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Abstract

Self-supervised learning on large-scale multi-modal
datasets allows learning semantically meaningful embed-
dings in a joint multi-modal representation space without
relying on human annotations. These joint embeddings en-
able zero-shot cross-modal tasks like retrieval and classifi-
cation. However, these methods often struggle to general-
ize well on out-of-domain data as they ignore the semantic
structure present in modality-specific embeddings. In this
context, we propose a novel Semantic-Structure-Preserving
Consistency approach to improve generalizability by pre-
serving the modality-specific relationships in the joint em-
bedding space. To capture modality-specific semantic re-
lationships between samples, we propose to learn multi-
ple anchors and represent the multifaceted relationship be-
tween samples with respect to their relationship with these
anchors. To assign multiple anchors to each sample, we
propose a novel Multi-Assignment Sinkhorn-Knopp algo-
rithm. Our experimentation demonstrates that our pro-
posed approach learns semantically meaningful anchors in
a self-supervised manner. Furthermore, our evaluation on
MSR-VTT and YouCook2 datasets demonstrates that our
proposed multi-anchor assignment based solution achieves
state-of-the-art performance and generalizes to both in-
and out-of-domain datasets. Code: https://github.
com/Swetha5/Multi_Sinkhorn_Knopp

1. Introduction

Humans often rely on multiple sensory inputs to have a
better understanding of everyday events. Most commonly,
we utilize vision, audio, and language to perceive an event
as they provide complementary information for robust rea-
soning. The closest approximation of this setup is video
data as it provides both visual and audio information along
with a text description as a caption. Recently, researchers
have started to explore learning meaningful representations

by leveraging multiple modalities to train efficient mod-
els at scale [5, 11, 42]. Such systems focus on repre-
sentation learning that either improves features for each
modality separately [5] or learns a joint multi-modal em-
bedding [11, 42] space that enables various zero-shot tasks
like retrieval or classification. However, given the inher-
ent differences across the modalities, it is challenging to
learn effective joint embeddings. Furthermore, the real-
world data presents additional challenges like misalignment
between modalities, leading to weak supervision.

Current pre-training approaches in this area usually em-
ploy a contrastive objective [33] to learn the joint embed-
dings that pulls the cross-modal embeddings of a sample
from the same temporal instance closer and pushes embed-
dings of other samples farther. Despite promising perfor-
mances, these methods struggle with generalizability. This
is particularly evident in previous approaches trained on
HT100M [11, 42], which do well on the closely related
downstream dataset YouCook2 but struggle to improve on
the MSR-VTT dataset, which exhibits a relatively larger do-
main shift with respect to HT100M [42]. This is due to
the contrastive objective’s emphasis on strict alignment be-
tween modalities in the joint embedding space while ignor-
ing the inherent weak alignment between different modali-
ties [45], as well as the underlying semantic structure across
samples [43, 50]. Recent works have tackled these issues,
either by using joint multi-modal clustering [11] to pre-
serve the semantic structure in the joint embedding space
or by incorporating a reconstruction objective [11, 25] to re-
tain modality-specific features in the joint embedding space,
allowing for weak multi-modal alignment. However, the
usual reconstruction objective trivially tries to retain most
modality-specific features in the joint space, thus prevent-
ing the learning of optimal features for cross-modal tasks.
And the multi-modal clustering approaches perform hard-
clustering making it less flexible. Therefore, the limitations
of the contrastive objective cannot be adequately addressed
even after combining these independent objectives.

To address this, we propose a semantic-structure-
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preserving consistency loss (SSPC) to only retain infor-
mation that is beneficial for both cross-modal embedding
learning and retaining modality-specific semantic structure.
In particular, for SSPC loss we consider each sample (e.g.,
a video clip) to be composed of multiple concepts: scene
or objects involved in the downstream task. Therefore, the
relationship between samples is multifaceted, representing
both shared and unique concepts across samples. To cap-
ture this multifaceted relationship in a flexible manner, we
propose to learn anchors (latent codes) and model the re-
lationship between samples with respect to their relation-
ships with these anchors. Therefore, these anchors act as
a proxy to represent the modality-specific relationships be-
tween samples (semantic structure) which can be preserved
using the proposed SSPC loss. Since we have no supervision
to learn these anchors, we formulate this anchor learning
problem as a many-to-many assignment problem, as mod-
eling this multifaceted relationship simultaneously involves
assigning multiple anchors to one sample and multiple sam-
ples to one anchor. Although there is a vast literature on
solving the many-to-one assignment problem [9, 5, 38, 48],
there is no efficient way to solve this many-to-many assign-
ment problem.

