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Abstract

Thanks to the rapid development of diffusion models, un-
precedented progress has been witnessed in image synthe-
sis. Prior works mostly rely on pre-trained linguistic mod-
els, but a text is often too abstract to properly specify all
the spatial properties of an image, e.g., the layout config-
uration of a scene, leading to the sub-optimal results of
complex scene generation. In this paper, we achieve ac-
curate complex scene generation by proposing a seman-
tically controllable Layout-AWare diffusion model, termed
LAW-Diffusion. Distinct from the previous Layout-to-Image
generation (L2I) methods that only explore category-aware
relationships, LAW-Diffusion introduces a spatial depen-
dency parser to encode the location-aware semantic coher-
ence across objects as a layout embedding and produces a
scene with perceptually harmonious object styles and con-
textual relations. To be specific, we delicately instantiate
each object’s regional semantics as an object region map
and leverage a location-aware cross-object attention mod-
ule to capture the spatial dependencies among those dis-
entangled representations. We further propose an adap-
tive guidance schedule for our layout guidance to mitigate
the trade-off between the regional semantic alignment and
the texture fidelity of generated objects. Moreover, LAW-
Diffusion allows for instance reconfiguration while main-
taining the other regions in a synthesized image by introduc-
ing a layout-aware latent grafting mechanism to recompose
its local regional semantics. To better verify the plausibil-
ity of generated scenes, we propose a new evaluation metric
for the L2I task, dubbed Scene Relation Score (SRS) to mea-
sure how the images preserve the rational and harmonious
relations among contextual objects. Comprehensive ex-
periments on COCO-Stuff and Visual-Genome demonstrate
that our LAW-Diffusion yields the state-of-the-art genera-
tive performance, especially with coherent object relations.

*Corresponding author.
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Figure 1. Illustration of complex scene generation by Stable Diffu-
sion [28] (text-to-image model) and our LAW-Diffusion (layout-
to-image model). Stable Diffusion relies on linguistic model and
generates an unsatisfactory scene: the boat on the water is missed
and the generated building and mountain are placed with undesired
spatial relation according to the input description. By contrast,
LAW-Diffusion introduces a spatial dependency parser to encode
the spatial semantic coherence and produces the scene image with
consistent contextual relations adhere to the layout configuration.

1. Introduction

Recently, astounding advances have been achieved in
generative modeling due to the emergence of diffusion mod-
els [34, 13, 28, 42, 1, 6]. Despite the stunning generative
performance in simple cases, e.g., single object synthesis,
how to generate a complex scene composed of multiple
visual concepts with their diverse relationships remains a
challenging problem. A straightforward solution is to trans-
late the scene into a text description and then resort to the
state-of-the-art text-to-image (T2I) generative models [28,
6, 7, 31, 26]. However, text-to-image diffusion models, e.g.,
Stable Diffusion and its variants [28, 6, 7, 31, 26] fall short
when it comes to the spatial composition of multiple objects
in a scene. An underlying reason is that properly specifying
all the spatial properties in an abstractive sentence is labo-
rious and less accurate, usually resulting in unsatisfactory
generated results. In addition, the linguistic model used in
T2I model is incapable of accurately capturing the objects’
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spatial relations whereas only providing a coarse-grained
linguistic understanding from the text description. An ex-
ample is shown in Fig. 1, in which we extract a sentence de-
scription from a scene layout configuration and compare the
generated results of Stable Diffusion [28] and our model.
From the result generated by Stable Diffusion in Fig. 1(a),
we can observe that the spatial properties are not well pre-
served (e.g., the generated mountain is besides the building
while it should be behind the building) and some desired
objects are missed (e.g., the boat and its reflection). By
contrast, our method generates the scene image by directly
parsing the spatial dependency in the layout configuration.

Layout-to-image generation (L2I) is a very important
task of controllable image synthesis, which takes a con-
figuration of visual concepts (i.e., objects’ bounding boxes
with their class labels in a certain spatial layout) as the
input. The scene layout precisely specifies each object’s
size, location and its association to other objects. The
key challenge for L2I lies in encoding the spatial depen-
dencies among co-existing objects at each position, i.e.,
the location-aware semantic composition, which is vital to
eliminate the artifacts of spurious edges between spatial
adjacent or overlapped objects [11]. Existing studies on
L2I are usually developed based on the generative adver-
sarial networks (GAN) [9, 37, 11, 38, 44]. These meth-
ods render the realism of image contents with instance-
specific style noises and discriminators, and thus suffer
from the lack of overall harmony and style consistency
among things and stuffs in the generated scene. They have
made a few attempts to capture the class-aware relationships
in the generator by adopting LSTM [44] or attention mech-
anism [11]. Another type of approaches is based on trans-
former [16, 41], which reformulates the scene generation
task as a sequence prediction problem by converting the in-
put layout and target image into a list of object tokens and
patch tokens. The transformer [40] is then employed to se-
quentially predict the image patches, which actually capture
the sequential dependencies rather than scene coherence.
Recently, generic T2I diffusion models, e.g., LDM [28]
and Frido [6] have been demonstrated that they can be ex-
tended to L2I by tokenizing the layout into a sentence-like
sequence of object tokens and encoding them by linguistic
model, following their standard T2I paradigm. Such brute-
force solutions share some shortcomings inherent to the T2I
diffusion models, e.g., the aforementioned object leakage
and unawareness of spatial dependencies in 1(a). But in
fact, prior methods mainly exploit the location-insensitive
relationships while overlooking the fine-grained location-
aware cross-object associations.

