59.7 5.3 37.0 63.3 72.6 3 15.2 28.2 35.9 35
In-Style (ours) (CLIP) WIT HowTo100M†+VATEX‡ 35.0 59.6 70.4 3 5.1 14.0 20.3 103 26.6 50.5 62.6 5 38.6 66.3 77.9 3 16.0 31.6 38.5 26.5
In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+VATEX‡ 36.0 61.9 71.5 3 6.8 16.7 24.5 63 29.4 59.2 68.6 3.5 44.9 72.7 81.1 2 16.4 30.1 38.7 28
In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+WikiHow 34.2 59.6 69.0 3 7.3 19.2 27.1 46 29.7 56.2 67.4 4 42.8 70.2 79.1 2 17.0 30.8 39.6 27
In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+Food.com 32.8 54.9 65.8 4 7.2 19.8 27.9 47 25.7 52.8 63.1 5 39.5 64.9 74.9 2 14.5 28.9 37.2 30.5

In-Style (ours) (BLIP) CC+COCO+3more∗ HowTo100M†+Target‡ 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25
In-Style (ours) (EAO) - HowTo100M+Target‡ 16.4 35.8 48.9 10 20.3 46.4 58.8 7 13.2 31.6 44.0 15 23.4 50.0 62.4 5 4.9 12.3 16.7 94

Table 4: Zero-shot comparison with other methods. Top: zero-shot retrieval with methods pre-trained on video-language or/and
images-language web or/and curated datasets which exclude target datasets during training. For our In-Style method, the VATEX dataset
is used as a source of text queries. Bottom: uncurated & unpaired text-video retrieval with text queries from the respective target datasets
for comparison purposes. Note that this setting is not zero-shot. † denotes that only videos were used (without paired text) and ‡ – only
text (without videos). §For EAO, performance with S3D backbone is reported. ||For BLIP, the performance of dual encoder architecture is
reported (not image-grounded text encoder). ∗CC [7]+COCO [33]+VG [28]+SBU [47] +LAION [53]. AS denotes AudioSet [19].

Training Data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

— (zero-shot) 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32.5 24.3 44.5 53.3 22.5
Pseudo pairs Pps 35.0 61.4 70.9 3 7.5 19.6 28.9 43 33.1 59.8 71.2 3 44.3 72.4 81.0 2 16.8 32.7 40.4 25 27.3 49.2 58.4 15.2
Generated pairs Pgen 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14.0
Combined Pps + Pgen 36.0 61.3 71.5 3 8.9 21.8 29.8 37 32.6 61.8 70.2 3 44.4 72.2 80.8 2 17.1 32.4 40.4 26 27.8 49.9 58.5 14.2

Table 5: Different types of training pairs for text-video retrieval step. We evaluate text-video retrieval with pseudo pairs Pps only,
with generated pairs Pgen only, and the combination of both Pps + Pgen.

text-video retrieval. The generated pairs Pgen achieve bet-
ter performance than pseudo pairs Pps on all datasets except
LSMDC, whereas a combination of Pps+Pgen does not im-
prove performance on average. We note that the number of
pairs in Pgen is significantly larger than in Pps (Table 7b)
for all datasets except LSMDC (a dataset of movies, which
might contain a larger domain shift to YouTube videos com-
pared to other datasets). We assume that in this case, Pgen

contains better-aligned pairs since each generated text de-
scription is conditioned on the corresponding video, while
in Pps, a fixed set of descriptions is matched (see exam-
ples in Figure 4) explaining the performance drop with
Pps + Pgen.

Style Transfer. In Table 6, we consider how much the
text style transfer in the generated pairs Pgen influences the
retrieval performance. For this, we considered three sets
of Pgen for the training retrieval model: 1) Pgen gener-
ated with zero-shot BLIP captioner; 2) In-Style Pgen gen-
erated with captioner trained on Pps with text queries from
a different non-target dataset (we used the VATEX dataset);
3) In-Style Pgen with a captioner trained on Pps with text
queries from the target dataset. We observe that training the
model with generated text-video pairs (from uncurated web
videos from the HowTo100M dataset) by a zero-shot image-

pretrained captioner already improves the performance in
all video retrieval datasets. We attribute this to the con-
tent and style adaptation of the image-language model to
the specific appearances in the videos. However, such mod-
els tend to generate “static” descriptions that do not involve
actions. Thus, text queries from non-target video datasets,
namely the VATEX dataset, improve the retrieval perfor-
mance further. Yet, we notice that YouCook2 does not ben-
efit from the VATEX text queries as from the zero-shot gen-
erated captions. Finally, using training text queries from the
target dataset excels on the considered benchmarks.

