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Abstract

The growing threats of deepfakes to society and cyberse-
curity have raised enormous public concerns, and increas-
ing efforts have been devoted to this critical topic of deep-
fake video detection. Existing video methods achieve good
performance but are computationally intensive. This paper
introduces a simple yet effective strategy named Thumb-
nail Layout (TALL), which transforms a video clip into
a pre-defined layout to realize the preservation of spa-
tial and temporal dependencies. Specifically, consecutive
frames are masked in a fixed position in each frame to im-
prove generalization, then resized to sub-images and rear-
ranged into a pre-defined layout as the thumbnail. TALL
is model-agnostic and extremely simple by only modify-
ing a few lines of code. Inspired by the success of vi-
sion transformers, we incorporate TALL into Swin Trans-
former, forming an efficient and effective method TALL-
Swin. Extensive experiments on intra-dataset and cross-
dataset validate the validity and superiority of TALL and
SOTA TALL-Swin. TALL-Swin achieves 90.79% AUC on the
challenging cross-dataset task, FaceForensics++ → Celeb-
DF. The code is available at https://github.com/
rainy-xu/TALL4Deepfake.

1. Introduction
Deepfakes generate and manipulate facial appearances

to deceive viewers through generation techniques [61, 48].
With the remarkable success of generative adversarial net-
works [14, 27], deepfake products have become photo-
realistic that humans can not distinguish. These deepfake
products [21, 49] may be misused for malicious purposes,
leading to severe trust issues and security problems, such
as financial fraud, identity theft, and celebrity imperson-
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Figure 1. The AUC and FLOPs trade-off of different back-
bones. Image-level backbones with TALL enjoy comparable
accuracy-cost trade-offs with the 3DCNN and video transformer
family on the unseen Celeb-DF dataset. All models with the same
setting are trained on the FF++ (HQ) dataset.

ation [53, 40]. The rapid development of social media ex-
acerbates the abuse of deepfakes. Therefore, it is crucial
to develop advanced detection methods to protect the data
privacy of individual users.

Most previous image-based methods [22, 69] perform
well on intra-dataset, but their generalizability needs to be
improved. Recent research has focused on video-based
methods to detect deepfake by modeling spatio-temporal
dependencies. There are subtle spatio-temporal inconsis-
tencies between frames since the deepfake algorithms are
executed frame by frame. The core of video-level ap-
proaches for deepfake detection is capturing inconsistencies
through temporal modeling. Existing deepfake video detec-
tion methods generally follow two directions. Some meth-
ods [15, 16] use two-branch networks or modules to learn
spatial and temporal information separately and then fuse
them. However, these two-branch approaches may frag-
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ment spatiotemporal cooperation and lead to subtle artifacts
being neglected. Others directly use classic temporal mod-
els such as LSTM and 3D-CNNs. These methods are com-
putationally intensive. The current rise of transformers for
vision task backbones has prompted the emergence of cor-
responding deepfake detection methods. They are accom-
panied by significant computational complexity that makes
them challenging to deploy and use, despite breakthroughs
in performance. To enjoy benefits from both image and
video methods, we are curious to see whether it is possi-
ble to append information about the temporal dimension to
the image dimension.

This work develops a simple yet effective Thumbnail
Layout (TALL) for deepfake detection by spatio-temporal
modeling. TALL is computationally cheap and retains both
temporal and spatial information. In detail, we use dense
sampling to extract multiple clips in the video and then ran-
domly select four consecutive frames in the video segment.
Subsequently, a block is masked at a fixed position in each
frame. Finally, the frames are resized as sub-image and se-
quentially rearranged into a pre-defined layout as a thumb-
nail, which has the same size as the clip frames. As shown
in Figure 1, TALL brings two advantages compared to the
previous spatio-temporal modeling methods for deepfake
detection: (1) TALL contains local and global contextual
deepfake patterns. (2) TALL is a model-agnostic method for
spatio-temporal modeling deepfake patterns at zero compu-
tation and zero parameters.

Furthermore, we discover that the better temporal model-
ing capabilities backbone has, the better performance TALL
achieves. Based on the proposed TALL, we complement
a baseline for video deepfake detection based on Swin
Transformer [36], called TALL-Swin. We validate TALL-
Swin on four popular benchmark datasets, including Face-
Forensics++, Celeb-DF, DFDC, and DeeperForensics. Our
method gains a remarkable improvement over the state-of-
the-art approaches. The main contributions of our paper are
summarized as follows:

• We provide a new perspective for an efficient strategy
for video deepfake detection called Thumbnail Layout
(TALL), which incorporates both spatial-temporal de-
pendencies, and allows the model to capture spatial-
temporal inconsistencies.

