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Abstract

Deepfake detection remains a challenging task due to
the difficulty of generalizing to new types of forgeries. This
problem primarily stems from the overfitting of existing de-
tection methods to forgery-irrelevant features and method-
specific patterns. The latter has been rarely studied and not
well addressed by previous works. This paper presents a
novel approach to address the two types of overfitting issues
by uncovering common forgery features. Specifically, we
first propose a disentanglement framework that decomposes
image information into three distinct components: forgery-
irrelevant, method-specific forgery, and common forgery
features. To ensure the decoupling of method-specific and
common forgery features, a multi-task learning strategy is
employed, including a multi-class classification that pre-
dicts the category of the forgery method and a binary clas-
sification that distinguishes the real from the fake. Addi-
tionally, a conditional decoder is designed to utilize forgery
features as a condition along with forgery-irrelevant fea-
tures to generate reconstructed images. Furthermore, a
contrastive regularization technique is proposed to encour-
age the disentanglement of the common and specific forgery
features. Ultimately, we only utilize the common forgery
features for the purpose of generalizable deepfake detec-
tion. Extensive evaluations demonstrate that our framework
can perform superior generalization than current state-of-
the-art methods.

1. Introduction
Deepfake technology has gained significant attention in

recent years due to its ability to generate highly realistic
videos. While deepfake has the potential to be used for
various purposes, including entertainment and marketing,
it has also been misused for illegal purposes. The use of
deepfake to create false content can compromise people’s
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Figure 1: Comparison among different classification meth-
ods. The first is a direct classification that uses whole fea-
tures. The second approach eliminates content features to
prevent overfitting to forgery-irrelevant features. Our ap-
proach, the third one, not only removes the influence of con-
tent but also prevents overfitting to specific forgery patterns
by uncovering common features.

privacy, spread misinformation, and erode trust in digital
media, resulting in severe outcomes like reputational harm,
incitement of violence, and political instability.

As a result, developing a reliable and effective deepfake
detection algorithm is vitally essential. Recently, a large
number of detectors [58, 25, 37, 52, 36, 55, 8] have been
proposed for deepfake. Existing detectors generally per-
form well when the training and testing data are created
using the same forgery techniques. However, in real-world
applications, the testing data may be created using unknown
procedures, leading to differences between the training and
testing data and resulting in poor detection performance.
This phenomenon, known as the generalization problem in
deepfake detection, presents a significant challenge to the
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practical use of current detection methods.
Currently, an increasing number of studies are dedicated

to tackling the issue of generalization in deepfake detection.
These works typically utilize blending artifacts [23, 41] or
frequency artifacts [28, 30], and some employ adversarial
training to synthesize challenging forgeries [7]. However,
these approaches are limited in their reliance on predefined
forgery patterns. For instance, Face X-ray [23] assumes the
presence of a blending region in the forged image, which
could potentially curtail the effectiveness of the approach
when generalized to novel and unseen forgeries. In addi-
tion, these methods consider the entire feature space when
addressing the problem, which could be disrupted by irrel-
evant factors such as background [27] and identity [13].

To address the above challenges, we adopt the perspec-
tive of content and style [20] and formulate the problem
of deepfake as an integration of two distinct components:
content and fingerprint. The content in deepfake refers to
elements, e.g., the background, identity, and facial appear-
ance, which are not directly related to the forgery. In con-
trast, the fingerprint represents the traits that are related to
the forgery. The challenge, then, becomes how to effec-
tively disentangle these two components and use only the
forgery-related fingerprint for detection.

Several recent studies [51, 18, 27] attempt to address
the generalization problem through disentanglement tech-
niques. However, limited generalization capability remains
a challenge in many cases. One main reason is the over-
reliance on method-specific patterns in most disentangle-
ment methods, which only aim to eliminate the influence of
content. However, these methods may still learn patterns
that are unique to a specific forgery method, thereby limit-
ing their generalization performance.

To address this issue, we propose a novel disentangle-
ment framework that differs from existing approaches (See
Fig. 1). Our framework prevents overfitting to both content
and specific forgery patterns. To achieve this, we employ
a multi-task disentanglement framework and a conditional
decoder to disentangle the input into content and fingerprint
components. Moreover, we introduce a contrastive regu-
larization technique to disentangle the fingerprint features
into specific and common features. The specific features
represent method-specific forgeries, while the common fea-
tures are shared across different forgery methods. In our ap-
proach, only the common features are utilized for detection,
which improves the generalization ability of the model. To
validate our idea, we conduct a t-SNE visualization [46]
in Fig. 2, demonstrating that the baseline and our specific
components actually learn method-specific texture, while
our common components are able to capture the common
features across forgeries. Furthermore, the content does not
differentiate between real and fake images, as expected.