5.7. Ablation Study

Matching Method. To obtain generated pairs, we train the
captioner with pseudo pairs that were created by a match-
ing module. In Table 7c, we consider two options for
the matching module: image-text pre-trained dual encoders
from BLIP [31] and CLIP [50], as well as the “Random”
option where text queries are simply matched with the ran-
dom videos. We report the text-video retrieval performance
of our final model using the given option of the matching
module. We observe that the matching module based on
CLIP leads to better performance. We attribute that to the
robustness of CLIP to the noisy web data as it was trained
on large-scale web image-text pairs, whereas BLIP utilizes



Training data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average
R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR R1 R5 R10 MR

— (zero-shot) 34.1 60.2 70.6 3 6.0 16.2 23.1 70 28.2 52.0 62.7 5 38.8 64.8 74.0 2 14.5 29.3 36.4 32 24.3 44.5 53.3 22.5
Pgen with zero-shot captioner 36.3 61.6 71.8 3 7.1 18.4 25.6 65 28.7 56.3 65.0 4 43.8 71.2 80.1 2 16.0 29.2 37.7 30 26.3 47.3 56.1 20.8
In-Style Pgen (non-target) 36.0 61.9 71.5 3 6.8 16.7 24.5 63 29.4 59.2 68.6 3.5 44.9 72.7 81.1 2 16.4 30.1 38.7 28 26.7 48.1 56.9 19.9
In-Style Pgen (target) 36.2 61.8 71.9 3 8.6 21.6 30.0 37 32.1 61.9 71.2 3 44.8 72.5 81.2 2 16.1 33.6 39.7 25 27.6 50.3 58.8 14

Table 6: Source of generated pairsPgenPgenPgen for text-video retrieval. Comparison between zero-shot BLIP (no adaption of retrieval model),
zero-shot BLIP captioner, and adapted BLIP captioner with our In-Style method with either text queries from VATEX (non-target) or text
queries from the target datasets.
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Figure 4: Qualitative evaluation of Pps and Pgen on the MSR-VTT (left) and DiDeMo (right) datasets. First, a text query is matched
with one of the videos (a pseudo pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same
style but with updated content (a generated pair Pgen).

Filt. Thr. R1 R5 R10 MR

0.26 43.9 71.8 80.8 2
0.27 44.2 72.2 80.9 2
0.28 44.8 72.5 81.2 2
0.29 45.0 72.3 80.9 2
0.30 45.1 72 80.8 2

(a) Filtering threshold

Dataset #Pseudo #Generated
Pairs Pairs

MSR-VTT 180k 495k
YouCook 10k 168k
Didemo 33k 280k
MSVD 48k 379k
LSMDC 101k 144k

(b) Number of Pps and Pgen

Matching R1 R5 R10 MR

Random 39.1 66.3 75.8 2
BLIP 44.1 71.4 80.0 2
CLIP 44.8 72.5 81.2 2

(c) Matching method

Training pairs B@4 ROUGE CIDEr

– (zero-shot) 0.305 0.519 0.610
Pseudo pairs 0.559 0.628 1.059
GT pairs 0.659 0.680 1.296

(d) Captioning performance

Table 7: Ablations of our In-Style method on the MSVD.

additional filtering to reduce the noise during training.
Filtering Threshold. In Table 7a, we consider the effect of
filtering on the quality of the generated pairs Pgen. We find
threshold th = 0.28 works the best, indicating that filtering
is an important step for our style transfer framework.
Captioning Perforformance Finally, we evaluate the cap-
tioning performance of the captioner trained with pseudo
pairs Pps with the standard NLP metrics BLEU@4,
ROUGE and CIDEr. Table 7d demonstrates that the cap-
tioner trained with pseudo pairs almost doubles the zero-
shot captioner performance, significantly reducing the gap
to the training with ground truth supervision.

