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Abstract

While the field of multi-modal learning keeps
growing fast, the deficiency of the standard joint
training paradigm has become clear through re-
cent studies. They attribute the sub-optimal per-
formance of the jointly trained model to the
modality competition phenomenon. Existing
works attempt to improve the jointly trained
model by modulating the training process. De-
spite their effectiveness, those methods can only
apply to late fusion models. More importantly,
the mechanism of the modality competition re-
mains unexplored. In this paper, we first pro-
pose an adaptive gradient modulation method that
can boost the performance of multi-modal models
with various fusion strategies. Extensive experi-
ments show that our method surpasses all exist-
ing modulation methods. Furthermore, to have a
quantitative understanding of the modality compe-
tition and the mechanism behind the effectiveness
of our modulation method, we introduce a novel
metric to measure the competition strength. This
metric is built on the mono-modal concept, a func-
tion that is designed to represent the competition-
less state of a modality. Through systematic in-
vestigation, our results confirm the intuition that
the modulation encourages the model to rely on
the more informative modality. In addition, we
find that the jointly trained model typically has
a preferred modality on which the competition
is weaker than other modalities. However, this
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preferred modality need not dominate others. Our
code will be available at https://github.
com/lihong2303/AGM_ICCV2023.

1. Introduction
Recent years have seen tremendous progress in deep multi-
modal learning. Despite these advances, integrating infor-
mation from multiple modalities remains challenging. Many
efforts have been made to design sophisticated fusion meth-
ods for better performance. However, adding additional
modalities only slightly improves accuracy in some multi-
modal tasks. For example, trained on the CMU-MOSEI
(Delbrouck et al., 2020) dataset, the accuracy of the text-
based single-modal model is only about 1% point lower than
that of the multi-modal model based on both text and audio
modalities. Similar phenomena have also been observed
across a wide variety of multi-modal datasets (Vielzeuf et al.,
2018; Cao et al., 2014).

Such inefficiency in exploiting and integrating information
from multiple modalities presents a great challenge to the
multi-modal learning field. It is commonly believed that
this inefficiency is a consequence of the existence of the
dominant modality, which prevents the model from fully
exploiting the other relatively weak modalities (Ma et al.,
2022; Hu et al., 2022). Recent studies (Allen-Zhu & Li,
2020; Huang et al., 2022; Han et al., 2022) theoretically
investigate the training process of late fusion models and
explain the production of the dominant modality with the
concept of modality competition. In addition to the the-
oretical studies, there is a group of empirical works that
attempts to develop methods to modulate the training of a
multi-modal model and balance the learning of different
modalities and, thus, achieve better performance. To our
best knowledge, existing modulation methods are confined
to late fusion models which greatly limits their application.
More importantly, little effort has been paid to the study of
the mechanism behind the effectiveness of those modulation
methods.

It is natural to ask Can we design a modulation method that
applies to more complex fusion strategies? and Is it possi-
ble to understand the working mechanism of modulation in
terms of modality competition? To this end, we propose an
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Figure 1. Schematic diagram of the adaptive gradient modulation (AGM) method. Firstly, based on the full input and corresponding muted
inputs, the Shapley module produces mono-modal outputs ϕm, which disentangle the responses of the multi-modal model to individual
modalities. Next, ϕm are used to compute the mono-modal cross-entropy sm that reflects the amount of information in modality m.
At last, sm and their running average ŝm are fed to the Discrepancy Ratio module to compute the modulation coefficients κm for each
modality, which in turn modulate the strength of corresponding gradient signals during back-propagation.

adaptive gradient modulation method, which utilizes a Shap-
ley value-based attribution technique, that can in principle
apply to any fusion strategy. Our approach achieves better
performance compared with the current modulation meth-
ods. Moreover, we introduce the mono-modal concept to
represent the competition-less state of a modality and build
a metric on top of it to directly measure the competition
strength of a modality in a multi-modal model. This novel
metric lay the base for us to quantitatively study the behav-
ior of modality competition and the working mechanism of
our adaptive gradient modulation method.

Our main contributions are three-fold:

1. We propose an adaptive gradient modulation method
that can boost the performance of multi-modal models
with various fusion strategies and justify its effective-
ness through extensive experiments.

2. We introduce the mono-modal concept to capture the
competition-less state of a modality and build a novel
metric to measure the modality competition strength.

3. We systematically analyze the behavior of modality
competition and study the mechanism of how our mod-
ulation method works.

2. Related work
2.1. Multi-modal learning

Multi-modal learning is a fast-growing research area. It
addresses the needs of effectively processing multi-sensory
data in real-world tasks and has applications in various fields,

such as multi-modal sentiment classification (Zadeh et al.,
2018; Cao et al., 2014), audio-visual localization (Tian et al.,
2018) and visual question answering (Antol et al., 2015;
Ilievski & Feng, 2017; Wu et al., 2021). According to the
fusion strategy, one distinguishes three types (Baltrušaitis
et al.), i.e., the late fusion, the early fusion, and the hybrid
fusion, depending on when the fusion happens at the output
stage, at the input stage, and in a complex manner, respec-
tively. From another perspective, existing models can be
divided into two categories, either jointly training different
modalities in an end-to-end fashion or exploiting pre-trained
models and building a multi-stage pipeline.

In this paper, we focus on the multi-modal joint training
models for the multi-modal classification task, and we will
compare models with different fusion strategies.