To this end, we propose a novel Multi-Assignment
Sinkhorn-Knopp (Multi-SK) algorithm that iteratively op-
timizes the many-to-many anchor assignments for both
the modality-specific embeddings (in input space) and
modality-agnostic multi-modal embeddings (in joint em-
bedding space). To allow for weak alignment between
modalities, we select the dominant anchors for each sample
to represent the relationship between different samples. Our
proposed SSPC loss enforces consistency between the dom-
inant anchor assignments at the input and joint embedding
spaces to preserve the modality-specific semantic structure.
To demonstrate the effectiveness of our proposed solution,
we train our model on HT100M dataset and test on 6 zero-
shot tasks on multiple downstream datasets and observe that
our approach leads to state-of-the-art results in all settings.

In summary, we make the following contributions: (i)
We propose a flexible modality-specific semantic-structure-
preserving approach to improve the generalizability of
cross-modal features. (ii) We introduce Multi-Assignment
Sinkhorn-Knopp, a novel algorithm to enable multiple as-
signments for flexible sample relationship modeling. (iii)
Our proposed method outperforms the current state-of-the-
art for multi-modal self-supervised representation learning
on both in- and out-of domain datasets.

2. Related Work
2.1. Multi-Modal Learning

With the availability of large-scale multi-modal
datasets [31, 41, 7], multi-modal learning research has
received a lot of attention. It comprises of vision-language

learning [35, 51], vision-audio learning [2, 4, 6, 12, 46],
video-audio-language learning [39, 11, 42], zero-shot
learning [21, 28], cross-modal generation [37, 53, 27] and
multi-modal multi-task learning [22]. Miech et al. [31]
proposed a large-scale multi-modal dataset consisting of
video, audio and text by collecting instructional videos
from YouTube without requiring any human annotations.
Note that the text is generated from audio using Automatic
Speech Recognition (ASR) and has noisy alignment
between the text and video. They also proposed a multi-
modal system to demonstrate the potential for learning
video-text embedding via contrastive loss. To handle the
noise in the dataset, Amrani et al. [3] proposed a noise
estimation for multi-modal data via multi-modal density
estimation. A noise-contrastive estimation approach in a
multi-instance learning framework was proposed by Miech
et al. [29]. XDC [2] performs clustering on audio-video for
learning better features for each modality separately. These
works utilize only two modalities for multi-modal learning,
while others have explored utilizing audio, video, and text
together for multi-modal learning. Multi-Modal versatile
networks [1] was proposed to learn different embedding
spaces for each combination of modalities. AVLNet [39]
proposed to learn a shared embedding that maps all
modalities to a single joint embedding space. Following
this, MCN [11] proposed to perform joint clustering and
reconstruction to learn joint embedding space. Note that,
[11] performs multi-modal K-means clustering to learn
hard semantic clusters. Unlike strict assignment in [11],
we propose flexible learning with multiple assignments
and separately for each modality. More recently, EAO [42]
utilizes transformers and combinatorial fusion of modalities
to learn the joint embedding with contrastive loss.

Most of these works, utilize contrastive or clustering loss
over fused multi-modal representation to learn the joint em-
bedding space. By doing so, these models do not retain the
modality-specific semantic structuring between samples en-
coded by the pre-trained modality specific backbones, hurt-
ing the generalization ability of the model. Additionally, re-
cent works have reported that large-scale contrastive multi-
modal models (e.g., CLIP [36]) are somewhat robust to dis-
tributional shifts mainly due to diverse large-scale training
data and prompt-engineering [15]. Therefore, our work fo-
cuses on making the pre-training objective robust to distri-
butional shifts. In this context, we propose a novel approach
to preserve the modality-specific semantic relationships in
the joint embedding space by modeling the relationship be-
tween samples w.r.t learnable anchors. To enable flexible re-
lationship modeling between samples, we learn multiple an-
chor assignments per sample, where anchors shared across
samples model the commonality between them, and the dis-
tinct anchors between samples highlight the uniqueness of
the samples.
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Figure 1: Overview of the proposed model. Given weakly aligned text, video, and audio, we first extract features using frozen modality-
specific backbones. These features are then passed through a token projection layer to obtain input features (v, t,a) specific to each
modality. Next, the modality-specific transformer models project the input features into a joint multi-modal representation space (v̂, t̂, â).
The similarity between the input features (v, t,a) and input space anchors (Zv,Zt,Za) (projected features (v̂, t̂, â) and projected space
anchors(Ẑv, Ẑt, Ẑa)) is computed, and our Multi-SK algorithm (M(.)) is used to optimize multiple anchor assignments per sample, as
shown in the Input Space Assignments (Projected Space Assignments). We do this for each modality and enforce the respective consistency
losses, but in this figure we only show modality-specific consistency loss for text anchors and cross-modal consistency between text and
video modalities for brevity. LN, MHSA represents LayerNorm and Multi-Head Self-Attention.

