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Abstract

Neural Radiance Fields (NeRF) have the potential to be
a major representation of media. Since training a NeRF
has never been an easy task, the protection of its model
copyright should be a priority. In this paper, by analyz-
ing the pros and cons of possible copyright protection solu-
tions, we propose to protect the copyright of NeRF models
by replacing the original color representation in NeRF with
a watermarked color representation. Then, a distortion-
resistant rendering scheme is designed to guarantee robust
message extraction in 2D renderings of NeRF. Our pro-
posed method can directly protect the copyright of NeRF
models while maintaining high rendering quality and bit ac-
curacy when compared among optional solutions. Project
page: https://luo-ziyuan.github.io/copyrnerf.

1. Introduction

Though Neural Radiance Fields (NeRF) [23] have the
potential to be the mainstream for the representation of dig-
ital media, training a NeRF model has never been an easy
task. If a NeRF model is stolen by malicious users, how can
we identify its intellectual property?

As with any digital asset (e.g., 3D model, video, or im-
age), copyright can be secured by embedding copyright
messages into asset, aka digital watermarking, and NeRF
models are no exception. An intuitive solution is to directly
watermark rendered samples using an off-the-shelf water-
marking approach (e.g., HiDDeN [50] and MBRS [14]).
However, this only protects the copyright of rendered sam-
ples, leaving the core model unprotected. If the core model
has been stolen, malicious users may render new samples
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Figure 1: When NeRF models are stolen ( 1 ) by macli-
cious users, CopyRNeRF can help to claim model owner-
ship by transmitting copyright messages embedded in mod-
els to rendering samples ( 2 ). We show some comparisons
with HiDDeN [50] + NeRF [23], and NeRF [23] with mes-
sages. PSNR/Bit Accuracy is shown below each example.

using different rendering strategies, leaving no room for
external watermarking expected by model creators. Be-
sides, without considering factors necessary for rendering
during watermarking, directly watermarking rendered sam-
ples may leave easily detectable trace on areas with low ge-
ometry values.

The copyright messages are usually embedded into 3D
structure (e.g., meshes) for explicit 3D models [43]. Since
such structures are all implicitly encoded into the weights
of multilayer perceptron (MLP) for NeRF, its copyright
protection should be conducted by watermarking model
weights. As the information encoded by NeRF can only be
accessed via 2D renderings of protected models, two com-
mon standards should be considered during the watermark
extraction on rendered samples [1, 15, 41, 45]: 1) invisi-
bility, which requires that no serious visual distortion are
caused by embedded messages, and 2) robustness, which
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ensures robust message extraction even when various dis-
tortions are encountered.

One option is to create a NeRF model using watermarked
images, while the popular invisible watermarks on 2D im-
ages cannot be effectively transmitted into NeRF mod-
els. As outlined in Figure 1 (HiDDeN [50] + NeRF [23]),
though the rendered results are of high quality, the secret
messages cannot be robustly extracted. We can also directly
concatenate secret messages with input coordinates, which
produces higher bit accuracy (NeRF with message in Fig-
ure 1). However, the lower PSNR values of rendered sam-
ples indicate that there is an obvious visual distortion, which
violates the standard for invisibility.

Though invisibility is important for a watermarking sys-
tem, the higher demand for robustness makes watermarking
unique [50]. Thus, in addition to invisibility, we focus on
a more robust protection of NeRF models. As opposed to
embedding messages into the entire models as in the above
settings, we create a watermarked color representation for
rendering based on a subset of models, as displayed in Fig-
ure 2. By keeping the base representation unchanged, this
approach can produce rendering samples with invisible wa-
termarks. By incorporating spatial information into the wa-
termarked color representation, the embedded messages can
remain consistent across different viewpoints rendered from
NeRF models. We further strengthen the robustness of wa-
termark extraction by using distortion-resistant rendering
during model optimization. A distortion layer is designed to
ensure robust watermark extraction even when the rendered
samples are severely distorted (e.g., blurring, noise, and ro-
tation). A random sampling strategy is further considered
to make the protected model robust to different sampling
strategy during rendering.