6. Conclusion

In this work, we address a new task of text-video retrieval
with uncurated & unpaired data, where during training only
text queries are available. Motivated by the fact that differ-
ent domains imply diverse styles of video descriptions, we
introduced the In-Style method that preserves the style of
the given input queries and transfers it to the support set of
unrelated web videos, creating aligned text-video pairs with
the style of input. Utilization of obtained text-video pairs
as supervision leads to a significant performance boost in
text-video retrieval. Moreover, we show the performance
generalization of a single model that we train with multi-
ple styles simultaneously, proposing a training procedure
for multi-dataset training. We evaluate the proposed model
over multiple datasets and show the advantages of the In-
Style method on the task of uncurated & unpaired text-video
retrieval and achieve new state-of-the-art results for zero-
shot text-video retrieval.
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Supplementary Material
In the supplementary material, we first elaborate on some
discussions in Section A; further, we provide In-Style
Method details in Section B and implementation details in
Section C; and finally, we provide more qualitative evalua-
tions in Section D and discuss limitations in Section E.

A. Additional Discussions
Text Query Style. Figure 5 and Figure 6 show the respec-
tive word clouds for the five datasets with and without stop
words. In Table 8, we show five different text examples
from the different datasets considered in this paper to fur-
ther highlight the differences in the text styles.

Model Generalization. In the following, we discuss the
generalization performance of the model trained on differ-
ent text styles (Table 2 in the main paper.) When we con-
sider models trained only with one text style (text queries
that are only from one dataset) in the top half of Table 2, it
shows that the mean retrieval performance is higher for the
queries with the style of MSR-VTT, DiDeMo, or LSMDC
datasets. Interestingly, MSVD-style text queries, which are
similar to MSR-VTT queries in terms of sentence structure
(Table 8) and usage of stop words (Figure 5 and Figure 6),
show similar MSR-VTT retrieval performance compared
to DiDeMo and LSMDC-style text queries, and moreover,
lower performance on the DiDeMo, and LSMDC datasets.
We hypothesize that longer and more descriptive text is ben-
eficial for model generalization (the MSVD dataset contains
the shortest text descriptions of all datasets).

In Table 9a, we also report the number of shared video
clips in generated pairs Pgen with different datasets’ text
styles. Interestingly, Pgen based on the LSMDC text queries
has the smallest number of pairs in general. Moreover, even
though it has low overlap in videos with Pgen from all other
datasets (0.18–0.24, see in Table 9b), LSMDC’s Pgen shows
one of the highest generalization to the MSVD, DiDeMo,
and MSR-VTT datasets. Analyzing examples in Table 8,
we suggest that LSMDC captions are more concise and de-
scriptive in terms of object-verb-subject details (who does
what in a video). For example, in the 3rd MSR-VTT exam-
ple, there is only a general description that people are fight-
ing without specification of exact people and their actions,
and in the 5th example, the caption only says that a man
is playing an instrument, without specification of an instru-
ment. At the same time, in LSMDC texts, the object-action-
subject description is more detailed, such as in the first ex-
ample, all consecutive actions are specified, or in the 2nd
example, the exact hitting action (“he slaps”) is specified.
Therefore, we hypothesize that a text style with more con-
cise descriptions is better for model generalization. How-
ever, as Table 2 demonstrates, the best mean performance

over all datasets is achieved while training with different
target text styles.

B. In-Style Method Details
Captioner. For the captioner, we follow BLIP [31] image
captioner architecture, which we extend to video captioning
as shown in Figure 7a. Namely, we encode m uniformly
sampled frames (we use m = 8 for training and m = 12
for inference) from a video by the image transformer to
obtain frame-wise tokens. Then, we feed this set of en-
coded tokens from all the frames into the cross-attention of
an image-grounded text decoder. Therefore, the predicted
text is conditioned on multiple video frames at once. The
image-grounded text decoder predicts the next text token
given an input of previous text tokens (where the “dec” to-
ken is concatenated to the beginning of the input sequence
and denotes the start of the output). During the inference,
the text tokens are generated one by one in an autoregressive
manner.