2.2. Modality-specific modulation

Recent studies (Wang et al., 2020b; Huang et al., 2022)
reveal the deficiency of the multi-modal joint training
paradigm that information on the input modalities is of-
ten under-exploited. To address this deficiency, existing
works commonly propose to intervene in the training pro-
cess. Geng et al. (2021) propose to obtain noise-free multi-
view representations with the help of uncertainty in Dy-
namic Uncertainty-Aware Networks. Wang et al. (2020a)
devise the Gradient-blending technique which addresses the
overfitting in a multi-modal model by optimally blending
modalities. Wu et al. (2022) propose to balance the speed
of learning from different modalities based on their condi-
tional utilization rates. Fujimori et al. (2020) emphasize the
heterogeneity of different network branches in joint training
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and propose to avoid overfitting through modality-specific
early stopping. Yao & Mihalcea (2022) advocates using
modality-specific learning rates for different branches in
a multi-modal model to fully explore the capacity of the
corresponding network architecture. More recently, Peng
et al. (2022) proposes to adjust the gradients of individual
modalities based on their output magnitudes. The assump-
tion is that in an ideal multi-modal model, the outputs of
individual modalities should be balanced, i.e., having simi-
lar magnitudes. Consequently, the gradient of the modality
with larger outputs will be modulated on-the-fly towards a
lower magnitude during each training iteration.

Despite the effectiveness of the above-mentioned methods,
they are all confined to late fusion models, limiting their
practical use. More importantly, the mechanism of why
those methods work to improve the multi-modal model
remains unexplored.

2.3. Mono-modal behavior

One way to investigate the mechanism underlying a multi-
modal model is to quantify how much modalities affect each
other in the model. In a recent theoretical analysis, Huang
et al. (2022) term this interaction among modalities as the
modality competition.

Due to the complexity and non-linearity of neural network
models, it is infeasible to isolate a part of the computa-
tions that account for the competition. Existing works in-
stead attempt to measure the mono-modal behavior inside a
multi-modal model, which can partly reflect the interactions
among modalities. Hessel & Lee (2020) design the empiri-
cal multimodally-additive function projection (EMAP) that
implicitly reflects the mono-modal behavior by averaging
out all other modalities. Yao & Mihalcea (2022) employ the
layer conductance (Shrikumar et al., 2018) to evaluate the
importance of individual modalities in late fusion models.
Gat et al. (2021) propose the perceptual scores to measure
the mono-modal importance directly. The key idea of their
method is the input permutation, which removes the influ-
ence of modalities other than the targeting one. What is
most related to the goal of measuring the modality com-
petition is the recently proposed SHAPE scores (Hu et al.,
2022). The authors devise a way to compute the cross-modal
cooperation strength based on the Shapley values.

It is worth noting that all the above-mentioned methods are
self-oriented in the sense that they only utilized the multi-
modal model, where competition already presents. The lack
of information about how each modality behaves without
competition prevents those models from faithfully reflecting
the modality competition strength.

3. Method
3.1. Adaptive gradient modulation

Drawing inspiration from the Shapley value-based attribu-
tion method (Hu et al., 2022) and the On-the-fly gradient
modulation generalization enhancement (OGM-GE) algo-
rithm (Peng et al., 2022), we propose an adaptive gradient
modulation (AGM) method that modulates the level of par-
ticipation of individual modalities. Figure 1 presents the il-
lustration of the proposed AGM. Our approach is in line with
the OGM-GE algorithm in the sense that both attempt to
balance the mono-modal responses in a multi-modal model.

Nonetheless, our approach differs from the OGM-GE in the
following three important aspects: 1) We adopt a Shapley
value-related method to compute the mono-modal responses.
In this way, our approach applies to complex fusion strate-
gies rather than being limited to the late fusion case. 2)
We extend the method to calculate the discrepancy ratios so
that our approach can deal with situations with more than
two modalities. 3) In our approach, the discrepancy ratios
are modulated towards their running average rather than 1,
reflecting the distinctions among different modalities.

3.1.1. ISOLATING THE MONO-MODAL RESPONSES

The core component of our approach is the algorithm to
isolate the mono-modal responses, which enables us to fur-
ther compute the mono-modal cross entropy and the mono-
modal accuracy.

Let ϕ(x), x = (xm1 , . . . , xmk) be a multi-modal model
on the data with k modalities and M := {mi}i∈[k] be the
set of all modalities. Same as in (Hu et al., 2022) we use
zero-padding 0m to represent the absence of features of
modality m. When S is a subset of M, ϕ(S) denotes that if
m ∈ S, the component xm is substituted with 0m. Then the
mono-modal response for m is defined as

ϕm(x) =
∑

S⊆M/{m};S ̸=∅

|S|!(k − |S| − 1)!

k!
Vm(S;ϕ),

(1)
where Vm(S;ϕ) = ϕ(S ∪ {m}) − ϕ(S). Note that we
exclude the empty subset from the above summation. In this
way, we ensure the relation

ϕ(x) =
∑
m

ϕm(x). (2)

As an example, for the two-modality case Equation (1) is
simplified to

ϕm1(x) =
1

2
[ϕ({m1,m2})− ϕ({0m1 ,m2})

+ϕ({m1, 0
m2})] .

(3)
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The mono-modal cross entropy and mono-modal accuracy
are then defined subsequently,

sm = Ex∼D [− log (Softmax(ϕm(x))y)] , (4)

and
Accm = Ex∼D

[
1y=yp(x)

]
, (5)

where y is the ground-truth class of x and yp the model
prediction, yp(x) = argmaxy′∈[K] ϕ

m
y′(x).

3.1.2. MODULATING THE TRAINING PROCESS

We modulate the level of participation of individual modali-
ties through adjusting the intensity of the back-propagation
signal of each modality,

θt+1 = θt − η
∂L
∂ϕ

·
∑
m

κm
t

∂ϕm

∂θ

∣∣∣∣
t

, (6)

where t refers to a specific iteration of training, θ denotes
the trainable network parameters, η is the learning rate and
L is the loss function.