To address the above issues, we present a novel diffusion
model-based framework for L2I, termed LAW-Diffusion, for
synthesizing complex scene images with mutually harmo-
nious object relations. Unlike the traditional L2I methods

treating each object separately, our LAW-Diffusion learns a
layout embedding with rich regional composition semantics
in a delicate manner for better exploring the holistic spa-
tial information of objects. Concretely, we first instantiate
each object’s regional semantics as an object region map
that encodes the class semantic information in its bound-
ing box. Then, we split those region maps into fragments
and propose a location-aware cross-object attention module
to perform per-fragment multi-head attention with a learn-
able aggregation token to exploit the location-aware com-
position semantics. By regrouping those aggregated frag-
ments according to their original spatial locations, we ob-
tain a layout embedding encapsulating both class-aware and
location-aware dependencies. In this way, when synthe-
sizing a local fragment of image, such composed seman-
tics faithfully specify whether objects are possibly over-
lapped at the certain location. Inspired by the effectiveness
of text-to-image diffusion models [26, 31, 24], we employ
the form of classifier-free guidance [14] to amplify the re-
gional control from our layout embedding. To avoid los-
ing objects’ texture details when leveraging a large guid-
ance scale, we further propose an adaptive guidance sched-
ule for the sampling stage of LAW-Diffusion to maintain
both layout semantic alignment and object’s texture fidelity
by gradually annealing the guidance magnitude. Further-
more, LAW-Diffusion allows for instance reconfiguration,
e.g., adding/removing/restyling an instance in a generated
scene via layout-aware latent grafting. Specifically, we spa-
tially graft an exclusive region outside a bounding box from
the diffusion latent of the already generated image onto the
target latent guided by a new layout at the same noise level.
By alternately recomposing the local regional semantics and
denosing these grafted latents, LAW-Diffusion can recon-
figure an instance in a synthesized scene image while keep-
ing the other objects unchanged.

The existing evaluation metrics for the L2I task basi-
cally focus on measuring the fidelity of generated objects
while ignoring the coherence among objects’ relations in
the scene context. Thus, we propose a new evaluation met-
ric called Scene Relation Score (SRS) to measure whether
the generated scenes preserve the rational and harmonious
relations among contextual objects, which would facilitate
the development of L2I research. We conduct both quan-
titative and qualitative experiments on Visual Genome [17]
and COCO-Stuff [2], and the experimental results demon-
strate that our LAW-Diffusion outperforms other L2I meth-
ods and achieves the new state-of-the-art generative perfor-
mance, particularly in preserving reasonable and coherent
object relations.

2. Related Work
Diffusion Models Diffusion models [34, 13, 21, 20, 32]
recently emerges as powerful image generators due to their
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Figure 2. An overview of LAW-Diffusion. Given an input layout Γ, each object’s region map vi is generated as its regional semantics by
filling its class embedding into the region specified by its bounding box. The object region maps are split into patches of region fragments.
For the region fragments at the location j, the location-aware cross-object attention module is used to aggregate them as Lj via multi-
head attention. In this way, Lj encodes the spatial dependencies among objects at this location. Furthermore, the layout embedding L is
obtained by collecting all aggregated fragments and used to control the generation of LAW-Diffusion with an adaptive guidance schedule:
the guidance magnitude ωt gradually anneals from ωmax to ωmin during denoising process. Best viewed in color.

impressive generative performance. By training a noise
estimator, the generative process of diffusion model is
formulated as iteratively denoising from an image-level
noise [13, 4]. With the introduction the techniques of classi-
fier guidance [4] and classifier-free guidance [14], diffusion
models are enabled to incorporate different types of condi-
tional information during the sampling stage. Most recent
progresses [1, 42, 6, 30, 8, 7, 31, 26] are made in the field
of text-to-image (T2I) generation because the prevalence of
Stable Diffusion [28]. However, those T2I diffusion mod-
els always fall short when it comes to the complex spatial
semantic composition of multiple objects in a scene. In this
paper, we manage to present a layout-aware diffusion model
for complex scene image generation, by mining the spatial
dependencies among co-existing objects in the scene layout.