• We propose a spatio-temporal modeling method called
TALL-Swin, which efficiently captures the inconsis-
tencies between deepfake video frames.

• Extensive experiments demonstrate the validity of our
proposed TALL and TALL-Swin. TALL-Swin out-
performs previous methods in both intra-dataset and
cross-dataset scenarios.

2. Related Work
2.1. Image-Level Deepfake Detection

Typically, existing deepfake detection methods fall into
two categories: image-level and video-level methods. The
image-level methods [25, 13] always exploit the artifacts
of deepfake images in the spatial domain, such as discrep-
ancies between local regions [42, 59], grid-like structure
in frequency space [10], and differences in global texture
statistics [37] that provide specific clues to distinguish deep-
fakes from the real images. F3Net [43] and FDFL [31]
utilize the same pipeline that utilizes frequency-aware fea-
tures and RGB information to capture the traces in differ-
ent input spaces separately. RFM [54] and Multi-att [65]
propose an attention-guided data augmentation mechanism
to guide detectors to discover undetectable deepfake clues.
Face X-ray [32] and PCL [67] provide effective ways to
outline the boundary of the forged face for detecting deep-
fakes. ICT [11] exploits an identity extraction module to
detect identity inconsistency in the suspect image. Simi-
larly, M2tr [55] detects local inconsistencies within frames
at different spatial levels. Generally, image-level methods
suffer over-fitting issues when a specific technique manipu-
lates the images, and they ignore temporal information.

2.2. Video-Level Deepfake Detection

To improve the generalization of deepfake detectors,
many studies generate diversity and generic deepfake data,
while other studies capture the temporal incoherence of fake
videos as generic clues. Some recent works propose de-
tecting temporal inconsistency using well-designed spatio-
temporal neural networks, and others [15, 16] attempt to
add modules to image models that capture temporal infor-
mation. STIL [15] formulates deepfake video detection as
a spatial and temporal inconsistency learning process and
integrates both spatial and temporal features in a unified 2D
CNN framework. FTCN [68] detects temporal-related arti-
facts instead of spatial artifacts to promote generalization.
LipForensics [18] is proposed to learn high-level semantic
irregularity in mouth movement in the generated video. Re-
alForensics [17] uses auxiliary data sets during training in
exchange for generalization at the cost of higher computa-
tional demands. The video-based methods achieve strong
generalization but suffer from large computational over-
head. To reduce computational costs, we propose TALL
which gathers consecutive video frames into thumbnails for
learning spatio-temporal consistency.

2.3. Deepfake Detection with Vision Transformer

Recently, ViT [12] has achieved impressive performance
in computer vision tasks [24, 23, 44]. Many studies ex-
tend the ViT for deepfake detection [66, 58]. These meth-
ods achieve better performance compared to CNN-based



models, but also sacrifice computational efficiency. A
few works [55, 66] attempt to extend the transformer for
deepfake detection due to the advent of the visual trans-
former (ViT) and the impressive ability to model long-range
data, different from two-branch architectures that capture
short-range and long-range temporal inconsistencies with a
single-branch model. ICT [11] aims to detect identity con-
sistency in deepfake video but may fail in detecting face
reenactment and entire face synthesis results. DFLL [28]
extract the UV texture map to help the transformer to detect
deepfakes, which may disrupt the continuity between video
frames. DFTD [29] leverages ViT to consider both global
and local information but ignores the problem of excessive
model arithmetic requirements. Although the transformer-
based approaches achieve promising performance, they are
accompanied by significant computational complexity that
makes them challenging to deploy and use, and the long-
range dependencies may be insufficiently exploited in de-
tection models. Swin Transformer [36] produces a hierar-
chical feature representation and has linear computational
complexity concerning input image size, which is suitable
as a general-purpose backbone for various vision tasks. In
this paper, we cooperate with Swin Transformer to form our
robust and efficient method TALL-Swin.

3. Method
TALL is a deepfake video detection strategy that trans-

forms a video clip into an all-in-one thumbnail without the
extra computational overhead. In the following sections,
we begin with the motivation of TALL for deepfake detec-
tion in Section 3.1. Then we present the technical details
of the TALL in Section 3.2. Finally, a generalizable Swin-
TALL baseline is introduced to explore subtle artifacts in
Section 3.3.