Coefficient κm
t controls the magnitude of the update signal

for modality m at iteration t. Intuitively, if a modality is too
strong (weak) we want to suppress (amplify) its update sig-
nal. The strength of a modality is measured by the averaged
differences relative to the other modalities

rmt = exp

 1

K − 1

∑
m′∈[K];m′ ̸=m

(smt − sm
′

t )

. (7)

We choose to compare different modalities based on their
mono-modal cross-entropy, since smt reflects the amount of
information attributed to modality m within the full model
outputs. Then κm

t is defined as follows

κm
t = exp (−α ∗ (rmt − τmt )), (8)

where α > 0 is a hyper-parameter that controls the degree
of modulation and τmt is the reference for modulation. Con-
sequently, when a modality is too strong (rmt > τmt ), we
lower its update signal (κm

t < 1).

In the current implementation, we choose τmt to be

τmt = exp

 1

K − 1

∑
m′∈[K];m′ ̸=m

(
ŝm(t)− ŝm

′
(t)

),

(9)
where ŝm(t) denotes the running average of mono-modal
cross-entropy at iteration t,

ŝm(t) = ŝm(t− 1) · t− 1

t
+

smt
t
. (10)

The above steps are summarized in Algorithm 1 below.

Algorithm 1 Adaptive Gradient Modulation
1: Training dataset D = {(xm1 , xm2 , .., xmk), yi}, it-

eration number T , logits output of a modality omt ,
model logits output ot, softmax output of a modal-
ity pmt , batch size N , mono-modal information smt ,
batch information discrepancy rmt , running average in-
formation discrepancy τmt , modulation coefficient κm

t ,
m ∈ {m1,m2, ...,mk}.

2: ŝm = 0.
3: for t=1, 2, . . . , T do
4: om1

t , om2
t , ..., omk

t , ot = net(xm1 , xm2 , ..., xmk)
5: pmt = Softmax(omt )

6: smt = 1
N

∑N
i=1 log

pm
t [i][y[i]]

7: st =
s
m1
t +s

m2
t +,...,+s

mk
t

k , ŝt =
ŝ
m1
t +ŝ

m2
t +,...,+ŝ

mk
t

k

8: rmt = e((s
m
t −st)· k

k−1 ), τmt = e((ŝ
m−ŝt)· k

k−1 )

9: κm
t = e(−α∗(rmt −τm

t ))

10: ŝm = ŝm·t
t+1 +

smt
t+1

11: Update using θt+1 = θt − η ∂L
∂ϕ ·

∑
m κm

t
∂ϕm

∂θ

∣∣∣∣
t

12: end for

3.2. Mono-modal competition strength

The empirical study (Wang et al., 2020b) demonstrates that
multi-modal joint training can lead to suboptimal perfor-
mance that is even worse than the mono-modal model. Re-
cently, Huang et al. (Huang et al., 2022) theoretically study
this phenomenon in a simplified setting and attribute it to
the modality competition mechanism that the representation
learning of a modality is generally affected by the presence
of other modalities. The authors further suggest that modal-
ity competition potentially explains the effectiveness of the
adaptive learning methods (Wang et al., 2020b; Peng et al.,
2022), which are designed to improve the performance of
joint training.

However, the above-mentioned studies are all confined to
late fusion cases. It remains unexplored whether the modal-
ity competition mechanism can generalize to other fusion
strategies and how it alters the representation learning in
realistic multi-modal models. This leads to an urgent need
for methods that directly measure competition strength.

To quantify modality competition, one must specify the
competition-less state for each modality. Previous attribu-
tion methods (Hessel & Lee, 2020; Yao & Mihalcea, 2022;
Gat et al., 2021; Hu et al., 2022) only utilize the responses
of the underlying multi-modal model where the competition
already took place and, hence, is in principle incapable of
reflecting modality competition. To address this challenge,
we introduce the mono-modal concept, which defines how
the corresponding modality in a given multi-modal model
will behave in the absence of modality competition. Then
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the competition strength is estimated based on the devia-
tion of the multi-modal model outputs with respect to this
mono-modal concept.

3.2.1. MONO-MODAL CONCEPT

Let x = (xm1 , xm2) denote a multi-modal input feature,
where xm1 and xm2 refer to the mono-modal components.
We focus on two modalities case below and the extension to
more modalities is straightforward.

The processing of xm1 by a multi-modal model is deter-
mined by the complementary component xm2 , the network
architecture ϕ1 , the training settings T 2 and the dataset D.
We call this quadruple Em1 := (xm2 , ϕ, T ,D) as the envi-
ronment of mono-modal input xm1 . Roughly speaking, in
the competition-less state we want to remove the effects of
xm2 while retaining the “normal” processing of xm1 . This
can be formally denoted as Em1

/m2.

With the above notations, we abstract the competition-less
state for m1 as a function Cm1(xm1 ; Em1

/m2) that maps the
inputs to vectors in RK , where K is the number of classes.
Intuitively, Cm1 captures the responses, of a given multi-
modal model, to the mono-modal inputs without modality
competition. Following the terminology in (McGrath et al.,
2022), Cm1 is referred as the mono-modal concept of modal-
ity m1. In the following, we elaborate the construction of
Cm,m ∈ {m1,m2} under different situations.

Late fusion case. In late fusion the multi-modal model
can be written as ϕ(x) = ϕm1(xm1) + ϕm2(xm2). It is
natural to set Em1

/m2 = (0m2 , ϕm1 , Tm1
,Dm1

). 0m2 de-
notes the null input of modality m2, which is realized, in
the current case, by simply discarding the branch ϕm2 . Tm1

refers to the same training set for the m1 branch as it was
during the training of the multi-modal model ϕ. At last,
Dm1 denotes the set of mono-model feature components
{xm1

i }i∈[N ], where N is the number of data samples and
[N ] := {1, . . . , N}. In practice, we need to train ϕm1 on
Dm1

with settings Tm1
, and Cm1 is nothing but the resulting

network function.