Video-Text Dual Encoder. In the pseudo matching, fil-
tering, and retrieval steps of our In-Style method, we use
the video-text dual encoder model. We initialize the dual
encoder model from image-text pre-trained BLIP [31] or
CLIP [50] models, which we extend to video-text mod-
els. Specifically, we obtain a video embedding by averag-
ing image representations of m uniformly sampled frames,
as shown in Figure 7b. By default, eight frames are used
m = 8 during training and m = 12 during evaluation. But
m is increased to 64 during evaluation on the fine-graned
DiDeMo dataset as in [38, 61]. To obtain image representa-
tion, we feed image patches into ViT transformer [14], and
the “cls” output token is later projected by a linear projec-
tion into common embedding space and further normalized.
The text representation is obtained by projecting and nor-
malizing an output “cls” token in the case of BLIP and an
output “eot” token in the case of CLIP.

C. Implementation Details
EOA Model Details. In case of the EOA [55] architec-
ture, we use the model variant with S3D visual backbone
with a frozen S3D backbone pre-trained by Miech et al.
[42] in the visual branch and a GoogleNews pre-trained
Word2vec model [44] in the text branch. These backbones
are fixed and not trained. As initialization, we use EOA [55]
weights pre-trained with audio modality, but we discard the
audio branch to consider text-video-only retrieval.

EOA Training Details. We follow [55] to train the EOA
model. We compute one S3D feature per second [42] with-
out any data augmentation; namely, we compute one feature
per 16 frames, sampling frames with 16 fps and 224x224



Dataset Examples

1) A bulldozer removes dirt
MSR-VTT 2) An infomercial with a pharmeceutical company talking about an epilepsy drug pending approval from the FDA

(∼43 symbols 3) Extreme violence scenes with people fighting with each other
in a text) 4) A woman is in front of a whiteboard talking about the numbers written on it

5) A man is playing an instrument

1) Add some herb sprinkle and stir the meat
YouCook2 2) Bake the pizza on the grill

(∼39 symbols 3) Pour butter into the wok
in a text) 4) Peel an onion and chop into pieces

5) Add the tomato paste crushed tomatoes tomato puree and beef stock to the pan

DiDeMo

1) First time we see the dancers go down on one leg the men hit the ground with their sticks. They first start crouching
and hitting the ground with the sticks

in a text)

2) When the man puts his head down the guitar player is looking up. The guitarist is looking straight up. A man plays the
guitar while looking up. The guitarist is looking straight up as he plays.

(∼147 symbols 3) Red phone booth is visible a red phone booth is in the scene. A person walks in the middle of the camera. A red phone
booth can be seen a red telephone booth is on the sidewalk.
4) The camera moves back to the left to the tree. White square exits frame left the camera pans back the way it came.
Square area lines with stones comes into view the fence comes into view.
5) Fog moves in toward the ice skater. a woman spins around several times very fast. A woman pirouettes as she comes
near the camera. Woman spins more than 5 times in a row.

1) A lady is pouring raw strawberry juice into a bowl
MSVD 2) A man is slicing the crust into a potato

(∼31 symbols 3) A man lifts three sunflowers
in a text) 4) A man is putting a pan into an oven

5) A boy rides around in circles on a tricycle

1) The dish is covered in saffron and spices.
LSMDC 2) He slaps SOMEONE again.

(∼46 symbols 3) He and SOMEONE join forces to grab the cube, which’s connected with several more wire.
in a text) 4) In the race, a rider falls.

5) SOMEONE dashes to a clothes closet and ducks inside. The cup spins across the floor.

