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Abstract

Active learning (AL) aims to select the most useful data
samples from an unlabeled data pool and annotate them to
expand the labeled dataset under a limited budget. Espe-
cially, uncertainty-based methods choose the most uncer-
tain samples, which are known to be effective in improving
model performance. However, previous methods often over-
look training dynamics (TD), defined as the ever-changing
model behavior during optimization via stochastic gradi-
ent descent, even though other research areas have empir-
ically shown that TD provides important clues for measur-
ing the data uncertainty. In this paper, we first provide the-
oretical and empirical evidence to argue the usefulness of
utilizing the ever-changing model behavior rather than the
fully trained model snapshot. We then propose a novel AL
method, Training Dynamics for Active Learning (TiDAL),
which efficiently predicts the training dynamics of unla-
beled data to estimate their uncertainty. Experimental re-
sults show that our TiDAL achieves better or comparable
performance on both balanced and imbalanced benchmark
datasets compared to state-of-the-art AL methods, which es-
timate data uncertainty using only static information after
model training.

1. Introduction
“There is a tide in the affairs of men. Which taken at the
flood, leads on to fortune.” — William Shakespeare

Active learning (AL) [5, 31] aims to solve the real-
world problem of selecting the most useful data samples
from large-scale unlabeled data pools and annotating them
to expand labeled data under a limited budget. Since the
current deep neural networks are data-hungry, AL has in-
creasingly gained attention in recent years. Existing AL
methods can be divided into two mainstream categories:
diversity- and uncertainty-based methods. Diversity-based
methods [42, 14] focus on constructing a subset that fol-
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Figure 1: Our proposed TiDAL. TD of training samples
x may differ even if they converge to the same final pre-
dicted probability p(y∗|x) (Upper row). Hence, we are mo-
tivated to utilize the readily available rich information gen-
erated during training, i.e., leveraging TD. We estimate TD
of large-scale unlabeled data using a prediction module in-
stead of tracking the actual TD of all the unlabeled samples
to avoid the computational overhead (Lower row).

lows the target data distribution. Uncertainty-based meth-
ods [13, 6, 52] choose the most uncertain samples, which
are known to be effective in improving model performance.
Hence, the most critical question for the latter becomes,
“How can we quantify the data uncertainty?”

In this paper, we leverage training dynamics (TD) to
quantify data uncertainty. TD is defined as the ever-
changing model behavior on each data sample during op-
timization via stochastic gradient descent. Recent stud-
ies [9, 29, 48, 47] have provided empirical evidence that
TD provides important clues for measuring the contribution
of each data sample to model performance improvement.
Inspired by these studies, we argue that the data uncertainty
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of unlabeled data can be estimated with TD. However, most
uncertainty-based methods quantify data uncertainty based
on static information (e.g., loss [52] or predicted probabil-
ity [45]) from a fully-trained model “snapshot,” neglecting
the valuable information generated during training. We fur-
ther argue that TD is more effective in separating uncertain
and certain data than static information from a model snap-
shot captured after model training. In §3, we provide both
theoretical and empirical evidence to support our argument
that TD is a valuable tool for quantifying data uncertainty.

Despite its huge potential, TD is not yet actively ex-
plored in the domain of AL. This is because AL assumes
a massive unlabeled data pool. Previous studies track TD
only for the training data every epoch as it can be recorded
easily during model optimization. On the other hand, AL
targets a large number of unlabeled data, where tracking
the TD for each unlabeled sample requires an impractical
amount of computation (e.g., inference all the unlabeled
samples every training epoch).

Therefore, we propose TiDAL (Training Dynamics for
Active Learning), a novel AL method that efficiently quan-
tifies the uncertainty of unlabeled data by estimating their
TD. We avoid tracking the TD of large-scale unlabeled data
every epoch by predicting the TD of unlabeled samples with
a TD prediction module. The module is trained with the TD
of labeled data, which is readily available during model op-
timization. During the data selection phase, we predict the
TD of unlabeled data with the trained module to quantify
their uncertainties. We efficiently obtain TD using the mod-
ule, which avoids inferring all the unlabeled samples every
epoch. Experimental results demonstrate that our TiDAL
achieves better or comparable performance to existing AL
methods on both balanced and imbalanced datasets. Ad-
ditional analyses show that our prediction module success-
fully predicts TD, and the predicted TD is useful in estimat-
ing uncertainties of unlabeled data. Our proposed method
are illustrated in Figure 1.

Contributions of our study: (1) We bridge the concept
of training dynamics and active learning with the theoretical
and experimental evidence that training dynamics is effec-
tive in estimating data uncertainty. (2) We propose a new
method that efficiently predicts the training dynamics of un-
labeled data to estimate their uncertainty. (3) Our proposed
method achieves better or comparable performance on both
balanced and imbalanced benchmark datasets compared to
existing active learning methods. For reproducibility, we
release the source code1.

2. Preliminaries

To better understand our proposed method, we first sum-
marize key concepts, including uncertainty-based active

1https://github.com/hyperconnect/TiDAL

learning, quantification of uncertainty, and training dynam-
ics.

Uncertainty-based active learning. In this work, we fo-
cus on uncertainty-based AL for multi-class classification
problems. We define the predicted probabilities of the given
sample x for C classes as:

p = [p(1|x), p(2|x), · · · , p(C|x)]T ∈ [0, 1]C , (1)

where we denote the true label of x as y and the classifier
as f . D and Du denote a labeled dataset and an unlabeled
data pool, respectively. The general cycle of uncertainty-
based AL is in two steps: (1) train the target classifier f
on the labeled dataset D and (2) select top-k uncertain data
samples from the unlabeled data pool Du. Selected samples
are then given to the human annotators to expand the labeled
dataset D, cycling back to the first step.