3.1. Motivation

While recent studies have attempted to address notice-
able flaws through techniques like slight motion blurring
and temporal consistency loss, subtle spatio-temporal arti-
facts still remain. These artifacts are important for detecting
deepfakes, but they introduce two problems: 1) video-based
models are less efficient, and 2) analyzing information over
long distances may overlook local artifacts, which are crit-
ical for deepfake detection. To address these challenges,
we propose the TALL strategy, which naturally incorpo-
rates temporal information into image-level tasks without
disrupting spatial information. This approach enables the
image-level model to detect deepfakes in videos. Further-
more, we discovered that TALL provides even greater per-
formance gains when combined with a powerful spatial
model, resulting in the TALL-Swin.

In detail, TALL arranges consecutive frames in the
temporal order in a compact 2×2 layout, in line with

Figure 2. Illustration of the TALL and shifted window process for
computing self-attention in the TALL.

the calculation theory of convolution and shifted window.
TALL contains both spatial and temporal information so
that model can learn both intra-frame artifacts and inter-
frame inconsistency and obtains comparable performance
to video-based methods. Here we use the shifted win-
dow to explain TALL’s mechanism. As illustrated in Fig-
ure 2 (a), the model computes self-attention while account-
ing for spatial dependencies across sub-images (represented
by the solid red box). When the window spans multiple
sub-images (represented by the red dash box), the model
is able to capture temporal inconsistencies between frames.
Moreover, TALL leverages both local and global contexts
of deepfake patterns to ensure robust modeling capabilities
for short and long-range spatial dependencies. Compared
to previous methods, we anticipate that TALL strikes a bal-
ance between speed and accuracy, sacrificing a little spatial
information while preserving performance. Based on the
fact that attention-based models are better at handling con-
textual features and that the Swin-Transformer uses shifted
windows to reduce computation and memory, we further
complement TALL-Swin baseline for video deepfake de-
tection.

3.2. Thumbnail Layout (TALL)

Given a video V ∈ RT×C×H×W , where T is the frame
length of the video, C is the number of channels, and H×W
is the resolution of the frames. Assuming each video con-
tains N clips, we divide a video into N equal segments
of length T/N and then sample consecutive t (set to 4 by
default) frames from the segments at random locations to
form one clip. Then, the thumbnail I is rearranged of sub-
images (C × H√

t
× W√

t
) that are resized from the above t

frames. To maximize the utility of TALL, we mask the or-
ganized N square masks of the thumbnail. It is based on
two core designs: 1) The position of the masks is random
between different sub-images, which retains the advantages
of the Cutout [8] that encourages the network to focus more
on complementary and less prominent features. 2) We fix



Algorithm 1 Pseudocode of TALL in a PyTorch-like style.

# x: one clip of video (T*C*H*W)
# T: frame number of clip
# C: channels; s: mask size
# d: length of frame included in the

thumbnail
# r: rows of thumbnail
# x_tall: thumbnail image (224*224)

#TALL’s augmentation strategy
h = np.random.randint(H)
w = np.random.randint(W)
#the mask position is fixed for each frame
m = np.ones((H, W))
h1 = np.clip(h - s // 2, 0, H)
h2 = np.clip(h + s // 2, 0, H)
w1 = np.clip(w - s// 2, 0, W)
w2 = np.clip(w + s // 2, 0, W)
m[h1: h2, w1: w2] = 0
m = torch.from_numpy(m)
m = mask.expand_as(x)
x = x * m
#TALL: generation of the thumbnail
x = x.view(-1,H,W).unsqueeze(0)
x = x.view((-1,C*d) + x_tall.size()[2:])
x = rearrange(x, ‘b (th tw c) h w

-> b c (th h) (tw w)‘, th=r, c=C)
x_tall = interpolate(x, size=H)

the position of the mask within a clip to take advantage of
the fact that most deepfake videos are frame-by-frame tam-
pered with, thus forcing the model to detect inconsistencies
between adjacent frames of the deepfake videos. We do not
allow the mask to appear on the seams of the thumbnail but
allow for partial mask inclusion in the thumbnail. The de-
tailed procedure of TALL is summarized in Algorithm 1.