Distortion-resistant rendering is only needed during the
optimization of core models. If the core model is stolen,
even with different rendering schemes and sampling strate-
gies, the copyright message can still be robustly extracted.
Our contribution can be summarized as follows:

• a method to produce copyright-embedded NeRF mod-
els.

• a watermarked color representation to ensure invisibil-
ity and high rendering quality.

• distortion-resistant rendering to ensure robustness
across different rendering strategies or 2D distortions.

2. Related work
Neural radiance fields. Various neural implicit scene
representation schemes have been introduced recently [25,
42, 48]. The Scene Representation Networks (SNR) [32]
represent scenes as a multilayer perceptron (MLP) that

maps world coordinates to local features, which can be
trained from 2D images and their camera poses. DeepSDF
[27] and DIST [20] use trained networks to represent a con-
tinuous signed distance function of a class of shapes. PIFu
[30] learned two pixel-aligned implicit functions to infer
surface and texture of clothed humans respectively from
a single input image. Occupancy Networks [21, 28] are
proposed as an implicit representation of 3D geometry of
3D objects or scenes with 3D supervision. NeRF [23, 49]
in particular directly maps the 3D position and 2D view-
ing direction to color and geometry by a MLP and synthe-
size novel views via volume rendering. The improvements
and applications of this implicit representation have been
rapidly growing in recent years, including NeRF acceler-
ating [9, 24], sparse reconstruction [44, 6], and generative
models [31, 5]. NeRF models are not easy to train and may
use private data, so protecting their copyright becomes cru-
cial.

Digital watermarking for 2D. Early 2D watermarking
approaches encode information in the least significant bits
of image pixels [35]. Some other methods instead encode
information in the transform domains [17]. Deep-learning
based methods for image watermarking have made substan-
tial progress. HiDDeN [50] was one of the first deep image
watermarking methods that achieved superior performance
compared to traditional watermarking approaches. Red-
Mark [1] introduced residual connections with a strength
factor for embedding binary images in the transform do-
main. Deep watermarking has since been generalized to
video [37, 46] as well. Modeling more complex and real-
istic image distortions also broadened the scope in terms
of application [38, 34]. However, those methods all cannot
protect the copyright of 3D models.

Digital watermarking for 3D. Traditional 3D water-
marking approaches [26, 29, 39] leveraged Fourier or
wavelet analysis on triangular or polygonal meshes. Re-
cently, Hou et al. [11] introduced a 3D watermarking
method using the layering artifacts in 3D printed objects.
Son et al. [33] used mesh saliency as a perceptual metric
to minimize vertex distortions. Hamidi et al. [10] further
extended mesh saliency with wavelet transform to make 3D
watermarking robust. Jing et al. [19] studied watermark-
ing for point clouds through analyzing vertex curvatures.
Recently, a deep-learning based approach [43] successfully
embeds messages in 3D meshes and extracts them from 2D
renderings. However, existing methods are for explicit 3D
models, which cannot be used for NeRF models with im-
plicit property.
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Figure 2: Illustration of our proposed method. (a) A watermarked color representation is obtained with the given secret
message, which is able to produce watermarked color for rendering. (b) During training, a distortion-resistant rendering
is deployed to map the geometry (σ) and watermarked color representations to image patches with several distortions. (c)
Finally, the secret message can be revealed by a CNN-based message extractor.

3. Preliminaries
NeRF [23] uses MLPs Θσ and Θc to map the 3D location

x ∈ R3 and viewing direction d ∈ R2 to a color value
c ∈ R3 and a geometric value σ ∈ R+:

[σ, z] = Θσ (γx(x)) , (1)

c = Θc (z, γd(d)) , (2)

where γx and γd are fixed encoding functions for location
and viewing direction respectively. The intermediate vari-
able z is a feature output by the first MLP Θσ .