Our contributions are summarized as follows:

• We propose a novel multi-task disentanglement frame-
work to address two main challenges that contribute
to the generalization problem in deepfake detection:
overfitting to irrelevant features and overfitting to
method-specific textures. By uncovering common fea-
tures, our framework aims to enhance the generaliza-
tion ability of the model.

• We propose a conditional decoder that helps disentan-
gle forgery-irrelevant and forgery features, as well as
a contrastive regularization technique that facilitates
the disentanglement of common and specific forgery
features. By utilizing these technologies, we aim to
achieve improved disentanglement.

• Extensive experiments show that our framework can
outperform the performance of current state-of-the-art
methods in unseen testing datasets, demonstrating its
effectiveness in generalization.

2. Related Work
To date, deepfake detection can be broadly categorized

into two types of tasks: image forgery detection [37, 23, 7]
and video forgery detection [38, 16, 57]. This paper specif-
ically focuses on detecting image forgery.

Classical Detection Methods. Conventional deepfake
detectors [3, 34, 37] typically focus on developing optimal
CNN architectures. However, these methods often over-
look the details present in the frequency domain of fake
images, such as compression artifacts. To this end, sev-
eral works [36, 14, 22, 15] utilize frequency information
to improve the performance of detectors. Other notable di-
rections are focusing on some specific representations, i.e.,
forgery region location [33], neuron behaviors [49], opti-
cal flow [4], landmark geometric features [42], 3D decom-
position [59], erasing technology [47], and attentional net-
works [10, 55, 48]. However, the generalization ability to-
wards unseen forgery technologies of these conventional
deepfake detectors is still limited.

Detection Methods toward Generalization. Deepfake
detection poses a significant challenge in terms of general-
ization, where detectors perform poorly when training and
testing on different data distributions. Despite this chal-
lenge, there is a limited amount of research in this area.
One early method, FWA [25], leverages differences in res-
olution between forgery faces and backgrounds to detect
deepfake. Recent works make significant progress in im-
proving the generalization ability. Face X-ray [23] de-
tects blending boundary artifacts, SPSL [28] proposes a
frequency-based method by phase spectrum analysis, Lip-
Forensics [16] leverages spatial-temporal networks to iden-
tify unnatural mouth movements, SRM [30] utilizes the



Figure 2: The t-SNE [46] visualization of features extracted from the baseline Xception [37] and our framework on FF++ [37].
In the visualization, images generated by the four methods locate separately in the latent space, which reveals that the baseline
Xception actually learns method-specific features, consistent with our forgery-specific module. This observation explains
that Xception can mainly recognize specific types of forgeries and thus fail to generalize well to a broader range of forgeries.
Additionally, as expected, the common module of our method captures the common forgery features across different methods,
while the content module captures only forgery-irrelevant features.

high-frequency noises for generalizable detection, PCL [56]
measures patch-wise similarities of input images to identify
deepfake, SBIs [41] and SLADD [7] improve generalization
ability by combining data augmentation and blending. Al-
though these approaches largely improve the generalization
ability of classical detection methods, they are limited by
the reliance on predefined forgery patterns and the consider-
ation of the entire feature space, which can be disrupted by
unrelated factors such as background [27] and identity [13].

Disentanglement Learning for Deepfake Detection.
Disentanglement learning is a method that decomposes
complex features into simpler, more narrowly defined vari-
ables and encodes them as separate dimensions with high
discriminative power [5, 27]. In the field of deepfake detec-
tion, there are relatively few papers that are based on disen-
tanglement learning. These works aim to separate forgery-
irrelated and forgery-related features to extract forgery in-
formation from variations present in facial images. Hu et
al. [18] propose a disentanglement framework that sepa-
rates features, only using the manipulation-related features
for detection. Zhang et al. [54] go further step by adding
additional supervision to improve generalization ability. To
ensure the independence of the disentangled features, Liang
et al. [27] ensure feature independence through content con-
sistency and global representation contrastive constraints.