Quantifying uncertainty. The objective of this study is to
establish a connection between the concept of TD and the
field of AL. In order to clearly demonstrate the effective-
ness of utilizing TD to quantify data uncertainty, we have
employed two of the most prevalent and straightforward es-
timators, entropy [43] and margin [41], to measure data un-
certainty in this paper. Entropy H is defined as follows:

H(p) = −
∑C

c=1
p(c|x) log p(c|x), (2)

where the sample x is from the unlabeled data pool Du.
Entropy concentrates on the level of the model’s confidence
on the given sample x and gets bigger when the prediction
across the classes becomes uniform (i.e., uncertain). Margin
M measures the difference between the probability of the
true label and the maximum of the others:

M(p) = p(y|x)−max
c ̸=ŷ

p(c|x), (3)

where y denotes the true label. The smaller the margin, the
lower the model’s confidence in the sample, so it can be
considered uncertain. Both entropy and margin are com-
puted with the predicted probabilities p of the fully trained
classifier f , only taking the snapshot of f into account.

Defining training dynamics. Our TiDAL targets to lever-
age TD of unlabeled data to estimate their uncertainties. TD
can be defined as any model behavior during optimization,
such as the area under the margin between logit values of
the target class and the other largest class [39] or the vari-
ance of the predicted probabilities generated at each epoch
[47]. In this work, we define the TD p̄(t) as the area under
the predicted probabilities of each data sample x obtained

https://github.com/hyperconnect/TiDAL


(a) Entropy Distribution (b) Margin Distribution

Figure 2: Score distribution after long-tailed training. We
plot the marginal distributions using kernel density estima-
tion (KDE). It is difficult to separate major (certain) and mi-
nor (uncertain) samples by the model snapshot-based scores
(horizontal), unlike the TD-driven scores (vertical) that en-
able clearly separating the certain and uncertain samples.

during the t time steps of optimizing the target classifier f :

p(i) = [p(i)(1|x), p(i)(2|x), · · · , p(i)(C|x)]T , (4)

p̄(t) = [p̄(t)(1|x), p̄(t)(2|x), · · · , p̄(t)(C|x)]T

=
∑

τ
p(τ)∆τ ≃

∑t

i=1
p(i)/t, (5)

where p(i) is the predicted probabilities of a target classifier
f at the i-th time step. ∆τ is the unit time step to normal-
ize the predicted probabilities. For simplicity, we record
p(i) every epoch and choose ∆τ = 1/t, namely, averaging
the predicted probabilities during t epochs [47, 46]. The
TD p̄(t) takes all the predicted probabilities during model
optimization into account. Hence, it encapsulates the over-
all tendency of the model during t epochs of optimization,
avoiding being solely biased towards the snapshot of p(t) in
the final epoch t.

3. Is TD Useful for Quantifying Uncertainty?
In this section, we provide empirical and theoretical ev-

idence to support our argument: TD is more effective in
separating uncertain data from certain data than the model
snapshot, where the latter is often utilized to quantify data
uncertainty in previous works [52, 45].

3.1. Motivating Observation

Settings. We aim to observe and compare the behavior of
TD and the model snapshot for different sample difficulties.
However, it is nontrivial to directly measure sample-wise
difficulty, inhibiting the quantitative analysis of data uncer-
tainty. To avoid this, we borrow the theoretical and empiri-
cal results of long-tailed visual recognition [33, 8, 19]: it is
hard for the deep neural network-based model to train with
fewer samples. Hence, we regard major and minor class

samples to contain many certain and uncertain samples for
the model, respectively. We train the target classifier f on
the long-tailed dataset during T epochs to obtain the TD and
the model snapshot. We apply both approaches to the com-
mon estimators, entropy and margin. We denote entropy
and margin scores from the model snapshot as H and M .
In opposition, we denote the TD-driven scores as H̄ and M̄ .
More details and discussions are described in Appendix B.

Results. Figure 2 shows the distribution the scores calcu-
lated with TD (x-axis) and model snapshot (y-axis). We can
observe that scores from TD (H̄, M̄ ) successfully separate
the major and the minor class samples, whereas scores from
the model snapshot (H,M ) fail to do so. We conclude that
compared to model snapshots, TD is more helpful in sepa-
rating uncertain samples from certain samples.

3.2. Theoretical Evidence

Theorem 1. (Informal) Under the LE-SDE framework
[54], with the assumption of local elasticity [17], certain
samples and uncertain samples reveal different TD; es-
pecially, certain samples converge quickly than uncertain
samples.

The above theorem discusses different model behaviors
depending on the difficulty of the sample. Compared to
the uncertain sample, the certain sample has the same class
samples nearby, which is the fundamental idea of level set
estimation [22] and nearest neighbor [36] literature. We
suspect that, due to the local elasticity of deep nets, samples
close by have a bigger impact on the certain sample, hence
changing its predicted probability more rapidly. As the cer-
tain sample is quicker to converge, its TD is larger than that
of the uncertain sample. Intuitively, slower to train, strug-
gling the classifier is to learn, hence TD capturing the un-
certainty in the classifier’s perspective.

Theorem 2. (Informal) Estimators such as Entropy (Equa-
tion 10) and Margin (Equation 11) successfully capture the
difference of TD between easy and hard samples even for
the case where it cannot be distinguished via the predicted
probabilities of the model snapshot.

The above theorem discusses the validity of entropy and
margin on whether they can successfully differentiate be-
tween two samples of different TD but with the same final
prediction. With Theorem 1, one can conclude that the com-
mon estimators’ scores calculated with TD are effective in
capturing the data uncertainty. Due to the space constraints,
we provide the details of the above results in Appendix A.

4. Utilizing TD for Active Learning
As tracking the TD of all the unlabeled data is compu-

tationally infeasible, we devise an efficient method to es-
timate the TD of unlabeled samples. We train the module



that directly predicts the TD of each sample by feeding the
training samples, where its TD are freely available during
training. Then, based on the predicted TD of each unla-
beled sample, we use the common estimators, entropy or
margin, to determine which sample is the most uncertain
so that human annotators can label it. Hence, in this sec-
tion, we describe the details of the module that estimates
TD (§4.1) and how to train the module (§4.2). Finally, cal-
culating the uncertainties using the module predictions for
active learning is illustrated (§4.3).