3.3. TALL-Swin

To balance efficiency and model performance for spatio-
temporal feature learning and to leverage the benefits of
attention-based models, we enhanced a baseline deepfake
detection model called TALL-Swin by incorporating the
Swin Transformer [36]. Given the characteristics of TALL,
we slightly modified the window size of Swin-B in TALL-
Swin. We first enlarge the window size of the first three
stages of the model so that the interaction between frames
in the thumbnail becomes more frequent, forcing the model
to learn more detailed spatio-temporal dependencies. Next,
we set the window size of the last stage to be the same as
the feature map size, enabling the window to perform global
attention computations while TALL-Swin captures global
spatial-temporal dependencies. As a result, the size of the
last layer of the feature map became smaller, reducing the
window size without introducing any additional computa-
tional overhead. Consequently, the window sizes for the
four stages of TALL-Swin are [14, 14, 14, 7]. Note that the
patch merging process makes TALL-Swin captures a more
comprehensive range of dependencies through hierarchical

representations, as shown in Figure 2 (b).
Given a video of length T , each frame contains N

patches, and the window contains P patches. To demon-
strate the superiority of TALL-Swin in terms of compu-
tational consumption, we show below the computational
complexity of the image-level transformer and video-level
transformer, including ViT [12], Swin [36], ViViT [2], and
TALL-Swin respectively:

ΩViT = 4TNC2 + 2TN2C,

ΩSwin = 4TNC2 + 2TPNC,

ΩViViT = 4TNC + 2T 2N2C,

ΩTALL−Swin = TNC2 + 1
2TPNC.

(1)

TALL-Swin has the lowest computational complexity com-
pared to image and video-level transformer methods. Sub-
sequent experiments will demonstrate that TALL-Swin
maintains performance, albeit at the sacrifice of some spa-
tial information.

The cross-entropy loss is employed to optimize the
TALL-Swin, which is defined as:

LCE = − 1

n

n∑
i=1

yi logF(xi) + (1− yi)(log (1−F(xi)), (2)

where xi indicates input clip, yi denotes the label of clip,
n is the number of clip, F is TALL-Swin.

4. Experiments

4.1. Setup

Datasets. Following previous works [18, 17, 68], we
evaluate the TALL and TALL-Swin on four widely used
datasets. FaceForensics++ [45] is a most-used benchmark
on intra-dataset deepfake detection, consisting of 1,000 real
videos and 4,000 fake videos in four different manipula-
tions: DeepFake [7], FaceSwap [38], Face2Face [52], and
NeuralTextures [51]. Besides, FaceForensics++ contains
multiple video qualities, e.g. high quality (HQ), low qual-
ity (LQ) and RAW. Celeb-DF (CDF) [34] is a popular
benchmark on cross-dataset, which contains 5,693 deepfake
videos generated from celebrities. The improved composit-
ing process was used to improve the various visual artifacts
presented in the video. Celeb-DF is also suitable for deep-
fake detection tasks with a reference set. DFDC [9] is a
large-scale benchmark developed for Deepfake Detection
Challenge. This dataset includes 124k videos from 3,426
paid actors. The existing deepfake detection methods do
perform not very well on DFDC due to their sophisticated
deepfake techniques. DeeperForensics (DFo) [26] includes
60,000 videos with 17.6 million frames for deepfake detec-
tion, whose videos vary in identity, pose, expression, emo-
tion, lighting conditions, and blend shape with high quality.



Models Temp. CDF DFDC FLOPs Params PT

I3D-RGB∗ [4] ✓ 78.24 65.58 222.7G 25M 1K
R3D-50∗ [19] ✓ 79.63 67.73 296.6G 46M 1K

ResNet50∗ [20] × 76.38 64.01 25.5G 21M 1K
+TALL ✓ 80.90 65.54 25.5G 21M 1K

EffNetB4∗ [50] × 78.19 66.81 8.3G 19M 1K
+TALL ✓ 83.37 67.15 8.3G 19M 1K

VTN [41] ✓ 83.20 73.50 296.6G 46M 21K
VidTR [63] ✓ 83.30 73.30 117G 93M 21K
ViViT∗ [2] ✓ 86.96 74.61 628G 310M 21K
ISTVT [64] ✓ 84.10 74.20 455.8G - -

ViT-B∗ [12] × 82.33 72.64 55.4G 84M 21K
+TALL ✓ 86.58 74.10 55.4G 84M 21K

Swin-B∗ [36] × 83.13 73.01 47.5G 86M 21K
TALL-Swin ✓ 90.79 76.78 47.5G 86M 21K

Table 1. Performance of different backbones. TALL consis-
tently improves the accuracy over different image-level models.
We show the AUC, FLOPs, and number of parameters for each
model on the cross-dataset scenario. All models are trained on
FF++ (HQ). ✓ indicates the model enables temporal modeling. *
indicates our implementation. PT indicates pre-train. 1K and 21K
indicate the model pre-trained on ImageNet-1K and 21K respec-
tively. The best results are bold.