2.2. Sinkhorn-Knopp

Recently, Sinkhorn-Knopp algorithm [44] has drawn
huge attention because of its effectiveness in solving
optimal-transport problems [23, 8]. Specifically, [13] pro-
posed an entropic relaxation of the optimal transport prob-
lem which can be efficiently solved using Sinkhorn’s matrix
scaling algorithm. Many following works have since suc-
cessfully utilized the Sinkhorn-Knopp algorithm to solve
different label assignment problems framed as an optimal
transport problems. For instance, SeLa [48] cast the unsu-
pervised clustering problem as a pseudo-label assignment
problem and used the Sinkhorn-Knopp algorithm to solve it.
SeLaVi [5] extended this idea to self-supervised representa-
tion learning for multi-modal data where the cluster assign-
ments between different modalities are swapped to encour-
age modality invariant representation learning. Similarly,
SwAV [9] used the Sinkhorn-Knopp algorithm for self-
supervised representation learning and proposed to swap
the pseudo-labels for differently augmented versions of a
sample and use soft assignments instead of hard pseudo-
labels. In contrast to these works, SuperGlue [40] used
the Sinkhorn-Knopp algorithm to solve the correspondence

problem between two sets of local features. Moreover,
Sinkhorn-Knopp has been used in detection problems [17],
where it was used to match the anchors with ground truths.
Recently, UNO [16], and TRSSL [38] have successfully
used the Sinkhorn-Knopp algorithm in solving novel class
discovery and open-world semi-supervised learning prob-
lems, respectively. One key limitation of the traditional
Sinkhorn-Knopp algorithm is that it cannot be directly uti-
lized to compute multiple assignments necessary to per-
form multi-anchor based learning i.e. many-to-many assign-
ments.

Some prior works [18, 26] have attempted to solve
many-to-many assignments in indirect ways. While authors
of [18] use an intermediate graph to match groups of ver-
tices from source to target graph, which can only perform
group-to-group assignments and is inadequate for our prob-
lem that requires true many-to-many matching. [26] modi-
fies the Sinkhorn-Knopp row and column constraints to ob-
tain many-to-many assignment to model dense correspon-
dences, however, we have found this approach to be inferior
in solving the multiple anchor assignment problem. The
modified Sinkhorn-Knopp constraints approach yields sub-
optimal results, as discussed in Sec. 4.4. To address these



limitations, we propose a novel algorithm Multi-SK, which
outperforms the modified Sinkhorn-Knopp constraints ap-
proach to get true many-to-many assignments.

3. Method

Given a set of multi-modal inputs {t(i),v(i),a(i)}Ni=1

from N video clips, we learn modality-specific projec-
tion functions ft, fv, fa, that transform t,v,a into a d-
dimensional joint embedding space, Rd, to obtain t̂, v̂, â
respectively. Our goal is to optimize the parameters of
ft, fv, fa in such a way that they maintain the semantic
structure amongst samples from a particular modality in the
joint embedding space, as discussed in Sec 3.1, and simulta-
neously brings the semantically related cross-modal inputs
closer. In the following, first, we formulate our approach to
modeling the relationship between samples using anchors
in Sec 3.1, then in Sec 3.2, we discuss our novel Multi-SK
algorithm to learn these anchors for representing sample re-
lationships, and finally, we present the overall training ob-
jective to train the model in Sec 3.3.

3.1. Modeling Sample Relationships with Anchors

Our work aims to preserve the relationship between sam-
ples i.e. x(i),x(j) from a particular modality, to better gen-
eralize on the unseen data. To this end, we propose to model
the relationship between samples using anchors, where the
similarity of each sample w.r.t. anchors encodes the se-
mantic structure of the feature space. Unlike clustering ap-
proaches, which involve hard-assignment to a specific clus-
ter, our approach offers flexibility i.e., there can be shared
and unique anchors across samples that define the relation-
ship between them. To be particular, for each sample, we
learn K anchors, and the similarity of assignments over
these anchors represents the relationship (which we want
to preserve) between samples from a particular modality.

As the pre-trained features extracted from modality-
specific backbones encode the semantic structure between
samples within that particular modality, preserving such
modality-specific relationships in the joint embedding space
would boost the generalizability of the model. To achieve
this, we define two sets of K learnable anchors z =
{z(i)}Ki=1, and ẑ = {ẑ(i)}Ki=1 to model the sample relation-
ships before and after projecting them to the joint embed-
ding space respectively. We repeat this for all the modal-
ities, t, v, a. We propose to preserve the modality-specific
semantic structure at the joint embedding space by enforc-
ing consistency in anchor assignments before and after per-
forming feature projections (Eq. 3).

We still have one remaining challenge, i.e. how to
learn/discover these anchors in an unsupervised manner. To
this end, we cast the anchor discovery as a label assign-
ment task with a uniform prior, i.e. each anchor will have
an equal number of sample assignments. Additionally, to

encourage flexible modeling, we enforce multiple anchor
assignments per sample. However, it is difficult to estimate
the exact number of anchors for each sample without ad-
ditional prior information, thus we select the top K ′ an-
chors for each sample to effectively model the sample re-
lationships. Even though this optimization task may seem
like a difficult combinatorial problem, we model this com-
binatorial optimization task as an optimal transport prob-
lem. Following recent works [5, 9], one might assume the
Sinkhorn-Knopp algorithm is a natural choice to solve this
problem, however, the vanilla Sinkhorn-Knopp algorithm
cannot handle multiple assignments per sample i.e. many-
to-many assignment. To address this limitation, we propose
Multi-Assignment Sinkhorn-Knopp algorithm, presented in
the following.