4.1. Training Dynamics Prediction Module

As mentioned, it is not computationally feasible to track
TD for the large-scale unlabeled data as it requires model in-
ference on all the unlabeled data every training epoch. Thus,
we propose the TD prediction module m to efficiently pre-
dict the TD of unlabeled data at the t-th epoch. Being influ-
enced by the previous studies [11, 52, 45, 25] that use addi-
tional modules to predict useful values such as loss or confi-
dence by the target model outputs, multi-scale feature maps
are aggregated and passed into our TD prediction module.
The module produces the C-dimensional predictions:

p̃(t)
m = [p̃(t)m (1|x), · · · , p̃(t)m (C|x)]T ∈ [0, 1]C (6)

estimating the actual TD p̄(t) of the given sample x in Equa-
tion 5. TD prediction module is jointly trained with the tar-
get classifier using a handful of parameters, having a neg-
ligible computational cost during training. The detailed ar-
chitecture of the module is described in Appendix C.

Even though the architecture is similar to previous works
[52, 45, 25], we observed that ours were much more stable
during optimization and easier to train. We suspect that it
is due to the target task difference; previous works trained
the module that outputs only a single value via regression,
whereas our module outputs C-dimensional probability dis-
tribution, which is similar to the main task of classifying
images.

4.2. Training Objectives

To train the target classifier f at the t-th epoch, we
use the cross-entropy loss function Ltarget on the predicted
probability p(t) and a one-hot encoded vector y ∈ {0, 1}C
of the true label y:

Ltarget = LCE(p
(t),y) = − log p(t)(y|x). (7)

Meanwhile, the prediction module m learns the TD of a
sample x by minimizing the Kullback–Leibler (KL) diver-
gence between the predicted TD p̃

(t)
m and the actual TD p̄(t):

Lmodule = LKL(p̄
(t)||p̃(t)

m )

=
∑C

c=1
p̄(t)(c|x) log

(
p̄(t)(c|x)
p̃
(t)
m (c|x)

)
. (8)

The final objective function of our proposed method is de-
fined as follows:

L = Ltarget + λLmodule (9)

where λ is a balancing factor to control the effect of Lmodule

during model training.

4.3. Quantifying Uncertainty with TD

We argue that uncertain samples can be effectively dis-
tinguished from unlabeled data using the predicted TD. To
verify the effectiveness of leveraging TD, we feed the pre-
dicted TD to entropy and margin (§2) by replacing snapshot
probability p with the predicted TD p̄. We choose these es-
timators as they are widely used for quantifying uncertainty.
We feed p̄, replacing p, to the entropy H̄:

H̄(p̄) = −
∑C

c=1
p̄(c|x) log p̄(c|x). (10)

Entropy H̄ is maximized when p̄ is uniform, i.e., the sam-
ple is uncertain for the target classifier. Margin M̄ is also
similarly employed:

M̄(p̄) = p̄(ŷ|x)−max
c ̸=ŷ

p̄(c|x). (11)

Since we do not have true labels of unlabeled samples, we
use the predicted labels ŷ of the target classifier instead of
the true labels. There are several possible variants of M̄
depending on the definition of ŷ. We conduct experiments
to compare M̄ with its variants. The experimental details
and results are in Appendix D.4.

At the data selection phase, we use the predicted TD p̃
(T )
m

instead of the actual TD p̄(T ) as in Equation 10 & 11 to es-
timate the TD-driven uncertainties of the unlabeled sample
x at the final epoch T . By using the estimated uncertainty
with the predicted TD, we select the most informative sam-
ples for model training.

5. Experiments
In this section, we experimentally verify the effective-

ness of our method, TiDAL, which utilizes the estimated
training dynamics from the prediction module to discern
uncertain samples from unlabeled data. We describe the de-
tailed settings and the baseline methods for our experiments
(§5.1) and show the results on both balanced (§5.2) and im-
balanced datasets (§5.3). We further analyze whether the
TD prediction module is effective for AL performance and
can successfully estimate the TD (§5.4). We end the section
by discussing the potential limitations of our method (§5.5).

5.1. Experimental Setup

Datasets. To assess the performance of our proposed
method and baseline methods, we conduct experiments on
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Figure 3: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on balanced datasets. TiDAL (H̄) and TiDAL (M̄ ) denote the performance of TiDAL when
with entropy H̄ and margin M̄ as the data uncertainty estimation strategy, respectively.

the following five datasets: CIFAR10/100 [27], FashionM-
NIST [51], SVHN [34], and iNaturalist2018 [50]. Since
CIFAR and FashionMNIST are both balanced, we further
modify them to simulate the data imbalance in the real
world, following the previous long-tail visual recognition
studies [8, 33, 56, 19]. The imbalance ratio is defined as
Nmax/Nmin where N is the number of samples in each class.
We make two variants with data imbalance ratios 10 and
100 for each dataset. Unlike the above, SVHN and iNatu-
ralist18 are already imbalanced. Especially, iNaturalist2018
is commonly chosen to demonstrate how methods work in
imbalanced real-world settings. The dataset statistics are
summarized in Appendix D.