1) Someone is demonstrating how to paint a metal sheet on a window
VATEX 2) A person is cooking scallops in the pan over a fire place and then begins to pour them in some water

(∼71 symbols 3) Two women make a video tutorial on how to bake cookies
in a text) 4) A person is throwing garbage into the trash can and talking

5) A woman is outside and preparing an edible meal by inserting herbs into it, then placing them on the ground

1) In a blender or food processor, puree the first 3 ingredients until smooth
Food.com 2) Combine juice, remaining 2 tablespoons sugar and lemon juice

(∼54 symbols 3) Place chicken on wire rack
in a text) 4) Then toss in the artichokes and serve immediately

5) Cut beef into 3 - inch pieces

1) Do lunges in the park
WikiHow 2) Cut a large milk jug

(∼41 symbols 3) Buy your favorite knit kit
in a text) 4) Trim the lining of your sweater

5) If your child is in a fight, put his hands on the sand

Table 8: Five random examples of text descriptions in different datasets. With the dataset name, we also report the median
length of a text in the dataset.

resolution. We train with Adam [26] optimizer, no weight
decay, and a batch size of 128. We use a temperature of 0.05
in the loss function.

BLIP Evaluation Details. We would like to highlight
that while evaluating a model with a BLIP backbone, we

use dual encoder architecture (unimodal encoders), not
a cross-attention architecture (named an image-grounded
text encoder in [31]), which performance on MSR-VTT
dataset [64] was reported in the original paper [31]. Dual
encoder models independently encode videos and texts
into common embedding space, allowing for fast retrieval



(a) MSR-VTT (b) YouCook2 (c) DiDeMo

(d) MSVD (e) LSMDC

Figure 5: Word clouds for text queries from different datasets (stop words are included).

(a) MSR-VTT (b) YouCook2 (c) DiDeMo

(d) MSVD (e) LSMDC

Figure 6: Word clouds for text queries from different datasets (stop words are excluded).

among thousands of videos by pre-computing video embed-
dings and calculating the similarity between text and video
embeddings with a dot product (cosine similarity) [41].
Cross-attention architectures compute similarity by prop-
agating video and text together in the model with cross-
attention layers, attending all words and all spatial-temporal
video patches to each other. Cross-attention architecture
significantly boosts retrieval performance compared to dual
encoder models [41]; however, it demands enormous com-
putational overhead in the inference phase, requiring prop-
agating all videos paired with a given text query to compute
similarity. In the original paper [31], BLIP performance
on the MSR-VTT dataset was reported with the cross-

attention model used to rerank 128 closest videos found by
the dual encoder model. Since the majority of the meth-
ods [50, 55, 48, 43, 38, 1] leverage dual encoder architecture
for video retrieval due to computational benefits, for com-
parison purpose we also base our method on dual encoder
models.

D. Qualitative Results

Pseudo pairs Pps and generated pairs Pgen. We provide
additional qualitative results for pseudo pairs Pps and gen-
erated pairs Pgen with the MSR-VTT dataset in Figure 8,
the YouCook2 in Figure 9, the DiDeMo in Figure 10, the



Dataset MSR-VTT YouCook2 DiDeMo MSVD LSMDC

MSR-VTT 495k 111k 160k 239k 87k
YouCook 111k 168k 65k 97k 40k
Didemo 160k 65k 280k 135k 57k
MSVD 239k 97k 135k 379k 75k
LSMDC 87k 40k 57k 75k 144k

(a) Number of shared video clips

Dataset MSR-VTT YouCook2 DiDeMo MSVD LSMDC

MSR-VTT 1 0.23 0.32 0.48 0.18
YouCook2 0.66 1 0.39 0.58 0.24
DiDeMo 0.57 0.23 1 0.48 0.2
MSVD 0.63 0.26 0.36 1 0.2
LSMDC 0.61 0.28 0.4 0.52 1

(b) Ratio of shared video clips per dataset

Table 9: Number/Ratio of shared video clips in the datasets’ generated pairs Pgen.

(a) Captioner (b) Video-Text Dual Encoder

Figure 7: Schematic visualization of (a) the video captioner architecture; and (b) the video-text dual encoder model.

MSVD in Figure 11, and the LSMDC dataset in Figure 12.
We observe on various datasets that generated captions cap-
ture content better than in initially obtained pseudo pairs af-
ter the matching step. It confirms our discussion of Table 5
(in the main paper), that generated pairs Pgen on average
provide better improvement than pseudo pairs Pps.