3.2. Multi-Assignment Sinkhorn-Knopp

Given a sample matrix B s.t. B ∈ RN×d, represent-
ing N samples and an anchor matrix Z s.t. Z ∈ RK×d,
of K anchor vectors, we obtain the similarity matrix S s.t.
S = BZ⊺ and S ∈ RN×K , where, Sij is the probability of
assigning jth anchor to the ith sample vector. The goal is to
find an anchor assignment matrix, Q, such that it satisfies
the following constraints: (i) a sample should be assigned to
exactly K ′ anchors, to learn top K ′ anchor assignments per
sample. (ii) anchor assignments must be equally partitioned
i.,e each anchor must be selected exactly N ×K ′/K times,
for uniform anchor assignment.

To obtain such multiple anchor assignments per sample,
we propose to create a substitute 3D assignment matrix Q′

s.t. Q′ ∈ RK×N×K . We also generate a 3D similarity
matrix S′ from the 2D similarity matrix S by introducing K
channels (depth dimension) to get K ×N ×K matrix such
that each channel is a scaled matrix of S with a predefined
ranking between the channels enabling top K ′ anchor se-
lection. Since we are only interested in selecting the top K ′

anchors, we set the first K ′ channels of S′ to be the same as
S. The remaining K −K ′ channels are set to µS. Here, µ
is a damping factor s.t. 0 < µ < 1, to help select the top K ′

anchors for each sample. We discuss alternate designs for
S′ generation in the Supplementary Sec. 2.

The optimization objective of Multi-Assignment
Sinkhorn-Knopp is to find an assignment matrix Q′ such
that it satisfies our multi-anchor assignment constraints
while maximizing similarity with the initial assign-
ment/similarity matrix, S′. This optimization problem is
defined as:

Q∗ : max
Q′

< Q′,S′ > + ϵH(Q′)

H(Q∗) = −
∑

Q′
ijk logQ

′
ijk

(1)

Q∗ needs to satisfy the following constraints to be a valid
solution for our multi-anchor assignment problem.

• Q∗ Row Constraint: Within a channel, the sum of all el-



ements in a particular row must be equal to one. This is
because we only want one anchor assignment for a sam-
ple in a particular channel. ∀i, k

∑
j Q

∗
ijk = 1

• Q∗ Column Constraint: In a channel, the sum of all el-
ements in a column should be equal to N/K. This con-
straint enforces equal partitioning of anchor assignments.
∀j, k

∑
i Q

∗
ijk = N/K.

• Q∗ Depth constraint: Depth-wise sum should be equal to
one for every sample and anchor combination. This con-
straint prevents selecting the same anchor across different
channels. ∀i, j

∑
k Q

∗
ijk = 1.

The traditional Sinkhorn-Knopp method uses an iterative
matrix scaling algorithm that scales the rows and columns
alternatively (with desired constraints) till the desired as-
signment matrix is obtained. We employ a similar scheme
and extend the iterative scaling to the depth dimension for
estimating Q∗. We iteratively scale the rows, columns, and
channels (depth dimension) till convergence. The final 2D
assignment matrix Q is computed by performing a depth-
wise sum on the top K ′ channels. We provide Pytorch-style
pseudo-code for our Multi-Assignment Sinkhorn-Knop al-
gorithm in the Supplementary Sec 3.

3.3. Training Objective

Semantic Structure Preserving Consistency Loss. To
preserve the semantic structure of each modality, t, v, a,
we apply consistency loss to enforce similar anchor assign-
ments between input and joint embedding space. As the
cross-modal contrastive loss in the joint embedding space
tries to bring different modalities together, features in the
joint embedding space from a particular modality should
preserve the common anchors that exist in corresponding
features from the other modalities. Therefore, we also ap-
ply cross-modal anchor consistency across all modalities as
shown in Eq. 3. Since we are dealing with 3 input modal-
ities, this cross-modal consistency results in 9 consistency
constraints.