Baselines. For a fair comparison, we compare our TiDAL
with the following baselines which train a target classi-
fier with only labeled data. Random sampling: a simple
baseline that randomly selects data samples from the un-
labeled dataset. Entropy sampling [43]: an uncertainty-
based method that selects data samples based on the max-
imum entropy. BALD [13]: an uncertainty-based method
that selects data samples based on the mutual information
between the model prediction and the posterior. Core-
Set [42]: a diversity-based method that selects representa-
tive data samples covering all data through a minimum ra-
dius. LLoss [52]: an uncertainty-based method that learns
to estimate the errors of the predictions (loss) made by the
learner and select data samples based on the predicted loss.
CAL [55]: recent work on using TD, gathering sample-
wise TD information on whether the classifier was consis-
tently correct or not during training. CAL splits the samples
into two classes by applying a heuristic threshold to the TD
information to train a binary classifier that outputs uncer-
tainty score. To verify the effectiveness of TiDAL, we fur-
ther compare it with the two semi-supervised AL methods,
VAAL [45] and TA-VAAL [25] in Appendix D.3. Note that

these methods further utilize unlabeled data for training the
selection module, thus it is unfair for our TiDAL.

Active learning setting. We follow the same setting from
[6, 52] for the detailed AL settings. For the initial step, we
randomly select initial samples to be annotated from the un-
labeled dataset, where we use them to train the initial target
classifier. Then, we obtain a random subset from the unla-
beled data pool Du to choose the top-k samples based on
the criterion of each method, where those samples will be
annotated. We repeat the above cycle, training a classifier
from scratch from the continuously expanding labeled set.

Implementation details. For a fair comparison, we use
the same backbone network ResNet-18 [18] except for iNat-
uralist2018, where we use ResNet-50 [18] pretrained on Im-
ageNet [12]. All models are trained with SGD optimizer
with momentum 0.9, weight decay 5 · 10−4, and learning
rate (LR) decay of 0.1. For CIFAR10/100 and SVHN, we
train the model for 200 epochs with an initial LR of 0.1 and
decay at epoch 160. For FashionMNIST, 100 epochs with
an initial LR of 0.1 and decay at epoch 80. For iNatural-
ist2018, 50 epochs with an initial LR of 0.01 and decay at
epoch 40. For CIFAR10/100, SVHN and FashionMNIST,
we set the batch size and the unlabeled subset size to be 128
and 104, respectively. For iNaturalist2018, which is much
larger than other datasets, we set the batch size and the un-
labeled subset size to 256 and 106, respectively. We set the
balancing factor to 1.0.

Evaluation details. To compare with other state-of-the-
art baselines, we show the average accuracy and 95% con-
fidence interval with three trials. We mainly compare the
model performances with relative accuracy improvement
to random sampling, demonstrating how much it improves
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Figure 4: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over the
number of labeled samples on synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and 100 on CIFAR10,
CIFAR100, and FashionMNIST.

upon the naive approach on each cycle. Additionally, abso-
lute accuracy is also plotted in Appendix D.

5.2. Results on Balanced Datasets

Figure 3 and 10 compare our TiDAL against the state-
of-the-art methods on various balanced datasets: CIFAR10,
CIFAR100, and FashionMNIST. For all the datsets, the two
variants of TiDAL outperform all the baselines at all AL
cycles except for LLoss, which shows better improvement
than TiDAL (M̄ ) on CIFAR10 with an imbalance ratio of
100. Nonetheless, our TiDAL achieves the best final per-
formance compared to all the baselines. CAL, which uses
training dynamics, generally underperforms compared to
others. We suspect that CAL is sensitive to its threshold
hyperparameter.

5.3. Results on Imbalanced Datasets

Synthetically imbalanced datasets. Similar to the above,
Figure 4, 9, and 11 shows the performance improvements
on the synthetically imbalanced datasets with the two im-
balance ratios, 10 and 100. Except for the CIFAR10 with
an imbalance ratio of 100, our methods show superb per-
formance across all the imbalanced settings. TiDAL per-

forms especially well with a small variance in imbalanced
CIFAR100, where the number of classes is the largest. In
imbalanced FashionMNIST, the performance quickly rises
to 2.5k labeled images and then saturates. This implies that
FashionMNIST is easier than other datasets, and needs to
focus more on the early training steps to compare with other
models. TiDAL also shows overall better performance on
FashionMNIST, especially in the early steps.

Real-world imbalanced datasets. Figure 5 and 10 shows
evaluation results on real-world imbalanced datasets. For
iNaturalist2018, which is the large-scale long-tailed clas-
sification dataset, TiDAL shows outstanding performance
compared to other methods. For SVHN, TiDAL shows the
best improvements with low variance as the number of la-
beled images increases except for the initial stage. LLoss
shows outstanding performance only in the initial stage,
where we presume that the loss prediction module of LLoss
acts as a regularizer during model optimization.

5.4. Analysis on the TD Prediction Module

Effectiveness of the TD prediction module. In order to
verify the efficacy of using the predicted TD p̃m, we con-
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respectively, during model optimization. Our
predicted TD can accurately approximate the
actual TD.

duct an ablation test that compares the performance be-
tween when using and not using the TD prediction module
m. Figure 6 shows the results on balanced CIFAR10/100.
We observe that H̄(p̃m) and M̄(p̃m) using the predicted
TD p̃m to estimate the data uncertainty significantly out-
perform the methods H(p) and M(p) that use only the fi-
nal predicted probabilities p of the target classifier f , show-
ing better performance in the whole training cycle. Even
M(p) shows temporary improvement in earlier steps on
CIFAR100, H̄(p̃m) and M̄(p̃m) maintain stable improve-
ment, eventually winning over M(p). This indicates that
the predicted TD p̃m of the TD prediction module m pro-
duces better data uncertainty estimation than the predicted

probability p of the target classifier f .