For rendering a 2D image from the radiance fields Θσ
and Θc, a numerical quadrature is used to approximate the
volumetric projection integral. Formally, Np points are
sampled along a camera ray r with color and geometry val-
ues {(cir, σir)}Ni=1. The RGB color value Ĉ(r) is obtained
using alpha composition

Ĉ(r) =

Np∑
i=1

T ir(1− exp
(
−σirδ

i
r

)
)cir, (3)

where T ir =
∏i−1
j=1

(
exp

(
−σirδ

i
r

))
, and δir is the distance

between adjacent sample points. The MLPs Θσ and Θc are
optimized by minimizing a reconstruction loss between ob-
servations C and predictions Ĉ as

Lrecon =
1

Nr

Nr∑
m=1

∥Ĉ(rm)−C(rm)∥22, (4)

where Nr is the number of sampling pixels. Given Θσ and
Θc, novel views can be synthesized by invoking volume
rendering for each ray.

Considering the superior capability of NeRF in rendering
novel views and representing various scenes, how can we
protect its copyright when it is stolen by malicious users?

4. Proposed method

As outlined in Figure 2, with a collection of 2D images
{In}Nn=1 and the binary message M ∈ {0, 1}Nb with length
Nb, we address the issue raised in Section 3 by building a
watermarked color representation during optimization. In
training, a distortion-resistant rendering is further applied
to improve the robustness when 2D distortions or different
rendering schemes are encountered. With the above design,
the secret messages can be robustly extracted during testing
even encountering sever distortions or different rendering
strategies.

4.1. Building watermarked color representation

The rendering in Equation (3) relies on color and ge-
ometry produced by their corresponding representation in
NeRF. To ensure the transmission of copyright messages to
the rendered results, we propose embedding messages into
their representation. We create a watermarked color rep-
resentation on the basis of Θc defined in Equation (2) to
guarantee the message invisibility and consistency across
viewpoints. The representation of geometry is also the po-
tential for watermarking, but external information on geom-
etry may undermine rendering quality [36, 12, 7]. There-
fore, the geometry does not become our first option, while
experiments are also conducted to verify this setting.

We keep the geometry representation in Equation (1) un-
changed, and construct the watermarked color representa-
tion Θm to produce the message embedded color cm as fol-
lows:

cm = Θm (c, γx(x), γd(d),M) , (5)

where M denotes the message to be embedded and Θm con-
tains several MLPs to ensure reliable message embedding.



The input c is obtained by querying Θc using Equation (2).
Several previous methods have pointed out the importance
of building a 3D feature field when distributed features are
needed to characterize composite information [40, 4]. Thus,
instead of directly fusing those information, we first con-
struct their corresponding feature field and then combine
them progressively.
Color feature field. In this stage, we aim at fusing the spa-
tial information and color representation to ensure message
consistency and robustness across viewpoints. We adopt a
color feature field by considering color, spatial positions,
and viewing directions simultaneously as follows:

fc = Eξ(c, γx(x), γd(d)). (6)

Given a 3D coordinate x and a viewing direction d, we first
query the color representation Θc (z, γd(d)) to get c, and
then concatenate them with x and d to obtain spatial de-
scriptor v as the input. Then the color feature encoder Eξ
transforms v to the high-dimensional color feature field fc
with dimension Nc. The Fourier feature encoding is applied
to x and d before the feature extraction.
Message feature field. We further construct the message
feature field. Specifically, we follow the classical setting in
digital watermarking by transforming secret messages into
higher dimensions [2, 3]. It ensures more succinctly en-
coding of desired messages [2]. As shown in Figure 2, a
message feature encoder is applied to map the messages to
its corresponding higher dimensions as follows:

fM = Dϕ(M). (7)

In Equation (7), given message M of length Nb, the mes-
sage feature encoder Dϕ applies a MLP to the input mes-
sage, resulting in a message feature field fM of dimension
Nm.

Then, the watermarked color can be generated via a fea-
ture fusion module Gψ that integrates both color feature
field and message feature field as follows:

cm = Gψ(fc, fM, c). (8)

Specifically, c is also employed here to make the final re-
sults more stable. cm is with the same dimension to c,
which ensures this representation can easily adapt to cur-
rent rendering schemes.