Layout-to-Image Generation Image generation from a
layout configuration (L2I) is a specific task of conditional
image generation, whose input is a set of bounding boxes
and class labels of the objects in a scene. It liberates peo-
ple from racking their brains to formulate an accurate but
complicated language description of a complex scene and
rather provides a more flexible human-computer interface
for scene generation. Layout2Im [44] generated objects’
features from noises and class labels, and fused them by
LSTM [15]. LostGAN [37] further introduced mask predic-
tion as an intermediate process and proposed an instance-
specific normalization to transform the object features. OC-
GAN [38], Context-L2I [11] and LAMA [19] followed their
training schemes and further improved objects’ representa-
tions and the quality of mask generation. Transformer based
methods [16, 41] converted the layout and image into ob-
ject tokens and patch tokens, which reformulating L2I as
a sequence prediction task. Recently, T2I diffusion mod-

els [28, 6] are extended to L2I through encoding the list
of object tokens by linguistic model and then regarding it
as a T2I task. However, prior approaches merely mine the
category-aware retionships while overlooking the location-
aware cross-object associations. In this work, we present
LAW-Diffusion by explicitly encoding the location-aware
semantic compositions for the visual concepts in the scene.

3. LAW-Diffusion
3.1. Preliminaries

Diffusion Models Diffusion model is a type of likelihood-
based generative models, consisting of a forward diffusion
process and a backward denoising process. Formally, given
an image sample x0 ∼ q(x0), the forward process is defined
as a Markov chain with Gaussian transitions:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

where {αt ∈ (0, 1)}Tt=1 is a deceasing sequence of the noise
magnitudes in each step. From the property of Gaussian
noise and Markov chain, we can directly derive the transi-
tion from x0 to any latent variable xt:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where ᾱt =
∏T

s=1 αs. By re-parameterization, xt can be
written as the weighted sum of x0 and a noise ϵ ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (3)

A simple conclusion is that if the length of the Markov chain
T is large enough, ᾱT ≈ 0 and xT will approximately fol-
low a standard Gaussian distribution N (0, I).



The generative process of diffusion model is defined as
iteratively denoising from the Gaussian prior, i.e., xT ∼
N (0, I). Due to the intractability of the reverse transition
q(xt−1|xt), another Markov process parameterized by θ,
i.e., pθ(xt−1|xt) is learned to serve as its approximation and
generate the denoised results {xT , xT−1, ..., x0}:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

Denoising diffusion probabilistic models (DDPM) [13] re-
veal that µθ(xt, t) derives from a noise estimator ϵθ(xt, t):

µθ(xt, t) =
1

√
αt

(
xt −

1− αt

1− ᾱt
ϵθ(xt, t)

)
. (5)

By optimizing the re-weighted variational lower-bound
(VLB) on log pθ(x0) [13], the noise estimator ϵθ(xt, t) is
trained to predict the noise ϵ in Eq. (3) and enables diffu-
sion models to produce image samples:

LVLB(θ) = Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥2

]
. (6)

Conditional Diffusion Models Classifier-guidance [4]
provides a way for diffusion model to achieve conditional
generation by using the gradient of a separately trained clas-
sifier p(y|xt) during sampling. As a more efficient tech-
nique, classifier-free guidance [14, 24] replaces the noise
estimator by a combination of conditional and uncondi-
tional model, without requirement of p(y|xt):

ϵ̃θ(xt, t|y) = ωϵθ(xt, t|y) + (1− ω)ϵθ(xt, t|∅), (7)

where y is the class label or text embedding from language
model [24], ω ≥ 1 denotes the guidance scale and trivially
increasing ω will amplify the effect of conditional input.

With the help of large-scale pre-trained CLIP [25] and
other language models [31], diffusion models produce im-
pressive results on text-to-image generation. However, their
performance of complex scene generation are always un-
satisfactory because the text embeddings from the linguis-
tic models can not accurately capture the spatial properties,
e.g., objects’ locations, sizes and their implicit spatial asso-
ciations. Distinct from text prompts, we focus on the task of
generating complex scene images from the structured layout
configurations (L2I) and further propose a diffusion model-
based method with flexibility and compositionality.