Despite these efforts to tackle the generalization problem
through disentanglement learning, this challenge still exists
because these methods only remove the influence of con-
tent. In some cases, these methods may still fail to achieve
complete disentanglement of forgery features, resulting in

overfitting to method-specific textures and thereby limiting
their ability to generalize to other unseen forgeries.

3. Methods

3.1. Motivation

There are two main factors that contribute to the general-
ization problem in deepfake detection. Firstly, many detec-
tors are prone to focus too much on content information that
is not directly related to the forgery, i.e., the background,
identity, and facial appearance. Secondly, different forgery
techniques produce distinct forgery artifacts. These artifacts
can be easily detected by a detector that is trained on a spe-
cific set of artifacts. However, detectors may be overfitted to
one or more specific forgery technologies, leading to a lack
of generalization to unseen forgeries. The second problem
is often overlooked in previous works.

To address these issues, we propose a multi-task dis-
entanglement learning framework to uncover common fea-
tures for generalizable deepfake detection. Our framework
aims to disentangle the input into the content, specific, and
common forgery features. By only utilizing the common
forgery features for detection, our framework can help im-
prove the generalization ability of deepfake detectors and
avoid the overfitting of both forgery-irrelated and method-
specific features. Additionally, we introduce a conditional
decoder and a contrastive regularization loss to further aid
in disentanglement and enhance the generalization ability
of the framework.
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Figure 3: The overview framework of our proposed method. 1) For the encoder (E), we utilize it to obtain three distinct
components: content, specific fingerprint, and common fingerprint. 2) For the recombination module, we recombine the
fingerprints and contents from different input images. 3) For the decoder (D), we take the fingerprint and content as inputs
to generate corresponding reconstruction images. 4) For the classification, we obtain the prediction results of specific and
common fingerprints by two different heads (Hs and Hc) to classify the forgery method and determine whether the image
is real or fake, respectively.
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Figure 4: The architecture of our decoder D, involves com-
bining the fingerprint and content through AdaIN layers,
which are then processed through multiple convolutional
blocks along with upsampling layers (indicated as “Conv-
Block” in the figure). The AdaIN layers are utilized twice
during this process to fuse the fingerprint as a condition
along with the content. Ultimately, the output of the final
“Conv-Block” layer is decoded to reconstruct the image.

3.2. Disentanglement Framework

Our disentanglement framework, depicted in Fig. 3, con-
sists of an encoder, a decoder, and two classification heads.
The encoder comprises a content encoder and a fingerprint
encoder that extract content and fingerprint features, respec-
tively. While the two encoders share the same structure,
they do not share parameters. The decoder includes multi-

ple convolutional and upsampling layers that reconstruct the
image by utilizing fingerprint features as a condition along
with content features. The classifier consists of two dif-
ferent heads, one for learning method-specific textures and
the other for learning generalizable features across different
forgeries. More details about our encoder can be found in
the supplementary material.

3.3. Architecture

Encoders. Our encoder processes a pair of images
(x0,x1), where x0 represents the fake image and x1 rep-
resents the real image. The encoder E comprises a con-
tent encoder Ec and a fingerprint encoder Ef , extracting
the content and forgery features, respectively. We apply the
encoder to each pair to obtain the corresponding fingerprint
and content features as follows:

fs
i , f

c
i , ci = E(xi), (1)

where i ∈ {0, 1} is the index of the image. Also, fs
0 , f c

0 , c0
and fs

1 , f c
1 , c1 are denoted by the specific fingerprint, com-

mon fingerprint, and content corresponding to each input
image pair, respectively.



Decoders. Our decoder (See Fig. 4) reconstructs an im-
age by utilizing its content and fingerprint through a se-
ries of upsampling and convolutional layers. Unlike other
disentanglement-based deepfake detection frameworks [54,
51, 27] that linearly add forgery and content features for
recombination, our decoder applies Adaptive Instance Nor-
malization (AdaIN) [19] for improved reconstruction and
decoding, inspired by stylization techniques [20]. The
AdaIN aligns the mean and variance of the content code
to match those of the fingerprint. The formula is written as:

AdaIN(c,f) = σ(f)

(
c− µ(c)

σ(c)

)
+ µ(f), (2)

where c and f are the content and the style vectors of the
image pair, respectively. The functions µ(·) and σ(·) com-
pute the mean and variance of the input.