4.2. Distortion-resistant rendering

Directly employing the watermarked representation for
volume rendering has already been able to guarantee in-
visibility and robustness across viewpoints. However, as
discussed in Section 1, the message should be robustly ex-
tracted even when encountering diverse distortion to the
rendered 2D images. Besides, for an implicit model relying
on rendering to display its contents, the robustness should

also be secured even when different rendering strategies
are employed. Such requirement for robustness cannot be
achieved by simply using watermarked representation un-
der the classical NeRF training framework. For example,
the pixel-wise rendering strategy cannot effectively model
the distortion (e.g., blurring and cropping) only meaning-
ful in a wider scale. We, therefore, propose a distortion-
resistant rendering by strengthening the robustness using a
random sampling strategy and distortion layer.

Since most 2D distortions can only be obviously ob-
served in a certain area, we consider the rendering process
in a patch level [16, 8]. A window with the random posi-
tion is cropped from the input image with a certain height
and width, then we uniformly sample the pixels from such
window to form a smaller patch. The center of the patch is
denoted by u = (u, v) ∈ R2, and the size of patch is de-
termined by K ∈ R+. We randomly draw the patch center
u from a uniform distribution u ∼ U(Ω) over the image
domain Ω. The patch P(u,K) can be denoted by by a set
of 2D image coordinates as

P(u,K) = {(x+ u, y + v) | x, y ∈ {−K

2
, . . . ,

K

2
− 1}}.

(9)
Such a patch-based scheme constitutes the backbone of our
distortion-resistant rendering, due to its advantages in cap-
turing information on a wider scale. Specifically, we em-
ploy a variable patch size to accommodate diverse distor-
tions during rendering, which can ensure higher robust-
ness in message extraction. This is because small patches
increase the robustness against cropping attacks and large
patches allow higher redundancy in the bit encoding, which
leads to increased resilience against random noise [8].

As the corresponding 3D rays are uniquely determined
by P(u,K), the camera pose and intrinsics, the image patch
P̃ can be obtained after points sampling and rendering.
Based on the sampling points in Section 3, we use a random
sampling scheme to further improve the model’s robustness,
which is described as follows.

Random sampling. During volume rendering, NeRF [23]
is required to sample 3D points along a ray to calculate
the RGB value of a pixel color. However, the sampling
strategy may vary as the renderer changes [24, 18]. To
make our message extraction more robust even under dif-
ferent sampling strategies, we employ a random sampling
strategy by adding a shifting value to the sampling points.
Specifically, the original Np sampling points along ray r is
denoted by a sequence, which can be concluded as X =

(x1
r, x

2
r, · · · , x

Np
r ), where xir, i = 1, 2, · · · , Np denotes the

sampling points during rendering. The randomized sam-
ple sequence Xrandom can be denoted by adding a shifting



value as

Xrandom = (x1
r + z1, x2

r + z2, · · · , xNp
r + zNp),

zi ∼ N (0, β2), i = 1, 2, · · · , Np,
(10)

where N (0, β2) is the Gaussian distribution with zero mean
and standard deviation β.

By querying the watermarked color representation and
geometry values at Np points in Xrandom, the rendering
operator can be then applied to generate the watermarked
color C̃m in rendered images:

C̃m(r) =

Np∑
i=1

T ir(1− exp
(
−σirδ

i
r

)
)cim, (11)

where T ir and δir are with the same definitions to their coun-
terparts in Equation (3).

All the colors obtained by coordinates P can form a
K×K image patch P̃. The content loss Lcontent of the 3D
representation is calculated between watermarked patch P̃
and the P̂, where P̂ is rendered from the non-watermarked
representation by the same coordinates P . In detail, the con-
tent loss Lcontent has two components namely pixel-wise
MSE loss and perceptual loss:

Lcontent = ∥P̃− P̂∥22+λ∥Ψ(P̃)−Ψ(P̂)∥22, (12)

where Ψ(·) denotes the feature representation obtained from
a VGG-16 network, and λ is a hyperparameter to balance
the loss functions.
Distortion layer. To make our watermarking system robust
to 2D distortions, a distortion layer is employed in our wa-
termarking training pipeline after the patch P̃ is rendered.
Several commonly used distortions are considered: 1) ad-
ditive Gaussian noise with mean µ and standard deviation
ν; 2) random axis-angle rotation with parameters α; and 3)
random scaling with a parameter s; 4) Gaussian blur with
kernel k. Since all these distortions are differentiable, we
could train our network end-to-end.