3.2. Layout-aware Diffusion Model

In this section, we propose a Layout-AWare diffu-
sion model (LAW-Diffusion) to parse the spatial depen-
dencies among co-existing objects and generate photo-
realistic scene images with regional semantic alignment.
The overview of our LAW-Diffusion is illustrated in Fig. 2
and we will elaborate the details following.
Layout-to-Image Generation Complex scene image syn-
thesis from layout configuration, also known as layout-to-
image generation, is specified by synthesising an image

x ∈ RH×W×3 satisfying a layout configuration Γ consist-
ing of N objects O = {o1, o2, ..., oN}. Each object oi is
equipped with its bounding box bi = [rix, r

i
y, hi, wi] and

category ci, where (rix, r
i
y) is the left-top coordinate and

(hi, wi) represents the object size.
Spatial Dependency Parser Unlike existing diffusion-
based L2I solutions that depends on linguistic models [28,
6], LAW-Diffusion explores a distinctive way to explicitly
harvest both location-aware and category-aware object de-
pendencies in the compositional configurations by a spatial
dependency parser. The parsing process is detailed below.

Aiming at condensing each object’s spatial localiza-
tion and class information, we first instantiate the regional
semantics of object oi as an object region map vi ∈
RH×W×dc , which shares the same spatial resolution as im-
age x for spatial location alignment. Concretely, the rectan-
gular region in vi specified by the bounding box bi is filled
with a learnable class embedding ci ∈ Rdc (for brevity,
symbol ci is reused here), while the exclusive area is filled
by a learnable background embedding cbg ∈ Rdc . Since the
number of objects N varies in different layout configura-
tions, the set of region maps {vi}Ni=1 is padded to {vi}Nmax

i=1

using a learnable null region map v∅ ∈ RH×W×dc , where
Nmax denotes the maximum number of objects.

In order to fully exploit the spatial dependencies among
objects at each position, we propose a location-aware cross-
object attention module to aggregate those disentangled ob-
ject region maps {vi}Nmax

i=1 by their location-aware seman-
tic composition. We split each object region map vi into
Np patches of region fragments {vji }

Np

j=1, vji ∈ RP×P×dc

and perform multi-head self-attention (MHSA) for the set
of region fragments at the same location. Formally, for
the position of the jth patch, we formulate {vji }

Nmax
i=1 as an

unordered set of Nmax objects’ jth region fragments and
feed them into the stacked L multi-head attention [40] lay-
ers with a learnable aggregation token v[Agg] ∈ RP×P×dc :

z0j = concat([v[Agg], v
j
1, v

j
2, ..., v

j
Nmax

]; (8)

z̃lj = MHSA(LN(zl−1
j )) + zl−1

j , l = 1, ..., L; (9)

zlj = MLP(LN(z̃lj)) + z̃lj , l = 1, ..., L; (10)

Lj = LN(zLj )[0], (11)

where Lj is the composed regional semantics for the jth

patch. In this way, the per-fragment multi-head self atten-
tion in Eq. (9) serves as a location-specific permutation-
equivariant interaction between different objects’ represen-
tations. Furthermore, by regrouping {Lj}

Np

j=1 according to
their original spatial locations, we obtain the layout embed-
ding L with abundant spatial dependencies among objects.
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Figure 3. Illustration of the generation processes from the same input layout Γ using different guidance scales. A fixed small scale ω = 1
for each denoising step provides insufficient semantic control, and the cloud is missed in the first row. In the second row, using a fixed
large scale ω = 5 leads to over-saturation and distortion of object texture. In the third row, using the adaptive guidance scale ωt : 5↘1
which anneals from ωT = 5 to ω1 = 1 maintains both semantic alignment and photo-realism. Best viewed in color.

Layout Guidance To develop a diffusion model with flexi-
ble control, we train LAW-Diffusion with the classifier-free
guidance [14, 24] from the learned layout embedding L,
which contains regional composition semantics. Similar to
Eq. (7), LAW-Diffusion learns a noise estimator ϵ̃θ(xt, t|L)
conditioned on the layout embedding L:

ϵ̃θ(xt, t|L) = ωϵθ(xt, t|L) + (1− ω)ϵθ(xt, t|∅), (12)

where ω ≥ 1 denotes the magnitude of the layout guidance.
According to the spatial inductive bias of the image-

level noise xT introduced by diffusion models, we concate-
nate the noised latent code xt and the layout embedding
L to align their spatial information, i.e., concat([xt,L]) ∈
RH×W×(D+3) and use it as the input of the conditional
noise estimator in Eq. (12):

ϵθ(xt, t|L) = ϵθ(concat([xt,L]), t), (13)

where ϵθ is implemented by a U-Net [29] and t is imple-
mented as a sinusoidal time embedding following [13].