Predictive performance of the TD prediction module.
We verify whether the TD prediction module m accurately
predicts the actual TD p̄. Its prediction performance is
crucial as we use the predicted TD p̃m of the module
m to quantify uncertainties of unlabeled data. Using the
KL divergence LKL, we analyze that the predicted TD
p̃m converges to the actual TD p̄ at the data selection
phase. We calculate LKL(p̄

(T )||p̃(t)
m ) and compare it with

LKL(p̄
(T )||p(t)) which is set as a baseline computed with

the actual TD p̄ and the predicted probabilities p (snapshot)
of the target classifier f . In this analysis, we use the bal-



anced CIFAR10 where the sample-wise averaged KL diver-
gence scores are computed on the test set. Figure 7 shows
that the final predicted TD successfully approximates the
actual TD, while the predicted probability is highly differ-
ent from the actual TD. We conclude that the TD prediction
module m can produce the TD efficiently, leading to perfor-
mance improvement, and the predicted TD acts as a better
approximation of the actual TD than the predicted probabil-
ity of a model snapshot captured at each epoch.

5.5. Limitations

We found two potential limitations of our TiDAL de-
rived from the fact that it relies on the outputs of the target
classifier to compute the TD. First, TiDAL is designed only
for classification tasks, and thus it cannot be applied to AL
targeting other tasks, such as regression [10, 15]. Second,
TiDAL is highly influenced by the performance of the tar-
get classifier, especially when the target classifier wrongly
classifies the hard negative samples with a high confidence
during model optimization. These samples can be treated
as certain samples (i.e. will not be selected for annotation)
because they have low estimated uncertainties from the pre-
dicted TD, even though the target classifier fails to predict
the true label of the samples correctly. As a future work, we
will study extending our TiDAL in the task-agnostic ways
with a safeguard combating the wrongly classified samples.

6. Related Work
6.1. Active Learning

AL methods target to construct a dataset with the most
useful samples based on the assumption that each sample
has different importance in model training [40]. Two main-
stream AL approaches exist for efficiently querying the un-
labeled data: pool-based methods [31, 52, 45] use various
ways to extract samples from an unlabeled data pool effec-
tively, and synthesis-based methods [1, 58, 49] generate in-
formative samples for the model. Pool-based methods can
be roughly divided based on query strategies: uncertainty-
based [13, 52, 45, 20] and diversity-based [42, 14, 38] meth-
ods, where some methods use the hybrid of both [4, 44, 25].
Uncertainty-based methods focus on finding which sam-
ples would be the most uncertain for the model, whereas
diversity-based methods aim to construct a subset of rep-
resentative samples of the input distribution. Our pro-
posed method, TiDAL, lies in uncertainty-based methods.
The significant difference between TiDAL and previous
uncertainty-based methods is that TiDAL estimates data un-
certainty using TD that contains additional hints generated
during model training. In contrast, the previous methods
leverage only static information (e.g., loss [52, 20] and pre-
dicted probabilities [13, 45, 25]) obtained by a model snap-
shot at the data selection phase.

6.2. Training Dynamics

TD focuses on how deep neural networks are opti-
mized under back-propagation-based stepwise weight up-
dates. Many studies try to understand how gradient descent
can effectively obtain the global minimum by analyzing the
loss landscape of neural networks [24, 32] or its loss tra-
jectory [3]. Some also import alternative models that are
more mathematically approachable to analyze, such as neu-
ral tangent kernels [21], deep Gaussian processes [30], or
stochastic differential equations [54]. On the other hand,
the phenomenological and practical viewpoint of TD also
exists. [48] coin the term Forgetting Dynamics to assert that
unforgettable samples are often less helpful, and [9] show
that the model could prefer samples that are often wrongly
predicted throughout model training. TD is also commonly
used in noisy label literature to find potential noisy labels
as they tend to fit later on model training [2, 39] or lo-
cate samples that can be relabeled correctly [46]. Further-
more, [57] calculate the Dynamic Instance Hardness score
by monitoring losses of each sample or whether the pre-
diction gets flipped so that higher scored samples can be
prioritized for curriculum learning, and [23] feed the loss
history to the auxiliary neural network to mediate the cur-
riculum for training. [29] also introduce temporal ensem-
bling for semi-supervised learning, where the model fits to-
wards averaged probability outputs. [47, 37] devise Data
Maps to inspect datasets with two TD measures; confidence
and its variability across epochs on the true class prediction.
[55] further extend the Data Maps for AL, whether the tar-
get classifier was consistently correct or not during training.
The proposed method splits the labeled samples by apply-
ing a heuristic threshold on the level of consistency to train
a binary classifier that is trained to discern uncertain sam-
ples. Even though the work, similar to ours, also utilizes
TD, it relies on empirical observations and heuristic choices
to separate the certain and uncertain samples. In this study,
we link the concept of TD to AL with both empirical and
theoretical results to estimate the uncertainty of unlabeled
samples, which is often neglected in previous TD studies.

7. Conclusion

We propose a novel active learning method, Training Dy-
namics for Active Learning (TiDAL), by linking the con-
cept of training dynamics to active learning. We provide
motivating observations and theoretical evidence for using
training dynamics to estimate the uncertainty of unlabeled
data. Since tracking the training dynamics of large-scale
unlabeled data is infeasible, TiDAL utilizes a training dy-
namics prediction module to efficiently predict the training
dynamics of the unlabeled data. Based on the predicted
training dynamics, TiDAL quantifies data uncertainty us-
ing the common uncertainty estimators: entropy and mar-



gin. Extensive experiments on multiple benchmark datasets
demonstrate the effectiveness of our method, surpassing the
existing state-of-the-art active learning methods. We further
analyze that using our training dynamics prediction module
is effective and the module successfully predicts the TD of
unlabeled data.
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Appendix

A. Details on the Theoretical Evidence
A.1. Proof of Theorem 1

We adopt the settings of [54], with a slight modification of the assumption that sample-level local elasticity affects the
training dynamics instead of class-level local elasticity.

Consider the binary classification problem with two classes k = 1, 2 where class 1 consists of both certain (easy) and
uncertain (hard) samples and class 2 only consists of samples with the same certainty (easiness). Let S1,e, S1,h and S2

denote the easy samples from class 1, hard samples from class 1, and samples from class 2 respectively, which constitutes the
partition of the whole set of training samples S: S = S1,e ∪ S1,h ∪ S2. Let the corresponding sample sizes be n1,e = |S1,e|,
n1,h = |S1,h|, n2 = |S2| and n = |S| = n1,e + n1,h + n2, respectively.