3.4. Objective Function

To attain disentangled feature representation for detec-
tion, we design three distinct loss functions: two classifi-
cation losses for common and specific forgery features, a
contrastive regularization loss for similar and dissimilar im-
age embeddings, and a reconstruction loss to ensure con-
sistency between original and reconstructed images at the
pixel level. These losses are combined in a weighted sum to
create the overall loss function for training the framework.

Multi-Task Classification Loss. For classification loss,
we propose two different losses of classification. First, we
propose a binary classification loss Lc

ce computed by the
cross-entropy for supervising the model to learn the com-
mon feature of different forgery methods:

Lc
ce = Lce(Hc(f

c
i ), yi), (3)

where Lce denotes the cross-entropy loss, Hc is the head
for the common forgery feature, which is implemented by
several MLP layers. yi ∈ {fake, real} is the binary clas-
sification label. In addition, Ls

ce is proposed to learn the
method-specific patterns by guiding the model to identify
which forgery method is applied to the fake image:

Ls
ce = Lce(Hs(f

s
i ), y

′
i), (4)

where Hs is the head for specific forgery feature and y′
i ∈

{real, GAN1, GAN2, · · · } donates the label for identifying
which instance belong to the image. Note that Hc and Hs

share the same architecture but not share the parameters.
The multi-task classification loss enables the model to

learn both method-specific textures and common features
in different forgeries, enhancing the generalization ability
of the model.

Contrastive Regularization Loss. The objective of con-
trastive regularization loss is to optimize the similarity and
dissimilarity measurements between images. The con-
trastive regulation loss is formulated mathematically as:

Lcon = max (|xA − xP |2 − |xA − xN |2 + α, 0) , (5)

where α serves as a margin hyper-parameter. This method
minimizes the Euclidean distance between an anchor image
(xA) and its similar counterpart (xP ), while simultaneously
maximizing the gap between the anchor image and its dis-
similar counterpart (xN ). For instance, if xA denotes com-
mon features of a genuine image, xP would represent com-
mon attributes of another real image, while xN signifies the
attributes of a manipulated image.

For the common features, we compute the loss between
real and fake images to encourage the model to learn a gen-
eralizable representation that across different forgeries. For
the specific features, we compute the loss between images
of the same forgery to encourage the model to learn method-
specific textures for each forgery.

Reconstruction Loss. In general, there are two types of
reconstruction in our framework: self-reconstruction and
cross-reconstruction. For the self-reconstruction, the de-
coder D is applied to the content and fingerprint encoded
from the same image to reconstruct the corresponding im-
age, and the formula is written as:

Ls
rec = ∥x0 −D(f0, c0)∥1 + ∥x1 −D(f1, c1)∥1 . (6)

For the cross-reconstruction, we consider the different com-
binations of fingerprint and content features encoded from
the different images. Similarly, the formula of the cross-
reconstruction loss is written as:

Lc
rec = ∥x0 −D(f1, c0)∥1 + ∥x1 −D(f0, c1)∥1 . (7)

Considering both the self-reconstruction and cross-
reconstruction loss, the overall image reconstruction loss
can be computed as follows:

Lrec = Ls
rec + Lc

rec. (8)

The image reconstruction loss ensures that the re-
constructed image and the original image are consistent
at the pixel level. In addition, the two reconstruction
losses enhance the disentanglement of features. The self-
reconstruction loss penalizes the reconstruction errors by
leveraging the latent features of the input image, while the
cross-reconstruction loss penalizes the reconstruction errors
using the forgery feature and the swapped content features.



Overall Loss. The final loss function of the training pro-
cess is the weighted sum of the above loss functions.

L = Lc
ce + λ1Ls

ce + λ2Lrec + λ3Lcon, (9)

where λ1, λ2, λ3 are hyper-parameters for balancing the
overall loss.

4. Experiments
4.1. Settings

Datasets. To evaluate the generalization ability of the
proposed framework, our experiments are conducted on
four large-scale benchmark databases: FaceForensics++
(FF++) [37], DeepfakeDetection (DFD) [11], Deepfake
Detection Challenge (DFDC) [12], and CelebDF [26].
FF++ [37] is a large-scale database comprising more than
1.8 million forged images from 1000 pristine videos.
Forged images are generated by four face manipulation al-
gorithms using the same set of pristine videos, i.e., Deep-
Fakes (DF) [1], Face2Face (F2F) [45], FaceSwap (FS) [2],
and NeuralTexture (NT) [44]. To evaluate the generaliza-
tion ability of our framework, we follow prior research
works [23, 7] and conduct experiments on three widely used
face-manipulated datasets, i.e., DFDC [12], CelebDF [26],
and DFD [11]. Note that there are three versions of FF++
in terms of compression level, i.e., raw, lightly compressed
(HQ), and heavily compressed (LQ). Since realistic forg-
eries often have a limited quality, the HQ and LQ versions
are used in experiments. Following previous works [23, 7],
the HQ version of FF++ is adopted by default. If any
deviation from this default, it will be explicitly stated.