The distortion-resistant rendering is only applied during
training. It is not a part of the core model. If the core model
is stolen, even malicious users use different rendering strat-
egy, the expected robustness can still be secured.

4.3. Message extractor

To retrieve message M̂ from the K ×K rendered patch
P, a message extractor Hχ is proposed to be trained end-to-
end:

Hχ : RK×K → RNb , P 7→ M̂, (13)

where χ is a trainable parameter. Specifically, we employ
a sequence of 2D convolutional layers with the batch nor-
malization and ReLU functions [13]. An average pooling
is then performed, following by a final linear layer with a

fixed output dimension Nb, which is the length of the mes-
sage, to produce the continuous predicted message M̂. Be-
cause of the use of average pooling, the message extractor
is compatible with any patch sizes, which means the net-
work structure can remain unchanged when applying size-
changing distortions such as random scaling.

The message loss Lm is then obtained by calculating the
binary cross-entropy error between predicted message M̂
and the ground truth message M:

Lm = mean[−(M log M̂+ (1−M) log(1− M̂))], (14)

where mean[·] indicates the mean value over all bits.
To evaluate the bit accuracy during testing, the binary

predicted message M̂b can be obtained by rounding:

M̂b = clamp(sign(M̂), 0, 1), (15)

where clamp and sign are of the same definitions in [43]. It
should be noted that we use the continuous result M̂ in the
training process, while the binary one M̂b is only adopted
in testing process.

Therefore, the overall loss to train the copyright-
protected neural radiance fields can be obtained as

L = γ1Lcontent + γ2Lm, (16)

where γ1 and γ2 are hyperparameters to balance the loss
functions.

4.4. Implementation details

We implement our method using PyTorch. An eight-
layer MLP with 256 channels and the following two MLP
branches are used to predict the original colors c and opaci-
ties σ, respectively. We train a “coarse” network along with
a “fine” network for importance sampling. we sample 32
points along each ray in the coarse model and 64 points in
the fine model. Next, the patch size is set to 150 × 150.
The hyperparameters in Equation (12) and Equation (16)
are set as λ1 = 0.01, γ1 = 1, and γ2 = 5.00. We use the
Adam optimizer with defaults values β1 = 0.9, β2 = 0.999,
ϵ = 10−8, and a learning rate 5× 10−4 that decays follow-
ing the exponential scheduler during optimization. In our
experiments, we set Nm in Equation (7) as 256. We first
optimize MLPs Θσ and Θc using loss function Equation (4)
for 200K and 100K iterations for Blender dataset [23] and
LLFF dataset [22] separately, and then train the models Eξ,
Dϕ, and Hχ on 8 NVIDIA Tesla V100 GPUs. During train-
ing, we have considered messages with different bit lengths
and forms. If a message has 4 bits, we take into account all
24 situations during training. The model creator can choose
one message considered in our training as the desired mes-
sage.



Groundtruth Proposed Method HiDDeN+NeRF NeRF with message

Accuracy 100% / PSNR 30.28

CopyRNeRF in geometryMBRS+NeRF

Accuracy 51.04% / PSNR 28.61

Accuracy 51.38% / PSNR 29.09

Accuracy 69.28% / PSNR 22.83 Accuracy 61.50% / PSNR 18.82

Accuracy 68.00% / PSNR 17.61Accuracy 63.19% / PSNR 20.26

Accuracy 100% / PSNR 32.69 Accuracy 50.94% / PSNR 27.71

Accuracy 50.25% / PSNR 27.75

Figure 3: Visual quality comparisons of each baseline. We show the differences (×10) between the synthesized results and
the ground truth next to each method. Our proposed CopyRNeRF can achieve a well balance between the reconstruction
quality and bit accuracy.

Table 1: Bit accuracies with different lengths compared with baselines. The results are averaged on all all examples.