At each iteration m, a training candidate sample Jm ∈ S with class Lm is sampled uniformly from the whole training set
S with replacement. Training using this sample Jm via SGD affects the training dynamics of other samples s ∈ S of class k
as:

Xk
s (m) = Xk

s (m− 1) + hEs,JmXLm

Jm
(m− 1) +

√
hζks (m− 1), (12)

where X > 0 is logit of the true label, h > 0 is the step size, ζ ∼ N (0, σ2) denotes the noise term arises during training,
and E ∈ R|S|×|S| refers to the sample-level local elasticity [17] where each entry Es,s′ measures the strength of the local
elasticity of s′ by s. For simplicity, we assume this local elasticity does not depend on the time step m. Furthermore, we
consider that the sample-level local elasticity only depends on the set S1,e, S1,h and S2 in which each samples are in.

Let
X̄1,e(t) =

1

n1,e

∑
s∈S1,e

X1
s (t), X̄

1,h(t) =
1

n1,h

∑
s∈S1,h

X1
s (t), X̄

2(t) =
1

n2

∑
s∈S2

X2
s (t) (13)

be the averaged logits for certain samples in class 1, uncertain samples in class 1, and class 2 respectively.
Regarding the strength of local elasticity between “class” of samples, for some constants αe, αh and β, we set the value

of Es,s′ to model sample-level local elasticity for (1) between easy and hard samples in the class 1 and (2) between classes 1
and 2. We use the values αe > αh > β > 0 to define the easiness such that the power exerted by sample-level local elasticity
between easy samples are stronger for the pair of easy samples than for the pair consists of one or more hard sample.

• Es,s′ = αe if (s, s′) ∈ (S1,e × S1,e) ∪ (S2 × S2),

• Es,s′ = αh if (s, s′) ∈ (S1,e × S1,h) ∪ (S1,h × S1,e) ∪ (S1,h × S1,h) (either s ∈ S1,h or s′ ∈ S1,h),

• Es,s′ = β otherwise.

Intuitively, one can interpret the above assumption as easy samples being clustered with each other [22, 36], hence having
a stronger influence on each other due to the local elasticity. On the contrary, hard samples are often distant from other
same-class samples. Their influence is often limited, as memorizing is easy for the neural nets due to their large capacity
[53]. Finally, we ignore the influence of other class samples in this proof for simplicity, as we are only considering the logits
of the true label.

Theorem 1. (Formal) On average, the convergence speed of logit is faster for easy samples than hard samples. Formally:

dX̄1,e(t)

dt
>

dX̄1,h(t)

dt
. (14)

Proof. Fix a target sample s ∈ S , and execute the dynamics (12) r times since step m. Accumulated change for feature X
becomes

Xk
s (m+ r)−Xk

s (m) = h

r∑
q=1

Ek,Lm+q
X

Lm+q

Jm+q
(m+ q − 1) + ϵs,k,r,h, (15)

where ϵ =
√
h
∑r

q=1 ζ
k
s (m+ q− 1) ∼ N (0, σ2rh) is the accumulated noise terms during r updates. Regarding terms inside

the summation, we can divide cases based on which sample Jr (with corresponding class Lr) is actually selected as a training
candidate at iteration ν(= m+ q):

Ek,Jν
XLν

Jν
(ν − 1) = 1Jν∈S1,e

Ek,Jν
X1

Jν
(ν − 1) + 1Jν∈S1,h

Ek,Jν
X1

Jν
(ν − 1) + 1Jν∈S2

Ek,Jν
X2

Jν
(ν − 1), (16)



hence the summand from (15) becomes (omitting time index for X for simplicity)

h

r∑
q=1

(
1Jm+q∈S1,e

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S1,h

Ek,Jm+q
X1

Jm+q
+ 1Jm+q∈S2

Ek,Jm+q
X2

Jm+q

)
,

and for sufficiently large r we can approximate the summations as the sample-average dynamics:

h

r∑
q=1

(
1Jm+q∈S1,eEk,Jm+qX

1
Jm+q

+ 1Jm+q∈S1,h
Ek,Jm+qX

1
Jm+q

+ 1Jm+q∈S2Ek,Jm+qX
2
Jm+q

)
≈ hr

(
P (J ∈ S1,e)

∑
s∈S1,e

Ek,sX
1
s

n1,e
+ P (J ∈ S1,h)

∑
s∈S1,h

Ek,sX
1
s

n1,h
+ P (J ∈ S2)

∑
s∈S2

Ek,sX
2
s

n2

)

≈ hr

(
n1,e

n

∑
s∈S1,e

Ek,sX
1
s

n1,e
+

n1,h

n

∑
s∈S1,h

Ek,sX
1
s

n1,h
+

n2

n

∑
s∈S2

Ek,sX
2
s

n2

)
(17)

As the components of E only depend on the subset sample relies, we can rewrite accumulated dynamics of logits (15) for
three cases separately, utilizing the notation of averaged logit (13):

X1,e
s (m+ r)−X1,e

s (m) = hr
(n1,e

n
αeX̄

1,e(m) +
n1,h

n
αhX̄

1,h(m) +
n2

n
βX̄2(m)

)
+ ϵs,k,r,h

X1,h
s (m+ r)−X1,h

s (m) = hr
(n1,e

n
αhX̄

1,e(m) +
n1,h

n
αhX̄

1,h(m) +
n2

n
βX̄2(m)