Implementation. We use a modified version of Xcep-
tion [37] as the backbone network, with model parameters
initialized by pre-training on ImageNet. Face extraction and
alignment are performed using DLIB [39]. Following pre-
vious works [7], the aligned faces are resized to 256 × 256
for both the training and testing. We use the Adam [21] for
optimization with the learning rate of 0.0002, and the batch
size is fixed as 32. In the overall loss function in Eq. (9),
we set λ1 to λ3 as 0.1, 0.3, 0.05 empirically. The margin α
in Eq. (5) is set to 3. We also apply some widely used data
augmentations, i.e., image compression, horizontal flip, and
random brightness contrast.

Evaluation Metrics. We report the Area Under Curve
(AUC) metric to compare our proposed method with prior
works, which is consistent with the evaluation approach
adopted in many previous works [23, 36, 37, 30, 7]. The
default evaluation metric employed is the AUC. We also
report other metrics such as Accuracy (ACC), Average Pre-
cision (AP), and Equal Error Rate (EER) for a more com-
prehensive evaluation of our method. Please refer to our
supplementary for more details.

4.2. Generalization Ability Evaluation

Comparison with competing methods. To assess the
generalization capacity of our framework, we reproduce
ten competing methods under consistent conditions for
a comprehensive comparison: Xception [37], Face X-
ray [23], F3Net [36], SRM [30], SPSL [28], RECCE [6],
CORE [35] , SLADD [7], and Liang et al. [27]. We use
the provided codes of Xception, RECCE, SLADD, CORE,
FWA, and SRM from the authors. We reimplement Face
X-ray, F3Net, SPSL, and Liang et al. [27] rigorously fol-
lowing the companion paper’s instructions and train these
models under the same settings.

We conduct this experiment by training the models on
the FF++ [37] and then evaluate these models in DFD [11],
DFDC [12], and CelebDF [26], respectively. This setting
is challenging in generalization ability evaluation since the
testing sets are collected from different sources and share
much less similarity with the training set.

The results of the comparison between different meth-
ods are presented in Tab. 1, which shows the performance
in terms of the AUC metric. It is evident that the proposed
disentanglement framework and multi-task learning strat-
egy lead to superior performance compared to other models
in most cases, achieving the overall best results.

Liang et al. [27] proposes a disentanglement framework
for content information removal, but their model is still
prone to overfitting to method-specific patterns, leading
to the limitation of the generalization. On the contrary,
the disentanglement framework we proposed is designed
to learn generalizable features across different forgeries by
the multi-task learning strategy, thereby achieving improved
generalization performance.

Face X-ray [23] and FWA [25] use blended artifacts in
forgeries to achieve generalization. However, these two
methods have limited generalization ability when the pat-
terns in the training and testing datasets differ. This is be-
cause Face X-ray learns to identify the boundary patterns
that are sensitive to the post-processing operations varying
in different datasets. On the contrary, our proposed frame-
work learns common representations that are not dependent
on specific post-processing operations.

SRM [30], SPSL [28], and F3Net [36] utilize frequency
components of images to distinguish between forgeries and
pristine images. However, the experimental results show
that their generalization performance is inferior to the pro-
posed approach. This could be due to the fact that these fre-
quency cues that are effective on the FF++ may not gener-
alize to other datasets with different post-processing steps.