4 bits 8 bits 16 bits 32 bits 48 bits

Proposed CopyRNeRF 100% 100% 91.16% 78.08% 60.06%
HiDDeN [45]+NeRF[23] 50.31% 50.25% 50.19% 50.11% 50.04%
MBRS [14]+NeRF [23] 53.25% 51.38% 50.53% 49.80% 50.14%
NeRF[23] with message 72.50% 63.19% 52.22% 50.00% 51.04%
CopyRNeRF in geometry 76.75% 68.00% 60.16% 54.86% 53.36%

5. Experiments

5.1. Experimental settings

Dataset. To evaluate our methods, we train and test our
model on Blender dataset [23] and LLFF dataset [22],
which are common datasets used for NeRF. Blender dataset
contains 8 detailed synthetic objects with 100 images taken
from virtual cameras arranged on a hemisphere pointed in-
ward. As in NeRF [23], for each scene we input 100 views
for training. LLFF dataset consists of 8 real-world scenes
that contain mainly forward-facing images. Each scene con-
tains 20 to 62 images. The data split for this dataset also fol-
lows NeRF [23]. For each scene, we select 20 images from
their testing dataset to evaluate the visual quality. For the
evaluation of bit accuracy, we render 200 views for each
scene to test whether the message can be effectively ex-
tracted under different viewpoints. We report average val-
ues across all testing viewpoints in our experiments.
Baselines. To the best of our knowledge, there is no
method specifically for protecting the copyright of NeRF
models. We, therefore, compare with four strategies to
guarantee a fair comparison: 1) HiDDeN [50]+NeRF[23]:
processing images with classical 2D watermarking method
HiDDeN [50] before training the NeRF model; 2)
MBRS [14]+NeRF [23]: processing images with state-of-
the-art 2D watermarking method MBRS [14] before train-
ing the NeRF model; 3) NeRF with message: concatenat-
ing the message M with location x and viewing direction d
as the input of NeRF; 4) CopyRNeRF in geometry: chang-
ing our CopyRNeRF by fusing messages with the geometry

to evaluate whether geometry is a good option for message
embedding.
Evaluation methodology. We evaluate the performance
of our proposed method against other methods by follow-
ing the standard of digital watermarking about the invisibil-
ity, robustness, and capacity. For invisibility, we evaluate
the performance by using PSNR, SSIM, and LPIPS [47]
to compare the visual quality of the rendered results af-
ter message embedding. For robustness, we will investi-
gate whether the encoded messages can be extracted ef-
fectively by measuring the bit accuracy on different distor-
tions. Besides normal situations, we consider the follow-
ing distortions for message extraction: 1) Gaussian noise,
2) Rotation, 3) Scaling, and 4) Gaussian blur. For capac-
ity, following the setting in previous work for the water-
marking of explicit 3D models [43], we investigate the in-
visibility and robustness under different message length as
Nb ∈ {4, 8, 16, 32, 48}, which has been proven effective in
protecting 3D models [43]. Since we have included differ-
ent viewpoints in our experiments for each scene, our eval-
uation can faithfully reflect whether the evaluated method
can guarantee its robustness and consistency across view-
points.

5.2. Experimental results

Qualitative results. We first compare the reconstruc-
tion quality visually against all baselines and the results
are shown in Figure 3. Actually, all methods except NeRF
with message and CopyRNeRF in geometry can achieve
high reconstruction quality. For HiDDeN [50] + NeRF [23]



Table 2: Bit accuracies and reconstruction qualities compared with our baselines. ↑ (↓)
means higher (lower) is better. We show the results on Nb = 16 bits. The results are
averaged on all all examples. The best performances are highlighted in bold.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓
Proposed CopyRNeRF 91.16% 26.29 0.910 0.038
HiDDeN [50]+NeRF[23] 50.19% 26.53 0.917 0.035
MBRS [14]+NeRF [23] 50.53% 28.79 0.925 0.022
NeRF with message 52.22% 22.33 0.773 0.108
CopyRNeRF in geometry 60.16% 20.24 0.771 0.095

Watermarked by MBRS Residual (X10)

Result of MBRS+NeRF Residual (X10)

Figure 4: Analysis for failure of
MBRS [14]+NeRF.