Early and hybrid fusion cases. In these situations, the
model can only be written as ϕ(xm1 , xm2). There is no ap-
parent way to separate the processing of xm1 and xm2 at the
architecture level. In order to mute the influence from m2,
we substitute xm2 with a zero vector of the same dimension.
Since the zero vector bears no information about the task, it
won’t introduce modality competition. Therefore, one can

1we abuse the symbol ϕ a little so that it may refer to both the
network architecture and the corresponding network function.

2T includes the initialization, the loss function, hyper-
parameters, and specific techniques, e.g., the learning rate sched-
uler, used in training.

formally write Em1
/m2 = (0m2 , ϕ, T ,Dm1

), indicating
that the architecture and training settings are the same as
for the multi-modal model. This time 0m2 refers to the zero
input of m2 feature components 3. Practically, to construct
Cm1 , we need to train ϕ on D′ := Dm1

⊗ {0m2} with T .
Samples in D′ are of form (xm1 ,0m2).

3.2.2. COMPETITION STRENGTH

With the mono-modal concepts as a reference, we are ready
to quantify the deviation of the multi-modal model re-
sponses from those competition-less states. A linear probing
method (McGrath et al., 2022) is employed to estimate this
deviation. Specifically, let z be the latent feature before the
last classifier layer in the multi-modal model, we train a
linear predictor from z to the targeting mono-modal concept
Cm,

fm(z) = Wz + b, (11)

whose parameters W and b are determined by minimizing
the empirical mean square error of the predictions,

Wm,∗,bm,∗ =argmin
w,b

1

N

∑
i∈[N ]

∥fm(zi)− Cm(xm
i )∥22

+ λ (∥W∥2 + ∥b∥2) ,
(12)

where ∥·∥p denotes the Lp norm, i refers to the index of
data samples and λ is the regularization strength. The L2

regularization term is introduced to avoid overfitting.

The quality of the above linear fitting reflects how much
the multi-modal features deviate from their competition-less
states. Thus we define the competition strength as

dm =

∑
i (Cm(xm

i )− fm(zi))
2∑

i(Cm
(
xm
i )− Cm

)2 , (13)

where Cm is the mean mono-modal concept value over data
samples. dm measures the quality of the linear predictions
with respect to the naive baseline, i.e., simply predicting
the mean value. Its value ranges from 0 to 1, indicating the
weakest and strongest competition levels respectively.

In practice, we reserve two hold-out datasets for computing
the competition strength. One of them is used to train the
linear predictor and the other to calculate dm.

3We also try to use the random inputs for 0m. Our results
suggest that there is no big difference between these two imple-
mentations. Please refer to the supplementary material for the
detailed sanity check of the definition of the mono-modal concept.
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4. Experiments and discussion
4.1. Experimental settings

In this paper, we systematically apply our adaptive gradient
modulation approach to situations that cover different fusion
strategies, different modality combinations, and different
network architectures. For the late fusion case, our approach
is compared with existing modulation methods. Moreover,
we also include the mono-modal accuracy and the modality
competition strength for all the situations.

We carry out experiments 4 on five popular multi-modal
datasets. The AV-MNIST (Vielzeuf et al., 2018) is col-
lected for a multi-media classification task that involves
disturbed images and audio features. The CREMA-D (Cao
et al., 2014) is an audio-visual dataset for speech emotion
recognition which consists of six emotional labels. The UR-
Funny (Hasan et al., 2019) is created for humor detection,
involving words (text), gestures (vision), and prosodic cues
(acoustic) modalities. The AVE (Tian et al., 2018) is devised
for an audio-visual event localization classification task, in-
cluding 28 event classes. The CMU-MOSEI (Zadeh et al.,
2018) is collected for sentence-level emotion recognition
and sentiment analysis, including audio, visual, and text
modalities. Here we only use text and audio modalities.

The experiments can be grouped into two classes. The first
one concerns the performance of our approach and the be-
havior of modality competition in the late and early fusion
strategies across different multi-modal datasets. We adopt
a unified design of the multi-modal models in this class.
The fusion module in the early fusion case is all built with
the MAXOUT (Goodfellow et al., 2013) network. In addi-
tion, for each dataset, the network models for both fusion
strategies use the same encoder architecture. Specifically,
for the AV-MNIST, the CREMA-D, and the Kinetics-Sound
datasets, ResNet18 (He et al., 2016) is used as an encoder
for both the audio and visual modalities. For the UR-Funny
dataset, we use Transformer (Vaswani et al., 2017) for the
encoder for all three modalities.

In the second class, we carry out experiments with cur-
rent SOTA models and show that our approach can also
enhance more complex models in a realistic application.
For the AVE dataset, the PSP (Zhou et al., 2021) network
is used, which features elaborately designed methods that
align the audio and visual representations during fusion.
For the CMU-MOSEI dataset, we adopt the Transformer-
based joint-encoding (TBJE) (Delbrouck et al., 2020) as
the model. TBJE jointly encodes input modalities through

4To better demonstrate the universal effectiveness of AGM, we
further carry out experiments on the Kinetics-Sound (Kay et al.,
2017) using both the late fusion and the FiLM (Perez et al., 2018)
fusion strategies. These results are included in the supplementary
material due to the space limit.

the modular co-attention and the glimpse layer.

Our code is implemented in Pytorch 1.2, and experiments
are run on a single NVIDIA 3090 GPU. For the detailed
experimental settings and hyper-parameters, please refer to
the supplementary material.