CORE [35], RECCE [6], SLADD [7] are recent de-
tectors that focus on different detection algorithms: loss
design, reconstruction learning, and adversarial training.
However, these detectors could still be disrupted by unre-
lated factors such as race, gender, or identity because they



Method FF-ALL FF-wo-DF FF-wo-F2F FF-wo-FS FF-wo-NT Avg.
DFDC CelebDF DFD DFDC CelebDF DFD DFDC CelebDF DFD DFDC CelebDF DFD DFDC CelebDF DFD

Xception [37] 0.651 0.672 0.727 0.651 0.660 0.633 0.646 0.716 0.794 0.665 0.737 0.826 0.647 0.709 0.798 0.702
Liang et al. [27] 0.700 0.706 0.829 0.707 0.699 0.794 0.705 0.698 0.844 0.709 0.713 0.851 0.667 0.672 0.750 0.736

CORE [35] 0.658 0.708 0.917 0.630 0.644 0.807 0.671 0.708 0.923 0.663 0.711 0.925 0.653 0.689 0.920 0.748
RECCE [6] 0.635 0.756 0.933 0.636 0.604 0.821 0.661 0.724 0.930 0.651 0.778 0.928 0.659 0.754 0.932 0.760
FWA [25] 0.650 0.755 0.870 0.635 0.771 0.885 0.701 0.778 0.924 0.689 0.752 0.850 0.670 0.744 0.875 0.770

Face X-ray [23] 0.710 0.740 0.890 0.726 0.668 0.838 0.734 0.716 0.899 0.705 0.693 0.907 0.731 0.731 0.901 0.773
SLADD [7] 0.751 0.753 0.900 0.738 0.705 0.841 0.757 0.754 0.815 0.713 0.733 0.883 0.754 0.741 0.894 0.782
F3Net [36] 0.743 0.668 0.926 0.748 0.648 0.872 0.765 0.692 0.914 0.719 0.680 0.925 0.779 0.760 0.933 0.785
SRM [30] 0.771 0.770 0.915 0.743 0.746 0.874 0.745 0.757 0.909 0.699 0.768 0.923 0.778 0.779 0.891 0.805
SPSL [28] 0.742 0.787 0.927 0.749 0.753 0.898 0.759 0.797 0.929 0.664 0.794 0.924 0.797 0.813 0.924 0.817

Ours 0.805 0.824 0.945 0.767 0.749 0.870 0.765 0.782 0.908 0.711 0.800 0.943 0.800 0.808 0.943 0.828

Table 1: Comparisons of generalization ability with competing methods implemented by ourselves. We use two different
data configurations: “FF-ALL”, which includes all data generated by four forgeries, and “FF-wo-DF”, “FF-wo-F2F”, “FF-
wo-FS”, and “FF-wo-NT”, which use the FF++ dataset but drop DF, F2F, FS, and NT, respectively. The best results are
highlighted in bold font, while the second-best results are underlined.

Table 2: Comparison with state-of-the-art methods on
CelebDF and DFDC. The results of other works are mainly
cited from [7, 53, 50]

Model Training Set CelebDF DFDC

Two-stream [58] FF++ 0.538 -
Meso4 [3] Self-made 0.548 0.497

MesoInception4 [3] Self-made 0.536 0.499
DSP-FWA [25] FF++ 0.646 0.646
VA-MLP [32] FF++ 0.550 -
Multi-task [33] FF++ 0.543 -
Headpose [52] UADFV 0.546 -
Capsule [34] FF++ 0.575 0.575
SMIL [24] FF++ 0.563 0.563

Two-branch [31] FF++ 0.734 0.734
Schwarcz et al. [40] FF++ 0.667 0.673

PEL [15] FF++ 0.692 0.633
MADD [55] FF++ 0.674 -

Local-relaion [9] FF++ 0.783 0.765
CFFs [53] FF++ 0.742 0.721

Zhuang et al. [60] FF++ 0.728 -
SFDG [50] FF++ 0.758 0.736

Ours FF++ 0.824 0.805

operate in the entire feature space, which inevitably in-
cludes these unrelated aspects (similarly indicated in pre-
vious work [54]). From Tab. 1, our UCF (82.8%) largely
outperforms SLADD (78.2%) in terms of the average AUC.

Finally, Xception [37] serves as a CNN baseline and does
not incorporate any augmentation, disentanglement, fea-
ture engineering, or frequency information. Its performance
drops dramatically in the case of unseen forgeries, high-
lighting the importance of incorporating these techniques
in face forgery detection models.

Comparison with disentanglement-based methods.
For disentanglement-based detection frameworks, we
identify one prior work, Liang et al. [27], that shares
similarities with our approach. Their framework aims to
remove content information and introduces two modules

Table 3: Comparison on FF++ with methods using disen-
tanglement learning.