To this end, the layout embedding L encapsulates
location-aware semantic composition of the multiple visual
concepts in the scene. By absorbing the nutrition from L
using the classifier-free guidance, LAW-Diffusion is able to
generate a scene image with accurate regional semantics ad-
here to the input layout and coherent object relations.

3.3. Adaptive Guidance Schedule

As previously discussed, classifier-free guidance [24]
provides a effective way to improve the semantic control
during the sampling stage. The vanilla classifier-free guid-
ance uses a fixed guidance scale ω in Eq. (12) for each de-
noising step t and has shown its effectiveness in a variety
of application scenarios [24, 31, 26]. However, we empiri-
cally find in our experiment that the fixed ω will result in a
dilemma of the trade-off between the layout semantic align-
ment and the photo-realism of generated objects. As shown

in Fig. 3, a fixed small guidance scale (ω = 1) offers in-
sufficient semantic control, e.g., the cloud is missed, while
a strong guidance (ω = 5) leads to an over-saturated image
where the cloud and car have over-smooth textures. Based
on these observations, we can intuitively conclude that a
large ω provides precise semantic compliance with the lay-
out Γ while a small ω encourages photo-realistic textures
for objects. Inspired by the human’s instinct of first con-
ceiving the holistic semantics and then refining the details
when drawing a picture, we propose an adaptive guidance
schedule to mildly mitigate the aforementioned trade-off.

Specifically, our proposed adaptive guidance schedule is
to gradually anneal the guidance magnitude ωt during the
sampling process of LAW-Diffusion: the generation starts
with an initially large guidance scale ωT = ωmax and it
gradually anneals to a small magnitude ω1 = ωmin with the
annealing function ϕ(t) (t is decreasing from T to 1 in the
sampling stage):

ωt = ωmin + ϕ(t)(ωmax − ωmin). (14)

For simplicity, here we specify ϕ(t) as the cosine-form an-
nealing, due to its concave property in the early denoising
steps:

ωt = ωmin+
1

2

(
1 + cos(

T − t

T
π)

)
(ωmax−ωmin). (15)

In Fig. 3, it is evident that the adaptive guidance scale ωt

annealing from ωT = 5 to ω1 = 1 (denoted as ωt : 5↘1)
combines the benefits of the fixed guidance with ω = 5
and ω = 1, thus enabling both accurate layout semantic
alignment and preservation of photo-realistic textures.

3.4. Layout-aware Latent Grafting

To further explore the semantic controllability, we will
showcase that LAW-Diffusion is capable of instance-level
reconfiguration. Although LAW-Diffusion does not ex-
plicitly model each instance’s style by an individual noise
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layout Γ∗. Mask M indicates the region within the bounding box.

like previous works [9, 37, 11, 38, 44], it allows for
adding/removing/restyling an instance in the generated
scene image by introducing a training-free layout-aware la-
tent grafting mechanism. Fig. 4 illustrates the process.

Formally, suppose a scene image x0 has been synthe-
sized from the layout configuration Γ by learning its layout
embedding L, the process of instance reconfiguration can
be formulated as generating an image x∗

0 from another con-
figuration Γ∗ with layout embedding L∗, where an object o∗

within a bounding box b∗ is added/removed/restyled while
preserving the other objects in x0. Inspired by the graft-
ing technique used in horticulture [23, 22] which connects
the tissue of a plant to another plant and make them grow
together, we aim to spatially graft the exclusive region out-
side b∗ from the latents {xt}Tt=1 guided by L onto the target
latents {x∗

t }Tt=1 guided by L∗ at the same noise level. The
reconfiguration process is performed by alternately grafting
from xt to x∗

t and denoising x̂∗
t to x∗

t−1:{
x̂∗
t = x∗

t ⊙M ⊕ xt ⊙ (1−M),
x∗
t−1 ∼ pθ(x

∗
t−1|x̂∗

t ,L∗),
(16)

where ⊙ and ⊕ denotes element-wise multiplication and
addition, M denotes a rectangular mask indicating the re-
gion within the bounding box b∗, x̂∗

t is the grafted latent,
pθ(x

∗
t−1|x̂∗

t ,L∗) denotes the layout-aware denoising pro-
cess guided by L∗, x∗

T is initialized as a Gaussian noise dis-
tinct from xT . Since x∗

t is guided by holistic semantics from
L∗ instead of only local control within b∗, LAW-Diffusion
is able to yield a reconfigured scene with coherent relations.