AV-MNIST Acc Acca Accv da dv

L
at

e
fu

si
on

Ca - 39.61 - - -
Cv - - 65.14 - -
Joint-Train 69.77 16.05 55.83 0.7838 0.1408
G-Blending 70.32 14.36 56.59 0.7963 0.1359
Greedy 70.65 18.80 63.46 0.7358 0.1340
MSES 70.68 27.50 63.34 0.7538 0.1372
MSLR 70.62 22.72 62.92 0.7300 0.1437
OGM-GE 71.08 24.53 55.85 0.7445 0.1617
AGM 72.14 38.90 63.65 0.6787 0.1197

E
ar

ly
fu

si
on Ca - 41.60 - - -

Cv - - 65.46 - -
Joint-Train 71.15 24.28 60.14 0.7668 0.1825
AGM 72.26 47.79 68.48 0.7146 0.1796

Table 1. Accuracy (Acc, Acca, Accv) and the competition strength
(da, dv) on the AV-MNIST dataset for multi-modal models using
different fusion strategies. In late fusion, comparison with several
modality-specific intervention methods: Modality-Specific Early
Stop (MSES), Modality-Specific Learning Rate(MSLR), and On-
the-fly Gradient Modulation Generalization Enhancement (OGM-
GE). The results of Joint-Train are included as baselines. Ca and
Cv indicate the performance of audio and visual modality concepts,
respectively. The best results are shown in bold.

4.2. The effectiveness of AGM

In this subsection, we focus on the Acc column in all the
tables and demonstrate the universal effectiveness of our
AGM method in improving the model performance.

Tables 1 to 3 summarize the results on the AV-MNIST, the
CREMA-D, and the UR-Funny dataset, respectively. In
the late fusion cases, our approach is compared with the
Modality-Specific Early Stopping (MSES) and Modality-
Specific Learning Rate (MSLR) methods. For situations
with only two modalities, we also include the results of
the Gradient Blending (G-Blending), Characterizing and
Overcoming the Greedy Nature of Learning (Greedy), and
On-the-fly Gradient Modulation Generalization Enhance-
ment (OGM-GE) method.

It is evident that our approach constantly improves the per-
formance w.r.t. the Joint-Train case and achieves the best
accuracy in all situations. In the late fusion case, while
all modulation methods generally boost the performance
compared to the Joint-Train baseline, our approach exceeds
the second-best one for a gap of at least 1.06%. It is no-
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UR-Funny Acc Acca Accv Acct da dv dt

L
at

e
fu

si
on

Ca - 59.23 - - - - -
Cv - - 53.16 - - - -
Ct - - - 63.46 - - -
Joint-Train 64.50 50.31 51.53 49.78 0.5558 0.1058 0.4513
MSES 64.23 50.31 49.69 57.87 0.5605 0.1028 0.4592
MSLR 64.74 50.31 48.62 49.69 0.5257 0.0975 0.4316
AGM 65.97 54.87 49.36 62.22 0.5234 0.0725 0.5147

E
ar

ly
fu

si
on

Ca - 58.25 - - - - -
Cv - - 53.29 - - - -
Ct - - - 61.07 - - -
Joint-Train 65.15 54.87 50.86 54.14 0.7217 0.2672 0.2906
AGM 66.07 64.87 55.20 63.36 0.6962 0.2697 0.3200

Table 2. The same as Table 1, but for UR-Funny dataset. The involved modalities are audio, visual, and text.

CREMA-D Acc Acca Accv da dv

L
at

e
fu

si
on

Ca - 62.63 - - -
Cv - - 75.93 - -
Joint-Train 61.14 57.10 22.72 0.4593 0.7555
G-Blending 62.03 19.58 16.89 0.4706 0.8005
Greedy 63.08 43.05 16.89 0.4598 0.7661
MSES 60.99 54.86 22.57 0.4607 0.7546
MSLR 64.42 54.86 26.31 0.4614 0.7150
OGM-GE 68.16 55.16 36.32 0.5448 0.6929
AGM 78.48 48.58 57.85 0.6624 0.5067

E
ar

ly
fu

si
on Ca - 61.29 - - -

Cv - - 75.78 - -
Joint-Train 61.88 42.60 16.89 0.5345 0.9905
AGM 81.46 76.53 80.42 0.8753 0.6496

Table 3. The same as Table 1, but for CREMA-D dataset.

table that the improvement in the early fusion case by our
approach is comparable with the ones in late fusion cases.
We note the significant increase in accuracy on CREMA-D,
where, after modulating, the results of our approach are
17.34% and 19.58% higher than the ones of Joint-Train in
late and early fusion, respectively. There is also a gap of
10.34% between our approach and OGM-GE. Such super-
sizing effectiveness may be attributed to the fact that the
most informative modality in CREMA-D, i.e., the visual
modality, is considerably under-exploited in the Joint-Train.
In fact, the mono-modal accuracy of the visual modality is
only 22.72%, which is much lower than its potential per-
formance of the mono-modal concept, i.e., 75.93%. We
observe that the improvement from MSES and MSLR is
often very limited. Actually, on CREMA-D the accuracy
of MSES in the late fusion case is worse than the one of
Joint-Train. This could be the consequence that MSES only

AVE Acc Acca Accv da dv

Ca - 65.00 - - -
Cv - - 64.69 - -
PSP 76.02 52.58 50.18 0.6223 0.6232
AGM 77.11 72.34 70.68 0.6198 0.6337

CMU-MOSEI Acc Acct Acca dt da

Ct - 80.92 - - -
Ca - - 74.46 - -
TBJE 80.91 73.59 73.08 0.5794 0.9450
AGM 81.76 79.41 73.08 0.5774 0.9540

Table 4. Accuracy and competition strength on AVE and MOSEI
dataset for the general joint-training network with elaborating
fusion structures network. Audio and visual are involved in the
AVE dataset and audio and text in MOSEI. PSP stands for general
joint training network for the AVE dataset and TBJE for the CMU-
MOSEI dataset. Ca, Cv and Ca indicate the performance of audio,
visual, and text modality, respectively. The best results are shown
in bold.

controls the time to stop training and, thus, can only provide
limited guidance to the weights update.