Let’s denote L(t, v̂, zt, ẑt) as the consistency loss be-
tween text anchor assignment in the input space and the tex-
tual anchor assignment of the corresponding video features
at the joint embedding space as shown below in Eq. 2:

L(t, v̂, zt, ẑt) = αt,v̂g(sim(t, zt),M(sim(v̂, ẑt)))

+βt,v̂g(sim(v̂, ẑt)),M(sim(t, zt))),
(2)

Here, zt, ẑt respectively represent input and output learn-
able anchor vectors for the text modality. g(.), and
M(.) respectively represent binary cross-entropy-with-
logits loss and Multi-Assignment Sinkhorn-Knopp (dis-
cussed in Sec. 3.2), α and β represents loss coefficients,
and sim(a,b) = exp(a.b/τ∥a∥∥b∥), τ is the temperature
hyperparameter of the similarity metric.
Overall semantic structure preserving consistency loss for
all the modalities is defined as:

Lsspc =
∑

m∈{t,v,a}

∑
n∈{t,v,a}

L(m, n̂, zm, ẑm). (3)

Contrastive Loss. Following [11, 42], we also use
contrastive loss to bring cross-modal embeddings of the
same sample closer while pushing away embeddings from
other sample. For this, we use 3 pairwise single-
modality constrastive losses, Lnce tv,Lnce ta,Lnce va be-
tween (t, v), (t, a), (v, a) respectively. Specifically, we use
Noise Contrastive Estimation [33] with temperature κ as
shown in Eq. 4.

Lnce xy = − log
exp(x⊺y/κ)∑N

i=1 exp(x
(i)⊺y(i)/κ)

(4)

The overall contrastive loss for all modalities is defined
as Lnce = λtvLnce tv + λtaLnce ta + λvaLnce va

Overall Loss
The overall training objective is a combination of SSPC

loss (Eq. 3) and contrastive loss (4):Lf = λsspcLsspc +
λnceLnce, where, λsspc and λnce are loss coefficients. By
combining both losses, the model learns a more generic
joint embedding space which preserves the modality-
specific semantic structure by enforcing the anchor assign-
ment similarity before and after feature projection and also
brings representations of different modalities together by
utilizing contrastive loss.

4. Experiments
4.1. Experimental Setup

Backbones. For comparability, we follow the same setup
of previous works [31, 39, 11, 42]. As visual back-
bone, we use a combination of 2D features from ResNet-
152 [20] pretrained on Imagenet [14], and 3D features from
ResNeXt101 [19] pretrained on Kinetics [10]. The text
backbone is GoogleNews pretrained Word2vec model [32].
These backbones are fixed and not finetuned during train-
ing. Following [11, 42], we use a trainable CNN with resid-
ual layers as an audio backbone. We provide additional de-
tails in the Supplementary Sec. 5.
Data Sampling. We use a batch of 216 videos and ran-
domly sample ten 8-second clips per video. If the sam-
pled clip contains narration (95% clips), we use ASR time
stamps to select clip borders. To disentangle high text-audio
correlation in HT100M, we shift the audio clip randomly by
4 seconds with respect to the video and text boundaries.
Projections. Following [42, 11, 39], we use a gated lin-
ear projection [30] to project features into common token
space, as well as to project resulting tokens into shared em-
bedding space. We set the dimension of the common token
space to 4096 and of the shared embedding space to 6144.



Method
Retrieval Train Visual Trainable BB MSR-VTT YouCook2

Dataset BB t v a R@5↑ R@10↑ MedR↓ MeanR↓ R@5↑ R@10↑ MedR↓ MeanR↓

ActBERT [54] t → v HT100M Res3D+Faster R-CNN 23.4 33.1 36 - 26.7 38.0 19 -
SupportSet [34] t → v HT100M R152 + R(2+1)D-34 ✓ 23.0 31.1 31 - - - - -
HT100M [31] t → v HT100M R152 + RX101 21.2 29.6 38 - 17.3 24.8 46 -
AVLNet [39] t → v HT100M R152 + RX101 ✓ 24.7 34.2 - - 21.1 29.6 - -

EAO [42] t → v HT100M R152 + RX101 ✓ 24.6 35.3 25 90.4 27.9 38.9 19 119.6
Ours t → v HT100M R152 + RX101 ✓ 26.4 35.1 23 92.2 29.4 40.7 18 111.8

AVLNet [39] v → t HT100M R152 + RX101 ✓ 27.2 35.7 25 86.5 22.8 32.9 30 142.2
EAO [42] v → t HT100M R152 + RX101 ✓ 27.6 36.6 25 85 31.8 70.5 15 91.9

Ours v → t HT100M R152 + RX101 ✓ 27.2 37.1 23 84.5 32 72 15 85.2

AVLNet [39] t → v + a HT100M R152 + RX101 ✓ 19.2 27.4 47 - 36.1 44.3 16 -
MCN [11] t → v + a HT100M R152 + RX101 ✓ 25.2 33.8 - - 35.5 45.2 - -
EAO [42] t → v + a HT100M R152 + RX101 ✓ 23.3 33.2 29 94.8 38.5 49.2 11 82.7

Ours t → v + a HT100M R152 + RX101 ✓ 25.1 34.5 26 91.8 39.4 50.1 10 83.3

AVLNet [39] v + a → t HT100M R152 + RX101 ✓ 19 26.3 44 128.1 48.8 58.4 6 67.1
EAO [42] v + a → t HT100M R152 + RX101 ✓ 21.8 31.4 28.5 98.9 49 60.9 6 43.8

Ours v + a → t HT100M R152 + RX101 ✓ 24 32 27 95.9 48.8 61.3 6 43.5

Table 1: Zero-shot Retrieval results on MSR-VTT/YouCook2. For fair comparison, we compare with models trained on text, video and
audio. Retrieval column represents the evaluation task. BB=Backbone. Bold, underline represent highest and second-highest scores.