Implementation Details. We use MTCNN to detect
face for each frame in the deepfake videos, only extract the
maximum area bounding box and add 30% face crop size
from each side as in LipForensics [18]. The ImageNet-21K
pretrained Swin-B model is used as our backbone. Exclud-
ing ablation experiments, we sample 8 clips using dense
sampling, each clip contains 4 frames. The size of the
thumbnail is 224×224. Following Swin Transformer [36],
Adam [30] optimization is used with a learning rate of 1.5e-
5 and batch size of 4, using a cosine decay learning rate
scheduler and 10 epochs of linear warm-up. We adopt Acc.
(accuracy) and AUC (Area Under Receiver Operating Char-
acteristic Curve) as the evaluation metrics for extensive ex-
periments. To ensure a fair comparison, we calculate video-
level predictions for the image-based method and average
the predictions across the entire video (following previous
works [18, 16, 35, 68]). Note that results are directly cited
from published papers if we follow the same setting.

4.2. Scaling over Backbones

To verify our assumption, we adopt several image-level
backbones commonly used for deepfake detection for com-
parison with the video-level backbones. As shown in Ta-
ble 1 above the double horizontal line, we first compare the
accuracy and complexity of the CNN-based video and im-
age backbones. Although I3D [4] and R3D [19] achieve

better performance than vanilla ResNet50 [20] and Effi-
cientNet [50], the computation costs are huge, such as R3D-
50 with 296G FLOPs. For ResNet and EfficientNet who
added TALL, ResNet achieves better AUC both on CDF
(76.38 VS 80.93) and DFDC (64.01 VS 65.54) datasets. Ef-
ficientNet achieves 5.18% better AUC on CDF.

The second section contains the video and image trans-
formers. Compared to video transformers, the image-based
ViT and Swin fail to achieve better performance due to the
lack of temporal modeling. For example, ViViT achieves
86.96% AUC on CDF, which is 3.6% higher than Swin
although ViViT with 13× more computation. By way of
contrast, ViT+TALL achieves 86.58% AUC on CDF with
55.4G FLOPs, which is comparable to AUC with ViViT but
with low computation. Accordingly, Swin’s performance
was significantly improved with the addition of TALL with-
out computation increment. On the other hand, TALL
boosts higher performance on models with learned long-
range dependencies. e.g., ResNet+TALL (+4.5% on CDF
and +1.5% on DFDC) vs. Swin+TALL (+7.6% on CDF and
+3.6% on DFDC). These two section results demonstrate
that TALL provides both spatial and temporal information
and enables the model to learn spatial and temporal incon-
sistencies for video deepfake detection.

Methods FF++ (HQ) FF++ (LQ)

Acc. AUC Acc. AUC

MesoNet [1] 83.10 - 70.47 -
Xception [6] 95.73 96.30 86.86 89.30
Face X-ray [32] - 87.35 - 61.60
Two-branch [39] 96.43 98.70 86.34 86.59
Add-Net [70] 96.78 97.74 87.50 91.01
F3-Net [43] 97.52 98.10 90.43 90.43
FDFL [31] 96.69 99.30 89.00 92.40
Multi-Att [65] 97.60 99.29 88.69 90.40
RECCE [3] 97.06 99.32 91.03 95.02
LipForensics [18] 98.80 99.70 94.20 98.10

DFDT [29] 98.18 99.26 92.67 94.48
ADT [56] 92.05 96.30 81.48 82.52
ST-M2TR [55] - 99.42 - 95.31

VTN [41] 98.47 - 94.02 -
VidTR [63] 97.42 - 92.12 -
ViViT∗ [2] 92.60 - 88.02 -
ISTVT [64] 99.00 - 96.15 -
TALL-Swin 98.65 99.87 92.82 94.57

Table 2. Intra-dataset evaluations. We report the video-level
Acc. (%) and AUC (%) on the FF++ dataset. HQ indicates high
quality, and LQ indicates low quality.



4.3. Comparison with State-of-the-art Methods

Intra-dataset evaluations. Following ISTVT [64], we
show the results of the FF++ dataset under both Low Qual-
ity (LQ) and High Quality (HQ) videos, and report compar-
isons against several advanced methods in Table 2. We can
observe that advanced video-based transformers have better
results than CNN-based methods. Compared to video-based
transformer methods, TALL-Swin has comparable perfor-
mance and lower consumption to the previous video trans-
former method with HQ settings. However, TALL-Swin
gets unsatisfactory results with the LQ setting. The LQ set-
ting is obtained by severely compressing the videos. So the
reason for the result may be that TALL scales the frame to
a smaller size, causing more spatial information to be lost
in the frame. We will investigate the possibility of other
designs to further improve performance in the LQ setting.