Training Method Testing AUC

FF++(LQ) CelebDF DFD DFDC

FF++
Xception [37] 0.683 0.672 0.727 0.651

Liang et al. [27] 0.714 0.706 0.829 0.700
Ours 0.833 0.824 0.945 0.805

to enhance the independence of disentangled features. To
ensure a fair comparison, we carefully implement their
framework by following the settings of the original paper,
as it is not available as an open-source resource. We train
the baseline Xception, Liang et al. [27], and ours on the
FF++ and evaluated them on FF++ (LQ), CelebDF, DFD,
and DFDC. As reported in Tab. 3, we observe that Liang et
al. [27] improve upon the baseline largely, demonstrating
the essential of removing content information. Addition-
ally, UCF outperforms Liang et al. [27] on all testing
datasets, showing the efficacy of uncovering common
features.

Comparison with state-of-the-art methods. We further
evaluate our method against other state-of-the-art models.
The results, as shown in Tab. 2, demonstrate the effective
generalization ability of our framework as it outperforms
other methods, achieving the best performance in terms of
the AUC metric on both CelebDF and DFDC. The results
of some methods are directly cited from [7, 53, 50]. Fol-
lowing a comprehensive evaluation against 27 state-of-
the-art detectors (10 implemented in this study and 17
referenced), we demonstrate the robust generalization
capability of our proposed framework. It is worth not-
ing that both UCF and Zhuang et al. [60] aim to tackle the
challenging issue of overfitting to method-specific artifacts.
However, their technical methodologies are totally differ-
ent (disentangle vs. adversarial learning). Actually, we of-
fer a fresh and distinct solution to this problem. Moreover,



Table 4: Ablation study regarding the effectiveness of our
disentanglement framework, multi-task learning strategy,
and contrastive regularization loss. “D” and “M” repre-
sent our basic disentanglement framework and the multi-
task learning module, respectively. “C” represents the
contrastive learning module. Results in gray indicate the
within-dataset performance.

Training Method Testing AUC

FF++ CelebDF DFD DFDC

FF++

Xception [37] 0.986 0.672 0.727 0.651
Xception + D 0.995 0.785 0.933 0.772

Xception + D + M 0.995 0.804 0.944 0.785
Xception + D + M + C 0.996 0.824 0.945 0.805

UCF (82.4%) significantly outperforms Zhuang et al. [60]
(72.8%) on CelebDF in terms of AUC.

4.3. Ablation Study

Effects of our disentanglement framework and multi-
task learning strategy. To evaluate the impact of the pro-
posed disentanglement framework and multi-task learning
strategy on generalization ability, we conduct an ablation
study on several datasets. Specifically, we train all mod-
els on FF++ and evaluate their performance on FF++ [37],
DFD [11], DFDC [12], and CelebDF [26]. The results are
reported in Tab. 4 using the AUC metric. The evaluated
variants include the baseline Xception, Xception with the
proposed disentanglement framework (Xception + D), the
proposed disentanglement framework with the multi-task
learning strategy (Xception + D + M), and the multi-task
disentanglement framework with the contrastive regulariza-
tion (Xception + D + M + C).

Regarding the ablation study, we observed the following.
Firstly, the four variants achieve relatively similar results
on FF++ (within-dataset evaluation). Secondly, implement-
ing the basic disentanglement framework leads to a signif-
icant improvement in DFD, DFDC, and CelebDF (cross-
dataset evaluation), indicating the generalization ability is
improved largely when applying the proposed disentan-
glement framework for the content information removal.
Thirdly, the multi-task disentanglement outperforms the ba-
sic disentanglement, indicating that the multi-task learn-
ing strategy is effective in improving the generalization
ability of the model. Finally, combining the proposed
multi-task disentanglement with the contrastive regulariza-
tion loss achieves the best results in both within-dataset
and cross-dataset evaluations, supporting the effectiveness
of each module.

Effects of our conditional decoder. In contrast to other
disentanglement-based detection frameworks [54, 51, 27]
that use linear addition to combine fingerprint and content
features for recombination, our proposed decoder utilizes

Table 5: Ablation study regarding the effectiveness of the
conditional decoder. “CD” represents that we use the condi-
tional decoder for image reconstruction. Otherwise, we use
the linearly add for combining the fingerprint and content.
Results in gray indicate the within-dataset performance.

Training Method Testing AUC

FF++ CelebDF DFD DFDC

FF++ Ours 0.995 0.811 0.932 0.786
Ours + CD 0.996 0.824 0.945 0.805

Table 6: Comparison with binary classification results of
different forgery features.