We next show that our approach can also boost the perfor-
mance of existing SOTA models. Those models normally
equip with elaborately designed fusion modules to ensure
higher prediction accuracy. Table 4 shows the results on the
AVE dataset and CMU-MOSEI dataset, on which the im-
provements are 1.09% and 0.85%, respectively. It is worth
noting that all other modulation methods can not apply to
such complex situations, as there are no separable branches
in the network models for different modalities.

AGM adjusts the modulation coefficients based on the run-
ning average of the mono-modal cross entropy which serves
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as a reference of idea relative strengths of individual modali-
ties. Additional experiments demonstrate that this reference
is better than the brutal force requirement of equal contribu-
tion from all modalities. Further, we consider an in-depth
comparison between AGM and the OGM-GE as their per-
formance outstands in our experiments. Specifically, we
investigate whether the Generalization Enhancement (GE)
technique can hence AGM and, in turn, whether a running
average reference can boost the performance of OGM-GE.
We find that neither provides an improvement. The details
of the above-mentioned results can be found in the supple-
mentary material.

Combining all the above results, we conclude that our mod-
ulation approach can help boost the model performance
regardless of the fusion strategy, the number and types of
involved modalities, and the network architecture.

4.3. Modality competition

The competition strength metric provides us a base to an-
alyze the states of individual modalities in a joint-trained
model and understand the mechanism of how the modula-
tion methods work.

In the following, we first compare the changes in compe-
tition strength before and after modulating and investigate
what is brought to the multi-modal model by our adaptive
gradient modulation. This follows a discussion of the modal-
ity competition behavior.

4.3.1. GRADIENT MODULATION & MODALITY
COMPETITION

Our primary concern is how the modulation affects the
model performance in terms of changing the competition
state. The modality competition directly measures the de-
viation from the competition-less state and provides more
accurate information about the competition state compared
to the mono-modal accuracy, which mainly reflects the in-
formation in a single modality. Generally, we distinguish
two different types of change in competition strength.

In the first type, modality competition is mitigated by mod-
ulation. The results on AV-MNIST ( Table 1) exemplify
this situation. For both fusion strategies, the competition
strengths of audio (da) and visual (dv) modalities decrease,
and their mono-modal accuracy (Acca and Accv) increases
as well as the multi-modal performance. This suggests that
suppressing the competition, allows the model to better uti-
lize inputs from different modalities. Figure 2 illustrates
the change in performance and competition strength along
with training. For the joint training baseline (left panel
in Figure 2), da increases while dv decreases in the initial
training stage up to the 9-th epoch. Hence, the model ini-
tially learns information from the visual modality. Indeed,

Acca is almost the random guess while Accv is close to the
full multi-modal accuracy. In later epochs, da starts to de-
crease and its mono-modal accuracy increases accordingly.
On the other hand, the increase of dv is accompanied by the
decrease of Accv. When adaptive gradient modulation is
applied (right panel in Figure 2), the competition strength
of both modalities decreases along training and converges
to lower values than their counterpart in the joint training
case. At the same time, their mono-modal accuracy keeps
increasing. We find that the model starts to learn the audio
modality at a relatively earlier epoch and Acca is boosted
considerably.

In the second type, the competition of some modalities
could be strengthened. Results in Tables 2 to 4 belong to
this type. For CREMA-D, dv decreases while da increases.
This allows the model to better exploit the visual modality 5,
which is more informative 6. Similar behaviors are observed
on the AVE and CMU-MOSEI datasets. In both cases, the
modulation leads to a decrease in competition strength of
the more informative modality, i.e., the audio modality of
AVE and the text modality of CMU-MOSEI. The results
for UR-Funny differ from previous cases. It mainly reflects
a balance in information usage between the audio and text
modalities. Interestingly, we note that even though the text
modality possesses better information, its dt increases after
modulation. We suspect this could be due to a high-order
effect when multiple modalities are present. In other words,
combining the text and the visual modalities could be more
informative than combining the audio and visual modalities.

In summary, the results quantitatively demonstrate the be-
havior behind the effectiveness of our modulation method.
In most cases, the picture is clear that while the raw model
possesses a certain bias towards some modalities, the mod-
ulation pushes the model to rely on the more informative
modalities 7.

4.3.2. BEHAVIOR OF MODALITY COMPETITION

In the following, we proceed to investigate the modality
competition in the joint training situation. We systematically
study the competition’s behavior from various perspectives
that cover the model’s preference towards individual modal-
ities, the relation to the fusion strategy, and the relation to
the input data.

Existence of preferred modality. Our results reveal that
modality competition is commonly present in multi-modal

5We remark that, in this case, the modality collapse in joint
training on CREMA-D can be attributed to the modality competi-
tion.

6The accuracy of the visual mono-modal concept is higher than
the one of the audio modality.

7Note that better use of informative modalities does not neces-
sarily lead to low competition strengths of these modalities.
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Figure 2. Accuracy (Acc, Acca, Accv) and competition strength (da, dv) of joint-training multimodal model and multimodal model with
AGM using addition fusion method on the validation set of the AV-MNIST dataset. The left is the joint-training multimodal model and the
right is the multimodal model with our proposed AGM.

models. In fact, there is at least one modality with non-
trivial competition strength in all situations. However, we
emphasize that it is not necessary for a multi-modal model
to have a dominant modality. The results on AVE ( Table 4)
provide such an example. The balance of the two modalities,
in this case, could be attributed to the elaborately designed
fusion method in the PSP model. In addition, we recognize
a trend in all the experiments that the modality with the low-
est competition strength always has a higher mono-modal
accuracy. This suggests that there exists the model-preferred
modality, which the raw multi-modal model tends to explore.
This preference will be broken by the modulation which en-
courages more efficient usage of modality information.