Table 3: Bit accuracies with different distortion types compared with each baseline and our CopyRNeRF without distortion-
resistant rendering (DRR). We show the results on Nb = 16 bits. The results are averaged on all all examples.

No Distortion Gaussian noise Rotation Scaling Gaussian blur
(ν=0.1) (±π/6) (≤ 25%) (deviation = 0.1)

Proposed CopyRNeRF 91.16% 90.44% 88.13% 89.33% 90.06%
HiDDeN [50]+NeRF[23] 50.19% 49.84% 50.12% 50.09% 50.16%
MBRS [14]+NeRF [23] 50.53% 51.00% 51.03% 50.12% 50.41%
NeRF with message 52.22% 50.53% 50.22% 50.19% 51.34%
CopyRNeRF in geometry 60.16% 58.00% 56.94% 60.09% 59.38%
CopyRNeRF W/o DRR 91.25% 89.12% 75.81% 87.44% 87.06%

and MBRS [14]+NeRF [23], although they are efficient ap-
proaches in 2D watermarking, their bit accuracy values are
all low for rendered images, which proves that the mes-
sage are not effectively embedded after NeRF model train-
ing. From the results shown in Figure 4, the view synthesis
of NeRF changes the information embedded by 2D water-
marking methods, leading to their failures. For NeRF with
message, as assumed in our previous discussions, directly
employing secret messages as an input change the appear-
ance of the output, which leads to their lower PSNR values.
Besides, its lower bit accuracy also proves that this is not an
effective embedding scheme. For CopyRNeRF in geome-
try, it achieves the worst visual quality among all methods.
The rendered results look blurred, which confirms our as-
sumption that the geometry is not a good option for message
embedding.

Bit Accuracy vs. Message Length. We launch 5 ex-
periments for each message length and show the relation-
ship between bit accuracy and the length of message in Ta-
ble 1. We could clearly see that the bit accuracy drops
when the number of bits increases. However, our CopyRN-
eRF achieves the best bit accuracy across all settings, which
proves that the messages can be effectively embedded and
robustly extracted. CopyRNeRF in geometry achieves the
second best results among all setting, which shows that em-
bedding message in geometry should also be a potential op-
tion for watermarking. However, the higher performance of
our proposed CopyRNeRF shows that color representation

is a better choice.
Bit Accuracy vs. Reconstruction Quality. We con-
duct more experiments to evaluate the relationship between
bit accuracy and reconstruction quality. The results are
shown in Table 21. Our proposed CopyRNeRF achieves a
good balance between bit accuracy and error metric values.
Though the visual quality values are not the highest, the
bit accuracy is the best among all settings. Though HiD-
DeN [50] + NeRF [23] and MBRS [14]+NeRF [23] can pro-
duce better visual quality values, its lower bit accuracy indi-
cates that the secret messages are not effectively embedded
and robustly extracted. NeRF with message also achieves
degraded performance on bit accuracy, and its visual qual-
ity values are also low. It indicates that the embedded mes-
sages undermine the quality of reconstruction. Specifically,
the lower visual quality values of CopyRNeRF in geometry
indicates that hiding messages in color may lead to better
reconstruction quality than hiding messages in geometry.
Model robustness on 2D distortions. We evaluate the ro-
bustness of our method by applying several traditional 2D
distortions. Specifically, as shown in Table 3, we consider
several types of 2D distortions including noise, rotation,
scaling, and cropping. We could see that our method is quite
robust to different 2D distortions. Specifically, CopyRN-
eRF w/o DRR achieves similar performance to the complete
CopyRNeRF when no distortion is encountered. However,

1Results for other lengths of raw bits can be found in the supplementary
materials.
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Figure 5: Comparisons for different rendering degradadtion in the inference phase. The message length is set to 16. We use
average sampling points (ASP), importance sampling points (ISP), and random sampling points (RSP) in different rendering
strategies. “32 ASP + 32 ISP” is a strategy employed in the training process, and message extraction also shows the highest
bit accuracy. When sampling strategies are changed to other ones during inference, the message extraction still shows similar
performance, which verifies the effectiveness of our distortion-resistant rendering.