We use a single transformer block with hidden size of 4096
with 64 heads and an MLP size of 4096. We set the number
of anchors K as 64 and K ′ as 32 with damping factor µ
as 0.25. We train all models for 15 epochs using an Adam
optimizer [24] with a learning rate of 5e-5, exponential de-
cay of 0.9 and the temperature of cosine similarity (τ) as
0.1. We maintain a memory-bank of size 5500 while per-
forming Multi-SK. Following [1, 42], we set higher weight
for loss terms that involve text-video in Eq. 3, i.e., for all
text-video terms the weight is set to 1.0 and the rest of the
weights are set to 0.1.

4.2. Datasets, Tasks, Metrics

Pretraining Dataset. We train our model on the HT100M
dataset [31], which contains over 1 million instructional
videos with automatically generated text narrations. The
text narrations can be assumed to be noisy and to not al-
ways describe the video scene.
Zero-shot Retrieval. We use MSR-VTT [47] and
YouCook2 [52] datasets to evaluate the zero-shot retrieval
capability of our model. We report performance on 4 re-
trieval tasks: (i) Text-to-Video retrieval, (ii) Video-to-Text
retrieval, (iii) Text-to-Video-Audio retrieval, (iv) Video-
Audio-to-Text retrieval. The YouCook2 dataset contains
cooking videos from YouTube with human-annotated clips
(∼ 2 - 200 secs). For evaluation we use at maximum first 48
seconds of clip, since most clips are shorter than that. The
MSR-VTT dataset contains human-annotated clips (∼ 10 -
30 secs) on various topics and provides captions with nat-
ural language sentences. Following [31, 39, 11, 42], to
evaluate our model on MSR-VTT, we use the 1k set of
test clips [49], and for YouCook2, we use 3,350 validation
clips [31]. To perform (t → v + a) retrieval, we com-
pute similarities by dot product between a text query t and
all videos in the dataset using a averaged v + a representa-

tion for each video. We report standard recall metrics R@5,
R@10, median rank (MedR) and the mean rank(MeanR).
Further, we also evaluate our model using CLIP backbone
and report results in Sec. 1 of the Supplementary.
Zero-Shot Full-Video Retrieval. Following [11], we eval-
uate Zero-Shot Full Video Retrieval from a set of captions
on YouCook2 dataset. We report recall metrics following
Caption averaging method [11]that finds maximal predic-
tion over all the clips of video for each caption and averag-
ing over set of captions in query leading to a single predic-
tion for full video.
Text-to-video Retrieval after Fine-tuning. We addition-
ally evaluate the retrieval performance of the models fine-
tuned on downstream tasks. We use 6783 clips from MSR-
VTT (which contain audio) and 9586 clips from YouCook2
train datasets to fine-tune the model as proposed by [39].

We also evaluate our model for Zero-shot Classification
and report additional results in Sec. 1 of the Supplementary.

4.3. Comparison with State-of-the-art

Zero-shot Retrieval Tasks. In Tab. 1, we report the perfor-
mance of the learned multi-modal representations on four
zero-shot retrieval tasks, (i) Text-to-Video, (ii) Video-to-
Text, (iii) Text-to-Video-Audio, (iv) Video-Audio-to-Text.,
on MSR-VTT and YouCook2 datasets. For a fair compar-
ison, we only compare with models trained on all three
modalities i.e. text, video and audio. In summary, our pro-
posed method outperforms the current state-of-the-art meth-
ods by a noticeable margin on both the datasets. The results
on the MSR-VTT dataset are particularly interesting since
it demonstrates the generalizability of our model. In par-
ticular, HT100M consists of instructional videos and the
textual descriptions are generated from audio using ASR.
The text narration has noisy alignment with video and typ-
ically describes the steps in the video. YouCook2 shares



Method
Retrieval Train Visual Trainable BB MSR-VTT YouCook2

Dataset BB t v a R@5↑ R@10↑ MedR↓ MeanR↓ R@5↑ R@10↑ MedR↓ MeanR↓

AVLNet [39] t → v HT100M R152 + RX101 ✓ 42.2 56.2 7 35.1 23.7 32.7 28 122.6
EAO [42] t → v HT100M R152 + RX101 ✓ 47.7 59.3 6 35.6 33.9 45.8 13 70.7

Ours t → v HT100M R152 + RX101 ✓ 48.7 60.6 5 33.1 35.6 48.1 12 64.9

Table 2: Text-to-video retrieval results on MSR-VTT/YouCook2 in the fine-tune setting. For fair comparison, we compare with models
trained on all 3 modalities i.e. text, video and audio. Bold, underline represent best and second-best scores.