)
+ ϵs,k,r,h

X2
s (m+ r)−X2

s (m) = hr
(n1,e

n
βX̄1,e(m) +

n1,h

n
βX̄1,h(m) +

n2

n
αeX̄

2(m)
)
+ ϵs,k,r,h, (18)

with a little bit of abbreviated notation for class 1: X1,e
s = X1

s for easy sample s, and similarly for hard samples. The
differential counterpart of the above difference equation is

dX1,e
s (t) =

(n1,e

n
αeX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt+ σdW s(t)

dX1,h
s (t) =

(n1,e

n
αhX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt+ σdW s(t)

dX2
s (t) =

(n1,e

n
βX̄1,e(t) +

n1,h

n
βX̄1,h(t) +

n2

n
αeX̄

2(t)
)
dt+ σdW s(t), (19)

where W s(t) is standard Wiener process per sample. Averaging each differential equation with respect to each set of samples
and ignoring error terms yield a set of simultaneous deterministic differential equations for averaged logits:

dX̄1,e(t) =
(n1,e

n
αeX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt

dX̄1,h(t) =
(n1,e

n
αhX̄

1,e(t) +
n1,h

n
αhX̄

1,h(t) +
n2

n
βX̄2(t)

)
dt

dX̄2(t) =
(n1,e

n
βX̄1,e(t) +

n1,h

n
βX̄1,h(t) +

n2

n
αeX̄

2(t)
)
dt, (20)

To compare the convergence speed of average logit between certain and uncertain samples in the same class 1, observe
that

dX̄1,e(t)

dt
− dX̄1,h(t)

dt
=

n1,e

n
(αe − αh)X̄

1,e(t) > 0. (21)

With additional assumptions on the other class logits being the same, one can also conclude that the estimated probability
of the true label will increase steeply during training for the easy samples. After increasing to some extent, the probability
will saturate to one; hence the snapshot model predictions will contain less useful information than monitoring its training
dynamics. However, future work on extending the above theorem is needed. Starting from the basic idea above, that sample
proximity and its amount influence the training dynamics, one can further relax the above assumptions, such as concentrating
on the individuality of each sample or considering the changing elasticities during training. We hope our work ignites the
theoretical research on uncertainty from the viewpoint of training dynamics.



A.2. Proof of Theorem 2

We aim to show the effectiveness of the proposed estimators, entropy (Equation 2) and margin (Equation 3), especially in
the case where the probabilities converge. After training, it is commonly observed that the probabilities of the true label of
all the samples tend to converge to one, whereas the speed of the convergence differs (Theorem 1). Hence, we show that the
estimators can effectively discern the differences during training.

For each time step t during training, we have a sequence of predicted probabilities p(t)(y = c|x) corresponds to t, for
each target class c = 1, 2, · · · , C. In our paper, we regard the area under the predicted probability p̄(T )(y = c|x) of the
sample x as the training dynamics (Equation 5), which is indeed a well-known metric of area under the curve, except that it
is normalized properly to have value between 0 and 1. For convenience, let

s(x) =


s1(x)
s2(x)

...
sC(x)

 =


p̄(T )(y = 1|x)
p̄(T )(y = 2|x)

...
p̄(T )(y = C|x)


be the vector consisting the area under the prediction curve for each class up to final epoch T . By construction, the compo-
nents in s(x) are nonnegative and sum to 1.

Theorem 2. (Formal) Assume that all target classes have the same area under the prediction curve except for the true class
y. Suppose two training samples (x1, y1), (x2, y2) ∈ D satisfies

a. p(T )(y1|x1)=p(T )(y2|x2) (same predicted probability at the end of training)

b. 1
2 < sy1

(x1) < sy2
(x2) (but different TD, in terms of the area under the curve)

Then, the following inequalities hold:

1. H(s(x1)) > H(s(x2));

2. M(s(x1)) < M(s(x2)).

Proof. By the assumption, for all target class c except the true class y, the area under the prediction curve is given by

sc(x) =
1− sy(x)

C − 1
, (22)

and the corresponding entropy can be calculated as

H(s(x)) =

C∑
c=1

(−sc(x)log(sc(x)))

= −sy(x)logsy(x)− (C − 1) ·
(
1− sy(x)

C − 1

)
log
(
1− sy(x)

C − 1

)
= −{sy(x)logsy(x) + (1− sy(x))log(1− sy(x))}+ (1− sy(x))log(C − 1)

= H2(sy(x)) + (1− sy(x))log(C − 1).

(23)

where H2(p) = −plogp− (1− p)log(1− p) stands for the binary entropy function. Since H2(p) is a decreasing function for
p > 1

2 ,
H(s(x1))−H(s(x2)) = {H2(sy1

(x1))−H2(sy2
(x2))}+ {sy2

(x2)− sy1
(x1)} log(C − 1) > 0,

which proves the first inequality stated.
The first assumption also gives the simplified formulation for the margin

M(s(x)) = sy(x)−
1− sy(x)

C − 1
=

C

C − 1
sy(x)−

1

C − 1
, (24)

in whicn the second inequality directly follows:

M(s(x1))−M(s(x2)) =
C

C − 1
(sy1

(x1)− sy2
(x2)) < 0. (25)



While the final predicted probabilities p(T )(y|x) of the training samples tend to converge to 1 for the true class y, otherwise
0, their TD (in this case s(x) = p̄(T )) may be different depending on the easiness of the samples. Thus, the degree of the
easiness of the samples (i.e. uncertainty) could be captured from TD p̄, whereas the predictions p from a model snapshot
cannot.

B. Details on the Motivating Observation
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Figure 8: Training label distribution and accuracy curves for the motivating experiment in §3.1.

§3.1 empirically show that using TD is effective in separating uncertain samples from certain samples. Before diving into
the experimental details, we want to emphasize that it is difficult to control the level of data difficulty (or uncertainty). First
and foremost, human perception of data difficulty will be highly subjective and potentially different from its model counter-
part. This limitation hinders the quantitative analysis, and thus some previous works had to rely on qualitative substitutes
or analyze mislabeled samples which are impossible to control its difficulty [39, 35, 48]. Also, even if we could obtain
sample-wise difficulty, it is often nontrivial to analyze the overall trend during training due to sheer data size.