Relation to fusion strategy. The modality competition
strengths are similar in the late and early fusion cases. For
example, in Table 2 for the UR-Funny dataset, audio modal-
ity is always with the strongest competition, the text modal-
ity the second, and the visual modality the weakest. Other
results show similar behavior. As this tendency is inde-
pendent of the fusion strategy, our results suggest that the
strength of competition may depend more on the task and
the input data.

Relation to modality information. It is intuitive to expect
that the modality with higher information for the task will
have lower competition strength, i.e., being better exploited
by the model. However, it is not always the case. While
the above intuition applies to the results on AV-MNIST and
CREMA-D datasets, the visual modality in CREMA-D is
under-explored in the joint training case even though it is
more informative. Moreover, for the UR-Funny dataset,
the visual modality, which contains less information, has
a very low competition strength in the joint training case.

In conclusion, current results do not support any correla-
tion between the modality information and the competition
strength.

Relation to modality type. To study whether the modality
type affects the competition states, we compare the results
of CREMA-D and AV-MNIST. Both datasets are composed
of visual and audio modalities, and the visual modality is
more informative. In addition, our experiments on these two
datasets share the same network architecture. Nonetheless,
the competition state of the visual modality in CREMA-D is
opposite to the one in AV-MNIST. Therefore, the strength of
modality competition tends to be unrelated to the modality
type.
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A. Experiment Details
A.1. Datasets

AV-MNIST (Vielzeuf et al., 2018). The dataset is col-
lected for multi-media classification tasks by assembling
visual and audio features. The first modality, disturbed im-
age, is made of the 28× 28 PCA-projected MNIST images.
The second modality, audio, is made of audio samples on
112×122 spectrograms. The whole dataset includes 70, 000
samples, and the division of the training set and validation
set is 6/1. We randomly selected 10% samples from the
training set and validation set to create a development set.

UR-Funny (Hasan et al., 2019). The dataset is created
for affective computing tasks that detect humor by the usage
of words (text), gestures(vision), and prosodic cues (acous-
tic). This dataset is collected from the TED talks and uses
an equal number of binary labels for each sample. In the
experiments, the split of the dataset follows(Liang et al.,
2021).

CREMA-D (Cao et al., 2014). The dataset is devised for
speech emotion recognition with facial and vocal emotional
expressions. This dataset contains 6 most usual emotions:
angry, happy, sad, neutral, discarding, disgust, and fear.
The whole dataset is randomly divided into 6, 027-sample
training set and 669-sample validation set, as well as 745-
sample testing set.

AVE (Tian et al., 2018). The dataset is an Audio-V isual
Event (AVE) dataset for audio-visual event localization.
This dataset consists of 4, 143 ten-second video clips and
has 28 event classes for each clip together with frame-level
annotations. All videos are collected from YouTube. In the
experiments, we follow (Tian et al., 2018) in splitting and
pre-processing the dataset.

CMU-MOSEI (Zadeh et al., 2018). This dataset is col-
lected for sentence-level sentiment analysis and emotion
recognition, containing 23, 454 movie review clips with
more than 65.9 hours of YouTube video by 1, 000 speakers.
In our experiments, we only use text and audio modalities,
and the train/valid/test set is split into 16, 327/1, 871/4, 662
samples, respectively.

Kinetics-Sound (Kay et al., 2017). The dataset is a multi-
modal dataset for human action recognition in videos. The
original dataset contains 400 human action classes with at
least 400 video clips for each class. In our experiments, we
randomly select 30 classes, of which the number of classes is
close to OGM-GE (Peng et al., 2022). This dataset contains
25956 video clips (21545 training, 1494 validation, 2917
test).

A.2. Implementation details

For the AV-MNIST dataset, we use ResNet18-based net-
works as the audio and visual encoders. Following (Chen
et al., 2020), we reduce the number of input channels from
3 to 1. For the UR-Funny dataset, we use a 4-layer Trans-
former as the encoder for each modality. The number of
attention heads is 8 and the hidden dimension is 768. In the
experiments on the above two datasets, models are trained
using the SGD optimizer with a 0.9 momentum and a 1e-4
weight decay. The initial learning rate is 1e-4, and it decays
with a rate of 0.9 every 70 epochs. The batch size is set to
64.

For the CREMA-D and Kinetics-Sound dataset, we follow
the experimental settings used in OGM-GE (Peng et al.,
2022), except for the CREMA-D decay rate in the learning
rate scheduler. This decay rate is now set to 0.9 to make our
training more stable.

For the AVE and CMU-MOSEI datasets, we adopt the same
experimental settings in (Zhou et al., 2021) and (Zadeh et al.,
2018), respectively.

The linear predictor in Section 3.2.2 is implemented with
the sklearn package. Specifically, we use ridge regres-
sion with the regularization strength λ = 120 for all the
situations. The value of λ is chosen so that the competi-
tion strength converges on the validation sets across all the
datasets.

In all the experiments in the main text, the random seed is
set to 999 for reproducibility.

AV-MNIST Acc Acca Accv da dv

ze
ro

-p
ad Ca - 41.60 - - -

Cv - - 65.46 - -
Joint-Train 71.15 24.28 60.14 0.7668 0.1825

ra
nd

-p
ad Ca - 40.63 - - -

Cv - - 65.26 - -
Joint-Train 71.15 24.28 60.14 0.7147 0.2324

Table 5. Comparing the impact of mono-modal concept with dif-
ferent padding methods on competition strength in the AV-MNIST
dataset early fusion joint-training. zero-pad indicates padding the
input modality with zero vector and rand-pad pad input modality
with normal distribution.