Text-video retrieval. We also demonstrate qualitative re-
sults of text-video retrieval on the MSR-VTT (Figure 13),
YouCook2 (Figure 14), DiDeMo (Figure 15), MSVD (Fig-
ure 13), and LSMDC (Figure 17) datasets. We found that
the proposed In-Style model retrieves more semantically
similar videos to a given query compared to the zero-shot
BLIP model.

E. Limitations
In this work, we rely on the pre-trained large image-

language models such as CLIP [50] and BLIP [31]. We
consider this as an advantage and disadvantage at the same
time. On one side, we show how to adapt such models to the
input style of text queries, whereas, on the other side, we in-
herit all the biases that such models include [5]. Moreover,

CLIP has the property that it can read text from the im-
ages [40]; therefore, matching or filtering steps could suffer
from that because some unrelated text (e.g., advertisement)
appears on the frames (e.g., see Figure 8).

While our motivation is to avoid annotation costs for
aligning text-video pairs, we still rely on a video collec-
tion; namely, we utilize a large-scale dataset of YouTube
videos. However, we note that such videos are easy to col-
lect as they are available on YouTube and are not prepro-
cessed; therefore, these videos include various types of po-
tential noise from the web, such as advertisements, cam-
era motion, low-quality videos, and others. Moreover, even
though the distribution of our input text queries is not the
same as the distribution of web support videos, we empiri-
cally observe that there is always some overlap between the
distributions. Hence, we do not assume that our In-Style
method will be helpful when input queries and test sets are
from absolutely different domains like medicine (input text
queries) and wildlife (test). As we show in our experiments,
we obtain the most gain when the input text queries and test
sets are from the same distribution.
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Figure 8: Qualitative evaluation of Pps and Pgen on the MSR-VTT. First, a text query is matched with one of the videos (a pseudo
pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same style but with updated content (a
generated pair Pgen)
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Figure 9: Qualitative evaluation of Pps and Pgen on the YouCook2. First, a text query is matched with one of the videos (a pseudo
pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same style but with updated content (a
generated pair Pgen)
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Figure 10: Qualitative evaluation of Pps and Pgen on the DiDeMo. First, a text query is matched with one of the videos (a pseudo
pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same style but with updated content (a
generated pair Pgen)
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Figure 11: Qualitative evaluation of Pps and Pgen on the MSVD. First, a text query is matched with one of the videos (a pseudo
pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same style but with updated content (a
generated pair Pgen)
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Figure 12: Qualitative evaluation of Pps and Pgen on the LSMDC. First, a text query is matched with one of the videos (a pseudo
pair Pps), and then, after the style transfer step, for each video, a new caption is generated in the same style but with updated content (a
generated pair Pgen)



Figure 13: Qualitative evaluation of text-video retrieval on the MSR-VTT. Retrieval examples for the proposed In-Style
Model and zero-shot BLIP model. Each box shows the top-3 retrieved videos for a given text query. The correct video is
highlighted with a green color.



Figure 14: Qualitative evaluation of text-video retrieval on the YouCook2. Retrieval examples for the proposed In-Style
Model and zero-shot BLIP model. Each box shows the top-3 retrieved videos for a given text query. The correct video is
highlighted with a green color.



Figure 15: Qualitative evaluation of text-video retrieval on the DiDeMo. Retrieval examples for the proposed In-Style
Model and zero-shot BLIP model. Each box shows the top-3 retrieved videos for a given text query. The correct video is
highlighted with a green color.



Figure 16: Qualitative evaluation of text-video retrieval on the MSVD. Retrieval examples for the proposed In-Style
Model and zero-shot BLIP model. Each box shows the top-3 retrieved videos for a given text query. The correct video is
highlighted with a green color.



Figure 17: Qualitative evaluation of text-video retrieval on the LSMDC. Retrieval examples for the proposed In-Style
Model and zero-shot BLIP model. Each box shows the top-3 retrieved videos for a given text query. The correct video is
highlighted with a green color.