4. Experiments
4.1. Experimental Settings

Datasets Following existing works on layout-to-image
generation, our experiments are conducted on two bench-
marks: COCO-Stuff [2] and Visual Genome (VG) [17].
COCO-stuff is an extension of the well known MS-COCO

dataset with 80 thing classes and 91 stuff classes. Follow-
ing [36, 44, 11], objects covering less than 2% of the image
are disregarded and the images with 3 to 8 objects are used
here (Nmax = 8). Then we have 74,777 training and 3,097
validation images of COCO-stuff. Different from COCO-
stuff, Visual Genome is a dataset specifically designed for
complex scene understanding and provides information of
object bounding boxes, object attributes, and relationships.
Each image in VG contains 3 to 30 objects from 178 cat-
egories. Consistent with prior studies [19, 36], small and
infrequent objects are removed, resulting in 62,565 images
for training and 5,062 for validation in the VG dataset.

Implementation Details Following [13, 4], we use T =
1000 and the noise magnitudes {αt}Tt=1 of the diffusion
process are set to linearly decrease from α1 = 1 − 10−4

to αT = 0.98. Our LAW-Diffusion is trained by jointly
optimizing the spatial dependency parser that generates the
layout embedding L, and the noise estimator ϵ̃θ(xt, t|L) us-
ing the VLB loss defined in Eq. (6). We use the same diffu-
sion training strategies and U-Net architectures as ADM [4].
Regarding the generation of layout embedding L, we set the
dimension of class embedding to dc = 32 and the patch size
of region fragments to P = 8. Then a two-layer MHSA
with 8 attention heads is implemented as the fragment ag-
gregation function in Eq. (9). Following [14, 31], we imple-
ment the conditional model ϵθ(xt, t|L) and unconditional
model ϵθ(xt, t|∅) in Eq. (12) as a single conditional model
with 10% probability of replacing the conditional input L
by a learnable null embedding ∅. Due to the quadratic
increase in computational overhead with the size of input
images, directly generating 256 × 256 images can be pro-
hibitively expensive. Hence, following [5, 28], we utilize
a VQ-VAE to downsample 256 × 256 images to 64 × 64,
and perform our LAW-Diffusion in the compressed latent
space. For the 64× 64 and 128× 128 images, we maintain
the diffusion training on image pixels. Regarding the hyper-
parameters of our adaptive guidance in Eq. (15), we choose
ωmax = 3 and ωmin = 1. Please refer to our supplementary
materials for more implementation details.

Evaluation Metrics To comprehensively evaluate the per-
formance of LAW-Diffusion, we adopt five metrics for
quantitative comparison. Those metrics are: Inception
Score (IS) [33], Fréchet Inception Distance (FID) [12],
Classification Accuracy Score (CAS) [27], Diversity
Score (DS) [43], YOLO Score [19] and our proposed Scene
Relation Score (SRS). IS assesses the overall quality of im-
ages based on the Inception model [39] pre-trained on Ima-
geNet [3]. FID measures the distribution distance between
the synthesized images and the real ones. CAS measures
the discrminative ability of generated objects and whether
they can be used to train a good classifier. A ResNet [10]
is trained on the objects cropped from generated images (5
image samples are generated for each layout following [37])
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Figure 5. Examples of the 256× 256 images generated by different layout-to-image methods on COCO-Stuff [2] and Visual Genome [17].
The first row shows the visualizations of layout configurations and the sampled images in the same column share a common input layout.

and the classification accuracy on the real objects is reported
as CAS. DS reflects the diversity of generated samples.
YOLO score evaluates the localization alignment between
the generated objects and input bounding boxes.

Scene Relation Score Here we propose Scene Relation
Score (SRS) as a new metric for L2I to evaluate the rational-
ity and plausibility of the object relations in the generated
image. It is reasonable that a competent scene generator
should implicitly capture the relationships among objects
and the correct relations can be discovered from the synthe-
sized images. Due to the availability of objects’ bounding
boxes and labels, we use the predicate classification (Pred-
Cls) results predicted by a state-of-the-art scene graph gen-

erator to measure whether the correct relationships are cap-
tured by the image generator. Specifically, we resort to
a publicly available scene graph generator, i.e., VCTree-
EB[35] pre-trained on Visual Genome and report the mean
Recall@K(mR@K) as our Scene Relation Score (SRS).