Training Method Testing AUC

FF++ CelebDF DFD DFDC

FF++

Xception [37] 0.986 0.672 0.727 0.651
Specific Forgery 0.987 0.681 0.842 0.667
Whole Forgery 0.995 0.785 0.933 0.772

Common Forgery 0.996 0.824 0.945 0.805

Table 7: Comparing the performance of the baseline and
our proposed framework using different backbones. The
best result is highlighted in bold font. “Avg.” represents the
average AUC for cross-datasets.

Training Method Testing AUC

FF++(LQ) CelebDF DFD DFDC Avg.

FF++

Xception [37] 0.683 0.672 0.727 0.651 0.683
Ours (Xception) 0.833 0.824 0.945 0.805 0.852
ConvNext [29] 0.779 0.788 0.912 0.753 0.808

Ours (ConvNext) 0.845 0.869 0.946 0.802 0.866

AdaIN [19] to incorporate the fingerprint as a condition
with the content for improved reconstruction and decod-
ing. To evaluate the impact of the conditional decoder on
the generalization ability, we conduct an ablation study on
the proposed framework with and without the conditional
decoder. Results in Tab. 5 demonstrate that our proposed
conditional decoder can achieve improved performance on
both within- and cross-datasets, highlighting the importance
of using AdaIN layers for reconstruction and decoding.

Comparison with binary classification results of differ-
ent forgery features. To evaluate the effectiveness of the
proposed multi-task learning strategy, binary classification
results are compared based on the common, specific, and
whole forgery features. Tab. 6 shows that the common fea-
tures exhibit superior generalization performance compared
to the specific features. The comparison of the common and
whole forgery features reveals that the whole forgery fea-
tures are not as effective as the common features, mainly
due to the presence of specific features, which may lead to
overfitting to method-specific textures.
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Figure 5: Visualization of the reconstruction images during
the training process.

Exploring Generalization performance of different
backbone choices. In this section, we investigate the
choice of backbone on the generalization ability of our pro-
posed framework. We use Xception as the backbone in
our previous experiments to align with other related works,
but our multi-task framework is not limited to this choice.
To evaluate the effectiveness of our framework with differ-
ent backbones, we adopt a recent SOTA backbone Con-
vNeXt [29] and conduct an ablation study. The results of
the ablation study, shown in Tab. 7, demonstrate that our
proposed framework can largely improve the generalization
performance of both Xception and ConvNeXt backbones.
This suggests that our framework is effective and applica-
ble to different backbone choices. Additionally, to further
highlight the plug-and-play nature of our proposed frame-
work, we extend its application to ResNet [17] and Effi-
cientNet [43] backbones. More details can be accessed in
our supplementary materials.

4.4. Visualization

Visual examples of reconstructed images. Within the
framework we propose, the generation of reconstruction
images occurs during the recombination phase of training.
These images serve a pivotal role in ensuring the effective
disentanglement of content and fingerprint features, as de-
picted in Fig. 5.

The content features within our framework are specifi-
cally designed to capture appearance, identity, gender, and
other forgery-related features. In the visual examples of the
reconstructed images (see Fig. 5), it is evident that the im-
ages sharing the same content code exhibit a marked simi-
larity. This resemblance persists even when the fingerprint
features, which represent unique identifiers separate from
the content, are derived from other individuals. The ob-
served similarity in the reconstructed images with identical
content codes substantiates the efficacy of our framework in
accurately isolating content features from other elements of
the image. Contrary to the content features, the fingerprint
features do not alter the content information of the original
inputs. However, a close examination of the reconstructed
images with the same content code but different fingerprint
codes reveals subtle differences.

5. Conclusion
In this paper, we propose a novel disentanglement frame-

work that can generalize well in unseen deepfake datasets.
Our approach is grounded in the idea that a generalizable
deepfake detector should be able to capture the generaliz-
able features across different types of forgeries. To this end,
we introduce a multi-task disentanglement framework to
uncover the common features. Additionally, we also intro-
duce a conditional decoder and a contrastive regularization
loss to enhance the disentanglement process. In this man-
ner, the model can avoid overfitting to forgery-irrelevant and
method-specific forgery textures, leading to a more gener-
alizable detector. To evaluate the effectiveness of our pro-
posed method, we conduct extensive experiments on several
benchmark datasets and compare our results against exist-
ing state-of-the-art methods. Overall, our proposed frame-
work represents a promising step toward the development
of more generalizable deepfake detectors.
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priately attributed through proper citations. Our research
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