Method Aggregation R@1↑ R@5↑ R@10↑

Random - 0.23 1.15 2.32
HT100M [31] Caption Avg. 43.1 68.6 79.1
MIL-NCE [29] Caption Avg. 46.6 74.3 83.7

MCN [11] Caption Avg. 53.4 75.0 81.4
EAO [42] Caption Avg. 62.9 80.5 86.7

Ours Caption Avg. 65.1 83.2 87.6

Table 3: Zero-Shot Text-to-Full Video retrieval on YouCook2. Av-
eraging across captions is used to obtain video-level predictions.

domain similarity with HT100M as its videos are instruc-
tional format, and the text descriptions corresponds to spe-
cific steps in the recipe. In contrast, MSR-VTT is not re-
stricted to instructional videos and the text is typically a
single sentence caption describing the whole video. As a
result, there is a distributional shift between HT100M and
MSR-VTT. Therefore, zero-shot retrieval on MSR-VTT has
to overcome distributional shift, which is a crucial require-
ment for practical deployment. Our proposed method shows
relatively higher improvement on this task validating the ef-
fectiveness of anchor-based learning.

In case of text-to-video-audio retrieval, our method im-
proves the Median and Mean rank of the baseline [42] by
3% on MSR-VTT along with gains on recall metrics R@5
and R@10. For video-audio-to-text retrieval, our methods
performs very well on MSR-VTT with 3% improvement on
MeanR, 2.2% improvement on R@5. We also observe sim-
ilar improvements on the YouCook2 dataset. Similarly, our
proposed method outperforms the current state-of-the-art
on most of the metrics for text-video-retrieval video-text-
retrieval. Additionally, to compare our approach with text-
video only model, we train our model on video and text to
compare the performance with state-of-the-art in Sec 1 of
the Supplementary.
Zero-shot Full Video Retrieval. In Tab. 3, we report re-
sults for text-to-full-video retrieval task. Our approach out-
performs prior works by 2.2%, 2.7% on R@1 an R@5 re-
spectively.
Retrieval after Fine-tuning. We also evaluate the retrieval
performance of our model after fine-tuning on the down-
stream datasets as shown in Tab. 2. For a fair compari-
son, we only report the baselines that use the same train-
ing split.We outperform state-of-the-art consistently on all
the metrics and on both MSR-VTT & YouCook2 datasets

as shown in Tab. 2.

4.4. Ablation Studies

First we analyze the impact of the proposed components
and report results in Tab. 4, followed be effect of number of
anchors (K) & (K ′) in Tab. 5.

Method
MSR-VTT YouCook2

R@5↑ R@10↑ R@5↑ R@10↑

Recon. + CL 23.1 32.4 37.8 48.7
w/o CM SSPCL 22.7 31.8 36.9 48.3
w/o SSPCL 23.8 33.3 37.9 48.8
Modified SK 23.4 31.3 37.9 48.3
Ours 25.1 34.5 39.4 50.1

Table 4: Ablation studies showing the impact of various com-
ponents for zero-shot retrieval task. Recon.=Reconstruction
Loss, CM SSPCL=Cross-Modal SSPC Loss, SK=Sinkhorn-Knopp,
CL=Contrastive Loss.

Effect of Proposed Components. We report the results
for this ablation in Tab. 4. In first row, we report results us-
ing reconstruction loss and contrastive loss, we notice that
using reconstruction loss reduces the performance by 2% on
all metrics indicating the effectiveness of the proposed SSPC
loss. In the second row, we report results without our pro-
posed cross-modal SSPC loss (‘w/o CM SSPC’). We employ
this loss to bring the cross-modal representations closer in
the joint embedding space to obtain better performance in
zero-shot cross-modal tasks. We notice that removing the
cross-modal SSPC loss drastically decreases the zero-shot
retrieval performance on both MSR-VTT and YouCook2
datasets, 2.4% and 2.5% drop in R@5 performance respec-
tively. This empirically validates the effectiveness of the
cross-modal SSPC loss in obtaining better cross-modal rep-
resentations.

In the third row, we analyze the effect of the proposed
SSPC loss (‘w/o SSPCL’). We apply the SSPC loss to
retain modality-specific semantic structure from the pre-
trained models in the joint embedding space. To inves-
tigate its impact, we remove the anchor consistency be-
tween the modality-specific and joint embedding spaces.
Instead, we enforce the anchor assignments before Multi-
SK to be consistent with the Multi-SK optimized anchor as-



(a) UMeazzCYlps (Holidays and Traditions) (b) fdUgKk-G5Tw (Food and Entertaining)

(c) Video Anchor Assignments

(d) A0hURqF7h-c (Personal Care and Style) (e) Y5lyX3KJoE (Finance and Business)

(f) Video anchors Assignments

Figure 2: Anchor assignments illustrated in this figure demonstrate the visual similarity between video samples from two related categories
i.e. (a) Holidays and Tradition and (b) Food and Entertaining; and two different categories i.e. (d) Personal Care ans Style and (e) Finance
and Business within the HowTo100M dataset. The visual similarity is also reflected in video anchor assignments (c) as most assigned
anchors are similar with minor differences in assignments, thereby showcasing the flexibility and effectiveness of our approach. (d), (e)
samples look very different and therefore the anchor assignments are also very different as shown in (f). Green cell → Anchor assigned,
Yellow → Anchor not assigned. Difference in anchor assignments indicated in red .