4.2. Quantitative and Qualitative Comparisons

We compare our LAW-Diffusion with the state-of-the-art
L2I methods, i.e., Layout2Im [44], OC-GAN [38], Context-
L2I [11], LostGAN-V2 [37], LAMA [19], TwFA [41],
LDM [28] and Frido [6]. Tab. 1 reports the quantitative
comparisons for different sizes of images, in terms of FID,
Inception Score (IS), Diversity Score (DS) and Classifica-



Resolutions Methods
FID ↓ Inception Score ↑ Diversity Score ↑ CAS↑

COCO VG COCO VG COCO VG COCO VG

64× 64

Real Images - - 16.30±0.40 13.90±0.50 - -
Layout2Im [44] 38.14 31.25 - - 0.15±0.06 0.17±0.09 27.32 23.25
OC-GAN [38] 29.57 20.27 10.80±0.50 9.3±0.20 - - - -

Context-L2I [11] 31.32 33.91 10.27±0.25 8.53±0.13 0.39±0.09 0.40±0.09 - -
LAMA [19] 19.76 18.11 - - 0.37±0.10 0.37±0.09 33.23 30.70

LAW-Diffusion 17.14 16.44 14.81±0.23 12.64±0.32 0.45±0.10 0.46±0.10 35.29 33.46

128× 128

Real Images - - 22.30±0.50 20.50±1.50 - - - -
LostGAN-V2 [37] 24.76 29.00 14.20±0.40 10.71±0.27 0.45±0.09 0.42±0.09 31.98 29.35

OC-GAN [38] 36.31 28.26 14.60±0.40 12.30±0.40 - - - -
Context-L2I [11] 22.32 21.78 15.62±0.05 12.69±0.45 0.55±0.09 0.54±0.09 - -

LAMA [19] 23.85 23.02 - - 0.46±0.09 0.47±0.09 34.15 32.81
LAW-Diffusion 20.36 15.44 19.89±0.48 18.13±0.44 0.58±0.09 0.55±0.08 36.80 35.22

256× 256

Real Images - - 28.10±1.60 28.60±1.20 - - - -
LostGAN-V2 [37] 42.55 47.62 18.01±0.50 14.10±0.38 0.55±0.09 0.53±0.09 30.33 28.81

OC-GAN [38] 41.65 40.85 17.80±0.20 14.70±0.20 - - - -
LAMA [19] 31.12 31.63 - - 0.48±0.11 0.54±0.09 30.52 31.75
LDM† [28] 40.91 - - - - - - -
Frido† [6] 21.67 17.24 - - - - - -
TwFA [41] 22.15 17.74 24.25±1.04 25.13±0.66 0.67±0.00 0.64±0.00 - -

LAW-Diffusion 19.02 15.23 26.41±0.96 27.62±0.67 0.63±0.09 0.64±0.09 37.79 36.82

Table 1. Quantitative results on COCO-stuff [2] and Visual Genome (VG) [17]. The models denoted by ‘†’ are fine-tuned from the ones
trained on a significantly larger dataset, Open-Image [18]. ‘-’ indicates the results are not provided in their papers.

tion Accuracy Score (CAS). Besides, Tab. 2 provides the
YOLO score and the Scene Relation Score (SRS) of differ-
ent methods. For fairness, we report the performance of the
compared methods from their original papers.

With regards to the image fidelity, LAW-Diffusion sig-
nificantly outperforms the existing L2I methods, achieving
a new state-of-the-art performance. Especially, we observe
great improvements of FID and IS scores on both COCO
and VG. The noticeable improvements of the challenging
CAS further verify the photo-realism of generated objects
by LAW-Diffusion, so that they can be used to train a dis-
criminative model. The comparison of SRS in Tab. 2 shows
that LAW-Diffusion is capable of synthesizing plausible
scene images by capturing the relationships among objects.

Qualitative comparisons on COCO-Stuff and Visual
Genome can be observed in Fig. 5, where the samples syn-
thesized by different models using identical layout are pre-
sented. It is impressive that LAW-Diffusion produces per-
ceptually appealing images with clear texture details and
coherent scene relationships. Moreover, the images gen-
erated by our method faithfully complies with the spatial
configurations, even in the case of large number of objects.

4.3. Instance-level Reconfiguration

As presented in Sec. 3.4, a trained LAW-Diffusion has
flexible instance-level controllability, involving the abilities
of adding/removing/restyling an instance in the generated

Resolutions Methods YOLO score ↑ Scene Relation Score (SRS) ↑
AP/AP50/AP75 mR@20/50/100

128×128

Real Images 33.1 / 47.0 / 36.9 0.1652 / 0.1820 / 0.1821
LostGAN-V2 [37] 5.5 / 9.2 / 5.8 0.1241 / 0.1307 / 0.1295

LAMA [19] 7.9 / 12.0 / 8.9 0.1294 / 0.1482 / 0.1489
LAW-Diffusion 14.1 / 20.6 / 17.8 0.1443 / 0.1603 / 0.1631

256×256

Real Images 42.9 / 60.2 / 48.2 0.1703 / 0.1927 / 0.1932
LostGAN-V2 [37] 9.1 / 15.3 / 9.8 0.1241 / 0.1307 / 0.1295

LAMA [19] 13.4 / 19.7 / 14.9 0.1260 / 0.1321 / 0.1333
Frido [6] - / 30.4 / - 0.1375 / 0.1535 / 0.1578

TwFA [41] - / 28.2 / 20.1 0.1407 / 0.1474 / 0.1487
LAW-Diffusion 21.5 / 34.2 / 23.4 0.1485 / 0.1742 / 0.1750

Table 2. Comparisons of YOLO score and SRS.