Method CDF DFDC FSh DFo Avg.

Xception [6] 73.70 70.90 72.00 84.50 75.28
CNN-aug [57] 75.60 72.10 65.70 74.40 71.95
CNN-GRU [46] 69.80 68.90 80.80 74.10 73.40
Patch-based [5] 69.60 65.60 57.80 81.80 68.70
Face X-Ray [32] 79.50 65.50 92.80 86.80 81.15
Multi-Att [65] 75.70 68.10 66.00 77.70 71.88
DSP-FWA [33] 69.50 67.30 65.50 50.20 63.13
LipForensics [18] 82.40 73.50 97.10 97.60 87.65

FTCN [68] 86.90 74.00 98.80 98.80 89.63
RealForensics [17] 86.90 75.90 99.70 99.30 90.45
DFDT [29] 88.30 76.10 97.80 96.90 89.70

VTN [41] 83.20 73.50 98.70 97.70 88.30
VidTR [63] 83.50 73.30 98.00 97.90 88.10
ViViT∗ [2] 86.96 74.61 99.41 99.19 90.05
ISTVT [64] 84.10 74.20 99.30 98.60 89.10
TALL-Swin 90.79 76.78 99.67 99.62 91.71

Table 3. Generalization to unseen datasets. We report the video-
level AUC (%) on four unseen datasets: Celeb-DF (CDF), DFDC,
FaceShifter (FSh), and DeeperForensics (DFo).

Generalization to unseen datasets. In addition to the
intra-dataset comparisons, we also investigate the gener-
alization ability of our method. Adhering to the deep-
fake video detection cross-dataset protocol [18], we train a
model on FF++ (HQ) then test on Celeb-DF (CDF), DFDC,
FaceShifter (FSh), and DeeperForensics (DFo) datasets. As
shown in Table 3: (1) Video-based methods generally have
better results than image-based methods, which shows that
temporal information is helpful for the deepfake video de-
tection task. For example, Lip outperforms Face X-ray’s
AUC by a wide margin. In addition, most transformer-
based models have higher performance than CNN-based
models. For the transformer-based models, both achieved

an average AUC of 88%, while the best CNN-based video-
level models only achieved 87%. (2) TALL-Swin achieves
state-of-the-art results on Celeb-DF, DFDC, and Deeper-
Forensics datasets, and also beats its competitors on Celeb-
DF dataset by a large margin (3.8%). The results demon-
strate that TALL-Swin performs well when encountering
unseen datasets with better generalization ability than pre-
vious video transformer methods.

Figure 3. Saliency map visualization of TALL-Swin on differ-
ent datasets. The first four rows of samples are from the FF++
dataset, and the last four rows are from the unseen datasets.

Analysis of saliency map visualization. We adopt
Grad-CAM [47] to visualize where the TALL-Swin is pay-
ing its attention to the deepfake faces. In Figure 3, we give
the results on intra-dataset and cross-dataset scenarios. All
models are trained on FF++ (HQ). It can be observed in
the first four rows of Figure 3 that TALL-Swin captures
method-specific artifacts. Note that the DF transfers the
face region from a source video to a target, and the NT only
modifies the facial expressions corresponding to the mouth
region. TALL-Swin corresponds to focus on the face re-
gion and the mouth region. Furthermore, our model traces
the more generalized artifacts that are independent of ma-
nipulation methods, e.g., blending boundaries (CDF), and
abnormal motions in the clip (DFDC, Fsh, Dfo).



Figure 4. Robustness to various unseen corruptions. We report the video-level AUC (%) of our methods under five different levels of
seven particular types of corruption. “Average” denotes the mean across all corruptions at each severity level. Our TALL-Swin is more
robust than previous methods for all corruptions.

Method Clean Saturation Contrast Block Noise Blur Pixel Compress Avg.