To avoid the two challenges above, we borrow the settings from studies on long-tail visual recognition [33, 7]. [8] show
that generalization error is bounded by the inverse square root of the dataset size. Further, many long-tail literature [33, 56, 19]
have also empirically shown that it is hard for the deep neural network-based model to train with fewer samples, showing
lower accuracy. Hence, we consider the major and minor classes as certain and uncertain classes, as the binned classification
error is often used as the definition of confidence [16].

We train ResNet-18 [18] on the CIFAR10 dataset [28, 8] with an imbalance ratio of 10 for 30 epochs using the Adam
optimizer [26]. Figure 8a shows the label distribution of the training dataset. Similar to [7], we choose classes 0, 1, 2, 3 and
4 as the major class and the rest as the minor class, randomly removing 90% of the training samples for the minor class. We
reduce the inter-class differences of CIFAR10 by merging five classes into one, and demonstrate both the overall distribution
and samplewise scores in Figure 2. We conclude that TD successfully captures data uncertainties, where its characteristics
are more helpful in separating uncertain samples from certain samples than the information obtained from a model snapshot.
Also, we empirically reaffirm that the major classes being more advantageous than minor classes in terms of accuracy during
model training (Figure 8b, 8c).

C. Details on the TD Prediction Module
One can offer numerous alternatives on the design of the TD prediction module m, but we adopt the architecture of the

loss prediction module [52] except for the last layer. By adopting the architecture used in the previous study, it is intended to
show that the performance improvement of TiDAL does not come from adopting an advanced prediction module architecture,
but from using TD. The TD prediction module takes several hidden feature maps extracted between the mid-level blocks of
the target classifier f as inputs. Through a global average pooling layer and a fully-connected layer, each feature map is
reduced to a fixed dimensional feature vector. All the reduced feature vectors are concatenated to take multi-level knowledge
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Figure 9: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on synthetically imbalanced datasets. We use the imbalance ratio (IR) of 100 on CIFAR10,
CIFAR100, and FashionMNIST.

of the target classifier into consideration for TD prediction. Using a single Softmax layer, the TD prediction module outputs
a C-dimensional prediction ỹ(t) ∈ [0, 1]C , which are used as the predicted TD.

For a better understanding of the architecture of our TD prediction module m, please refer to [52].

D. Additional Experiments

We conduct additional experiments to further demonstrate the effectiveness of our method, TiDAL. We provide the dataset
statistics in Table 1.

Table 1: Statistics of the dataset used for experiments.

Dataset # of classes # of samples Imbalance ratio

CIFAR10 10 50k {1, 10, 100}
CIFAR100 100 50k {1, 10, 100}
FashionMNIST 10 60k {1, 10, 100}
SVHN 10 73k 2.98
iNaturalist2018 8k 437k 500

D.1. Additional Results on Imbalanced Datasets

Figure 9 shows the experimental results on the imbalance ratio 100. Except for CIFAR10, our methods show superiority
over other state-of-the-art methods.

D.2. Additional Results on Absolute Accuracy

Figure 10 and 11 provides the absolute accuracy plots for the completeness of the evaluation for real and synthetic data,
respectively. We can observe the superiority of our method further on many of the settings.

D.3. Additional Baselines

Figure 12 compares our TiDAL with VAAL [45] and TA-VAAL [25]. Except for the case of CIFAR10 with the imbalance
ratio of 100, both TiDAL strategies excel in performance. Note that both VAAL and TA-VAAL use a semi-supervised
approach to train the selection module and further leverage the unlabeled data for training.
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Figure 10: Averaged absolute accuracy improvement curves and its 95% confidence interval (shaded) of AL methods over
the number of labeled samples on balanced and imbalanced datasets.

D.4. Variants of Training Dynamics-Aware Margin

We introduced two TD-aware strategies: entropy H̄ and margin M̄ , in §2. We further demonstrate various uncertainty
estimation strategies as follows:

M̄0(p̃m) = p̃m(ỹ|x)−max
c̸=ỹ

p̃m(c|x), (26)

P̄ (p̃m) = p̃m(ŷ|x), (27)
P̄0(p̃m) = p̃m(ỹ|x), (28)

where ỹ = argmaxc p̃m(c|x) is the class of the maximum module output.
M̂0 is the naive variant of the margin M̂ where it does not utilize the predicted label ŷ of the target classifier f . It calculates

the margin between the biggest and the second biggest outputs of the module m. P̄ uses the module output on the predicted
label ŷ from the target classifier f and P̄0 is the naive variant of P̄ that uses the maximum output of the module m.

Figure 13 shows the average accuracy of three runs for the entropy H̄ and margin M̄ , where we show the accuracy of a
single run for other strategies. We can observe that the naive variant of the margin M̄0 generally underperforms compared
to the margin M̄ except CIFAR100 with the imbalance ratio of 100. There seems to be no clear dominance between P̄ and
its naive variant P̄0. However, both P̄ and P̄0 perform moderately well on both CIFAR100 and FashionMNIST despite its
simplicity. Future studies may concentrate on broader query strategies based on various training dynamics and its module
predictions.
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Figure 11: Averaged absolute accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and 100 on
CIFAR10, CIFAR100, and FashionMNIST.
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Figure 12: Averaged relative accuracy improvement curves and their 95% confidence interval (shaded) of AL methods over
the number of labeled samples on balanced and synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and
100 on CIFAR10, CIFAR100, and FashionMNIST to synthetically imbalance the dataset.
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Figure 13: Averaged relative accuracy improvement curves of different uncertainty estimation strategies over the number
of labeled samples on balanced and synthetically imbalanced datasets. We use the imbalance ratio (IR) of 10 and 100 on
CIFAR10, CIFAR100, and FashionMNIST to synthetically imbalance the dataset.