B. Sanity Check
In this section, we justify the definition of the proposed
competition strength metric. As linear probing is a standard
technique, we are mostly concerned about the robustness of
the mono-modal concept.

To this end, We first train the mono-modal concept with
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different random seeds in initialization on the AV-MNIST
dataset. The result is shown in ??. As expected, correspond-
ing competition strengths are of similar magnitudes.

We then compare the cases where the mono-modal concepts
are computed using different padding methods. Recall that
we have adopted zero-padding for 0m to represent the ab-
sence of the modality m. In this control experiment, we
use the random-padding instead. In other words, all the ele-
ments in 0m are drawn independently from the normal dis-
tribution N(0, 1). It is arguable that both the zero-padding
and random-padding stand for the competition-less state
as they carry no task-relevant information. Note that the
padding method only matters in the early and hybrid fusion
cases. Table 5 summarises the results on the AV-MNIST
dataset with early fusion models. Clearly, the values of
competition strength in the zero-padding case are close to
the corresponding ones in the random-padding case.

At last, we compare the performance of the mono-modal
concept in different fusion strategies. Recall that the mono-
modal concept is a function that maps the mono-modal
input to a vector in RK , which can be used for prediction.
The performance of the mono-modal concept refers to its
prediction accuracy and, hence, represents the amount of
task-relevant information in the corresponding modality.
From the results in Table 1 to 3, we find that the performance
of the mono-modal concept is very similar in the late and
early fusion cases on each dataset. It is noteworthy that the
performance of mono-model concepts in ?? and Table 5 are
all close to each other as well. This is desirable since the
amount of task-relevant information should be independent
of specific models.

In summary, the results verify the robustness of the mono-
modal concept under different situations and indicate that
the competition strength is a well-defined metric.

C. Additional Results

Kinetics-Sound Acc Acca Accv da dv

L
at

e
Fu

si
on Ca - 42.06 - - -

Cv - - 49.23 - -
Joint-Train 52.78 39.92 23.84 0.6392 0.7064
AGM 56.93 31.01 37.04 0.7726 0.5916

Fi
lM

Ca - 41.86 - - -
Cv - - 48.76 - -
Joint-Train 51.17 34.76 25.32 0.6416 0.6691
AGM 55.73 48.56 51.57 0.6861 0.5045

Table 6. Experiments on the Kinetics-Sound dataset with late fu-
sion and FiLM (Perez et al., 2018) strategies.

In this section, we present additional experiment results on

the Kinetics-Sound dataset with both the later fusion and
the FiLM fusion (Perez et al., 2018) strategies. Apart from
the implementation of the fusion module for the FiLM case,
the encoder network and training parameters are the same
as those in the AV-MNIST late fusion setting.

Table 6 shows the result on the Kinetics-Sound dataset with
late fusion and FiLM, the improvement on which are 3.15%
and 3.56%, respectively. Comparing joint-train and AGM,
the competition strengths of the visual modality decrease
for both fusion strategies, which demonstrates that AGM
pushes the model to rely on the more informative modality.
These additional results further demonstrate the universal
effectiveness of AGM.

D. Ablation Study

Acc Acca Accv da dv

AV
-M

N
IS

T

L
-f

OGM-GE(RA) 70.43 18.81 55.87 0.7329 0.1362
AGM(1) 71.63 38.35 63.50 0.6849 0.1313
AGM-GE 72.03 40.24 64.52 0.7006 0.1215

E
-f AGM(1) 71.72 67.89 66.53 0.7640 0.1813

AGM-GE 71.88 35.88 67.89 0.7368 0.1798

C
R

E
M

A
-D

L
-f

OGM-GE(RA) 64.28 60.69 25.41 0.4436 0.7423
AGM(1) 72.05 39.46 44.39 0.6370 0.6103
AGM-GE 78.03 45.44 50.22 0.6254 0.5152

E
-f AGM(1) 71.15 69.66 73.24 0.6507 0.6726

AGM-GE 81.02 75.49 77.73 0.8421 0.7583

Table 7. Experiments on AV-MNIST and CREMA-D with differ-
ent ablation experiments. OGM-GE(RA) indicates the OGM-GE
method discrepancy ratio toward the running average. AGM(1) is
our AGM method tunning toward 1. AGM-GE is our AGM with
Generalization Enhancement(GE).

In this section, we provide an in-depth comparison between
AGM and OGM-GE as their performance outstands in our
experiments. Specifically, we tune the AGM discrepancy
ratio towards 1 instead of the running average to justify the
usefulness of the running average as the reference. On the
other hand, we try to tune the discrepancy ratio in OGM-
GE toward the running average instead of simply 1 to see
whether it could improve the performance. We also inte-
grate our AGM with the generalization enhancement (GE)
technique in OGM-GE and run additional experiments to
test its comparability with our modulation method.

Table 7 shows the result of the above-mentioned exper-
iments on the AV-MNIST and CREMA-D datasets. The
running average of AGM tuning toward 1 improves the per-
formance compared to the joint-training case while being
worse than the one using the running average. It reflects that
the running average push model to use the modality with
more information. We find that the running average does
not improve the OGM-GE method, which attributes to that
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AGM and OGM-GE adopt different ways to compute the
discrepancy ratio, the latter may not be compatible with the
running average. Unlike OGM-GE, GE does not improve
our AGM. One possible reason is that the running average
introduces additional fluctuations in the gradient which is
similar to the effect of the noise term in GE. GE improves
the OGM with large performance, but it does not improve
our AGM methods. One possible reason is that the running
average introduces additional fluctuations in the gradient
which is similar to the effect of the noise term in GE.
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