Xception (ICCV’19) [6] 99.8 99.3 98.6 99.7 53.8 60.2 74.2 62.1 78.3
CNN-GRU (CVPRW’19) [46] 99.9 99.0 98.8 97.9 47.9 71.5 86.5 74.5 82.3
CNN-aug (CVPR’20) [57] 99.8 99.3 99.1 95.2 54.7 76.5 91.2 72.5 84.1
Patch-based (ECCV’20) [5] 99.9 84.3 74.2 99.2 50.0 54.4 56.7 53.4 67.5
Face X-ray (CVPR’20) [32] 99.8 97.6 88.5 99.1 49.8 63.8 88.6 55.2 77.5
LipForensics (ICCV’21) [18] 99.9 99.9 99.6 87.4 73.8 96.1 95.6 95.6 92.5
FTCN (ICCV’21) [68] 99.4 99.4 96.7 97.1 53.1 95.8 98.2 86.4 89.5
RealForensics (CVPR’22) [17] 99.8 99.8 99.6 98.9 79.7 95.3 98.4 97.6 95.6
TALL-Swin w/o mask 100.0 100.0 100.0 99.8 83.5 97.3 98.4 97.9 96.7
TALL-Swin 100.0 100.0 100.0 100.0 85.3 97.6 98.5 98.1 97.1

Table 4. Average robustness to unseen corruptions. Average Video-level AUC (%) across five intensity levels for each corruption type
proposed in DFo [26]. “Avg” indicates the mean across all corruptions and all levels.

Robustness to unseen perturbations. Deepfake detec-
tors must be robust to common perturbations, given that
video propagation on social media causes video compres-
sion, noise addition, etc. We also study the performance of
robustness to unseen perturbations. Following RealForen-
sics [17], the experiment applies seven unseen perturbations
to fake videos at five intensity levels. In Figure 4, we show
results of increasing the severity of each corruption. We
can observe that other methods degrade dramatically as the
perturbations become more severe. TALL-Swin still has a
high performance. However, TALL-Swin degrades when

the Gaussian noise reaches level five. Table 4 presents the
average AUC across all intensity levels for corruption types.
We observe that our method is significantly more robust to
most perturbations than other methods. The good robust-
ness may be from both the design of TALL and the proposed
mask augmentation. The main reason may be the consecu-
tive multi-frame input. We empirically consider that the key
to deepfake detection is local inconsistency, the continuous
frame design has less redundant information, ensuring that
the model finds locally important clues.



Figure 5. Illustration of different layout designs.

4.4. Ablation Study

We perform the ablation study to analyze the effects of
each component and hyper-parameter in TALL-Swin. All
experiments are trained on FF++ (HQ) and tested on the
CDF and DFDC datasets.

Effects of different layouts. We train a TALL-Swin
model on FF++(HQ) for each layout illustrated in Figure 5,
to analyze in which layout of the thumbnails the model
learns the strongest generalization of the spatial-temporal
dependence of the deepfake patterns. As shown in Table 5,
the model with a compact layout like Figure 5 (d) has good
generalization ability on the unseen datasets. A compact
layout like Figure 5 (d) may help the model to learn the
temporal dependence across frames because such a form
provides the shortest distance between any two images.

Layout CDF DFDC

Figure 5 (a) 85.52 70.02
Figure 5 (b) 84.93 73.57
Figure 5 (c) 86.66 72.12
Figure 5 (d) 87.60 74.32

Table 5. Effects of different layouts. All models here are trained
without mask augmentation.

Study on the numbers of sub-image. We use Swin-B
as the baseline for this study to compare the effect of differ-
ent thumbnail layout schemes on the model’s generalization
ability. Changing frames to thumbnails involves scaling, so
we also investigate the impact of resizing and random crop-
ping pre-processing on model performance. We set up four
variants: resizing pre-process with 4×4 layout, 3×3 layout
and 2 × 2 layout; random cropping pre-process with 2 × 2
layout. As shown in Table 6, the model performance de-
grades sharply when using 4 × 4 layout. This may be due
to the small size of each sub-image that the spatial informa-
tion is not captured well by the model. The result of 3 × 3
layout also slightly decreases. 2 × 2 layout with resizing
pre-processing beats 2 × 2 layout with random crop. We
also found that TALL-Swin achieves the best performance
and the AUC score increases 3.2% compared to the base-
line, suggesting that thumbnails in a 2 × 2 layout are more
helpful to TALL-Swin than original frames.

Effects of Sub-image’s size. We eliminate the scaling

Pre-process Layout CDF DFDC

None - 83.13 73.01
Resize 4× 4 80.18 70.45
Resize 3× 3 83.18 72.98
Crop 2× 2 78.55 73.30

Resize 2× 2 87.60 74.32

Table 6. Study on the numbers of sub-image. All models here
are trained without mask augmentation.

operation for sub-images to allow for more flexible layout
settings. However, we’ve observed that when the number
of sub-images grows at their original size, the performance
improvements are only slight. Additionally, the computa-
tional complexity increases dramatically with the number of
frames ( 4.3 times more than the TALL setting), as demon-
strated in Table 7. To strike a balance between performance
and computational complexity, we reduce the resolution of
sub-images in TALL.