K K′ MSR-VTT YouCook2

R@5↑ R@10↑ R@5↑ R@10↑

16 8 23.1 32 37.1 47.5
32 16 23.2 32.1 36.1 47.6

64 16 23.3 31.8 36.7 47.2
64 48 23.7 32.1 36.7 47.7

64(Ours) 32 25.1 34.5 39.4 50.1

Table 5: Effect of different # of anchors on zero-shot retrieval.
K → # of anchors and K′ → # of selected anchors, respectively.

signments from the same embedding space. We also apply
the cross-modal SSPC loss to only isolate the impact of the
proposed SSPC loss across feature projections. We observe
that removing the anchor consistency between the modality-
specific and joint embedding spaces reduces the zero-shot
retrieval performance by a significant margin (∼ 1.5% drop
in R@5 performance), indicating the importance of SSPC
loss in maintaining modality-specific semantic structure in
the joint embedding space for better performance.

Finally, in the fourth row of Tab. 4, we analyse the ef-
fectiveness of the proposed Multi-Assignment Sinkhorn-
Knopp algorithm. To this end, we modify the vanilla
Sinkhorn-Knopp [13] to obtain multiple anchor assign-
ments per sample (refer to Sec. 5 of the Supplementary

for details). We notice that the modified Sinkhorn-Knopp
does not perform well with a drop in performance (∼ 1.6%
drop in R@5) on both MSR-VTT and YouCook2 datasets
on all the metrics indicating the significance of our proposed
MULTI-SK algorithm.

Effect of Number of Anchors. To analyze the effect of
the number of anchors, we conduct experiments with differ-
ent number of anchors, K, and different number of selected
anchors, K ′. We report the results in Tab. 5. We conduct
experiments on both MSR-VTT and YouCook2 datasets.
From the top half of Tab. 5, we observe that the performance
of our proposed method improves with the increasing num-
ber of anchors. This is to be expected since a higher num-
ber of anchors have a higher representation learning capac-
ity. We also observe that the method performs reasonably
well even with a very small number of anchors showing the
general effectiveness of our proposed solution. We notice
that the performance of the proposed method improves as
we select more anchors as shown in bottom half of Tab. 5.
However, selecting a very large number of anchors (48 out
of 64 for this experiment) adds more constraints leading to
poor performance.

4.5. Qualitative Analysis

Here, first we present a fine-grained visual analysis of the
learned anchors, followed by qualitative retrieval results.



“Animated comic scene of
guy cutting up food for
dinner” Match

“a woman holding a rib-
bon” Match

“mix ingredients refriger-
ate” Match

“add mutton pan” Match

Ours EAO [42]

Figure 3: Examples of Zero-Shot Text-to-Video Retrieval on MSR-VTT and YouCook2 datasets. Each row consists of
Textual Query (left), and top-3 retrieved videos for our method (center) and the state-of-the-art method EAO [42](right).
Match indicates correct video for the query.

We show fine-grained analysis of the learned anchors in
Fig. 2. For the purpose of this analysis, we visualize the an-
chor assignments as binary assignments. However, during
training we use soft anchor assignments. In Fig. 2(c), we
compare the anchor assignments for samples from similar
categories. It can be seen that the videos are visually similar
even though they belong to different categories and the an-
chor assignments for these two examples are able to capture
the sample similarity. In Fig. 2(f), we compare the anchor
assignments for videos from different categories and it can
be seen that the anchor assignments are very different as ex-
pected. This further validates our claim that our proposed
method can assign semantically meaningful anchors with-
out any explicit supervision. Further, we show qualitative
retrieval comparison with EAO [42] in Fig. 3. We present
more qualitative analysis in Supplementary Sec. 4.

5. Conclusion

We proposed a novel approach that preserves the
modality-specific semantic relationship between samples in
the joint multi-modal embedding space. To this end, we
propose a flexible sample relationship modeling approach
by assigning multiple anchors to each sample, which cap-
tures both shared and unique aspects of samples. To obtain
these assignments, we develop a novel Multi-Assignment
Sinkhorn-Knopp (Multi-SK) algorithm, and also utilize the
proposed anchor consistency loss to learn these anchors.
Our qualitative results demonstrate that our learnt anchors
correspond to meaningful semantic concepts. Our extensive
experimentation demonstrates that the proposed approach
improves generalizability by outperforming state-of-the-art
methods on both in- and out-of-domain datasets. We also

show that our method achieves state-of-the-art performance
on multiple zero-shot tasks, and also outperforms when
fine-tuned on downstream datasets.
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