Table 4: Comparisons for our full model, our model without
Message Feature Field (MFF) and our model without Color
Feature Field (CFF). The last row shows that our method
achieves consistent performance even when different ren-
dering scheme (DRS) is applied during testing.

Bit Acc↑ PSNR ↑ SSIM ↑ LPIPS ↓
Ours 100% 32.68 0.948 0.048
W/o MFF 82.69% 20.46 0.552 0.285
W/o CFF 80.69% 21.06 0.612 0.187
DRS 100% 32.17 0.947 0.052

when it comes to different distortions, its lower bit accura-
cies demonstrate the effectiveness of our distortion-resistant
rendering during training.
Analysis for feature field. In the section, we further evalu-
ate the effectiveness of color feature field and message fea-
ture field. We first remove the module for building color
feature field and directly combine the color representation
with the message features. In this case, the model performs
poorly in preserving the visual quality of the rendered re-
sults. We further remove the module for building mes-
sage feature field and combine the message directly with
the color feature field. The results in Table 4 indicate that
this may result in lower bit accuracy, which proves that mes-
sages are not embedded effectively.
Model robustness on rendering. Though we apply a nor-
mal volume rendering strategy for inference, the messages
can also be effectively extracted using a distortion rendering
utilized in training phase. As shown in the last row of Ta-
ble 4, the quantitative values with the distortion rendering
are still similar to original results in the first row of Ta-
ble 4, which further confirms the robustness of our proposed
method.

The results for different sampling schemes are presented
in Figure 5. Our distortion-resistant rendering employs 32
average sampling points and 32 importance sampling points
during training. When different sampling strategies are ap-
plied in the inference phase, our method can also achieve

Ours NeRF+HiDDeN NeRF+MBRSNo message

Figure 6: Comparisons for watermarking after rendering.
The patch in the lower left corner shows the augmentation
result by simply multiplying a factor 30. We use image in-
version for better visualization

high bit accuracy, which can validate the robustness of our
method referring to different sampling strategies.
Comparison with NeRF+HiDDeN/MBRS [50, 14]. We
also conduct an experiment to compare our method with
approaches by directly applying 2D watermarking method
on rendered images, namely NeRF+HiDDeN [50] and
NeRF+MBRS [14]. Although these methods can reach a
high bit accuracy as reported in their papers, as shown in
Figure 6, these methods can easily leave detectable traces
especially in areas with lower geometry values, as they lack
the consideration for 3D information during watermarking.
Besides, they only consider the media in 2D domain and
cannot protect the NeRF model weights.

6. Conclusions
In this paper, we propose a framework to create a

copyright-embedded 3D implicit representation by embed-
ding messages into model weights. In order to guarantee
the invisibility of embedded information, we keep the ge-
ometry unchanged and construct a watermarked color rep-
resentation to produce the message embedded color. The
embedded message can be extracted by a CNN-based ex-
tractor from rendered images from any viewpoints, while
keeping high reconstruction quality. Additionally, we intro-
duce a distortion-resistant rendering scheme to enhance the
robustness of our model under different types of distortion,
including classical 2D degradation and different rendering
strategies. The proposed method achieves a promising bal-
ance between bit accuracy and high visual quality in exper-



imental evaluations.
Limitations. Though our method has shown promising per-
formance in claiming the ownership of Neural Radiance
Fields, training a NeRF model is time-consuming. We will
consider how to speed up the training process in our future
work. Besides, though we have considered several designs
to strengthen the system robustness, this standard may still
be undermined when malicious users directly attack model
weights, i.e., the model weights are corrupted. We conduct
a simple experiment by directly adding Gaussian noise (std
= 0.01) to the model parameters, and the accuracy slightly
decreases to 93.97% (Nb = 8). As this may also affect
rendering quality, such model weights corruption may not
be a priority for malicious users who intend to display the
content. We will still actively consider how to handle such
attacks in our future work.
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