Subimage-size Layout FLOPs CDF DFDC

224× 224 3× 3 253G 88.69 75.98
224× 224 2× 2 185G 88.15 75.01
112× 112 2× 2 47.5G 87.60 74.32

Table 7. Effects of Sub-image’s size. All models here are trained
without mask augmentation.

Study on absence and order of thumbnails. In this
case, we study the impact of missing the last sub-image and
the last two sub-images on the model’s performance. The
first two rows of Table 8 show that all four sub-images con-
tribute to the model performance. Besides, we set the or-
der of the different thumbnails to evaluate the TALL-Swin.
We consider three orders: forward, reverse, and random.
Forward order performs the best for three different orders.
This may be because of the positional encoding of different
frames in TALL-Swin.

Variants CDF DFDC
0, 1, 2, - 86.46 69.51
0, 1, -, - 84.22 69.09
Random 85.85 70.30
Reverse 86.65 72.37
Forward 87.60 74.32

Table 8. Ablation study of absence and order of thumbnails.
All models here are trained without mask augmentation.

Effects of different orders on other backbones. In
order to prove that the phenomenon is not incidental, we
also conduct experiments on ResNet50 and EfficientNet for
three different orders as shown in Table 9. As expected, for-



ward order outperforms reverse and random orders both on
ResNet50 and EfficientNet, which indicates that TALL can
learn the temporal dependency.

Variants CDF DFDC

ResNet50+TALL 76.38 64.01
Random 78.14 64.12
Reverse 78.54 64.87
Forward 80.90 65.54

EfficientNet+TALL 78.19 66.81
Random 81.01 66.13
Reverse 81.66 66.69
Forward 83.37 67.15

Table 9. Ablation studies of different orders of TALL.

Effectiveness of mask strategy. In this work, TALL-
Swin is trained on the FF++ (HQ) dataset without any data
enhancement as the baseline except for Multi-scale Crop
and Random Horizontal Flip. To validate the effectiveness
of the mask strategy, we compare our default baseline with
different data augmentation strategies: 1) The Cutout [8] on
one sub-image; 2) The Cutout on four sub-images. 3) The
combination of Mixup [62] and Cutmix [60] on four sub-
images, as shown in Table 10. The performance of a random
Cutout [8] on four sub-images is better than on one sub-
image. Besides, the mask strategy leads to better perfor-
mance than the well-known Cutout (1.46%). This supports
our hypothesis that strategy encourages models to learn sub-
tle temporal-spatial variations and improves model general-
ization ability. Further, our augmentation strategy exceeds
1.02% than the combination of Mixup and Cutmix, demon-
strating the augmentation’s effectiveness in TALL for video
detection.

Augmentation Count CDF DFDC
None - 87.60 74.32

Cutout 1 89.06 74.07
Cutout 4 89.33 75.22

Mixup+CutMix 4 89.75 75.33
TALL’s mask 4 90.79 76.78

Table 10. Study of the augmentation strategy in TALL. The
count column represents the number of blocks on the thumbnail.

Study on window size. We study the effect of window
size on model performance and computational cost. The
results are shown in Table 11. Our window expansion for
the first three phases will increase the model performance
by 1.74% AUC. The results in the second and third rows
show that the first three stages of the window getting the
largest would not give a boost to the model. Our analysis of
a too-large window may weaken the model’s ability to learn
local information in the sub-image.

Window size CDF DFDC
(7,7,7,7) 85.60 73.32

(14,14,14,7) 87.60 74.32
(28,28,28,7) 86.65 74.21

Table 11. Ablation studies of window size. All models here are
trained without mask augmentation.

5. Conclusion
This paper presents a novel perspective on detecting

deepfake videos using TALL. TALL is both simple and
effective, enabling joint spatio-temporal modeling without
any additional costs. TALL representation reveals normal
deepfake patterns with local-global contextual features. We
further propose a new baseline for deepfake video detection
called TALL-Swin, which efficiently captures the inconsis-
tencies between deepfake video frames. Extensive experi-
ments demonstrate that TALL-Swin achieves promising re-
sults for various unseen deepfake types and strong robust-
ness to a wide range of common corruptions.
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