Methods IS ↑ Scene Relation Socre (SRS) ↑
mR@20 mR@50 mR@100

ω = 1 13.93±0.31 0.1271 0.1233 0.1316
ω = 3 16.62±0.49 0.1419 0.1484 0.1488
ω = 5 15.95±0.31 0.1324 0.1401 0.1438

ωt : 1↗3 15.21±0.37 0.1319 0.1345 0.1370
ωt : 1↗5 14.68±0.28 0.1302 0.1310 0.1334
ωt : 3↘1 18.13±0.44 0.1443 0.1603 0.1631
ωt : 5↘1 18.24±0.29 0.1392 0.1436 0.1544

ω = 1(w/o loc) 9.69±0.32 0.1168 0.1206 0.1257
ω = 3(w/o loc) 12.34±0.58 0.1235 0.1287 0.1298
ω = 5(w/o loc) 13.97±0.32 0.1214 0.1241 0.1260

ωt : 1↗3(w/o loc) 12.06±0.42 0.1198 0.1264 0.1278
ωt : 1↗5(w/o loc) 11.42±0.41 0.1190 0.1221 0.1259
ωt : 3↘1(w/o loc) 14.78±0.33 0.1252 0.1315 0.1327
ωt : 5↘1(w/o loc) 14.52±0.25 0.1263 0.1334 0.1358

Table 3. Ablation study on VG 128×128.

scene while preserving the other contents. An example of
these three types of reconfiguration is given in Fig. 6. The
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Figure 6. An example of instance-level reconfiguration by LAW-
Diffusion. Three types of reconfiguration are shown in this fig-
ure (adding/removing/restyling a person in the generated image).
Plausible results are obtained using layout-aware latent grafting.

reconfigured images look plausible and well preserve the
coherence in the scene, thus verifying the effectiveness of
our proposed layout-aware latent grafting mechanism.

4.4. Ablation Study

To verify the effectiveness of proposed location-aware
cross-object attention and adaptive guidance schedule, we
conduct ablation experiments on VG 128×128 in Tab. 3.
Here, we first introduce a baseline variant of LAW-
Diffusion, dubbed LAW-Diffusion (w/o loc), which re-
places the location-aware attention by a location-agnostic
but class-aware attention used in prior works [11, 41].
Specifically, we use the MHSA layers similar to what we
used in Sec. 3.2 to augment each object’s class embed-
ding ci with only contextual class-aware information. Then
the transformed object representations are filled into their
bounding boxes and aggregated as the layout embedding
using average pooling. In this way, it only captures class-
aware relationships and is also used to guide the genera-
tion of diffusion model. Moreover, Tab. 3 shows the results
of LAW-Diffusion and LAW-Diffusion (w/o loc) with dif-
ferent guidance strategies. For example, ωt : 3↘1 means
LAW-Diffusion with cosine annealed guidance scale from
ωmax = 3 to ωmin = 1, and ω = 3(w/o loc) denotes LAW-
Diffusion (w/o loc) using a fixed guidance scale ω = 3.
Similarly, ωt : 1↗3 and ωt : 1↗5 denotes the increasing
guidance scales.

By comparing IS and SRS between the variants of LAW-
Diffusion and LAW-Diffusion (w/o loc) in Tab. 3, we can
conclude that our location-aware cross-object attention can
both improve the generated fidelity and capture the reason-
able relations among objects. Besides, it is clear that our
adaptive guidance schedule promotes the improvement of
the IS scores of generated images. Considering both im-
age fidelity and rationality of the object relations, we select
LAW-Diffusion with cosine annealing guidance ωt : 3↘1
as our final model. Please refer to our supplementary mate-

rials for more ablation studies and human evaluations.

5. Conclusion
In this paper, we present a semantically controllable

Layout-AWare diffusion model, termed LAW-Diffusion to
generate complex scenes from compositional layout config-
urations. Specifically, we propose a location-aware cross-
object attention module to learn a layout embedding en-
coding the spatial dependencies among objects. Further,
an adaptive guidance schedule is introduced for the layout
guidance to maintain both layout semantic alignment and
object’s texture fidelity. Moreover, we propose a layout-
aware latent-grafting mechanism for instance reconfigura-
tion on the generated scene. Furthermore, a new evaluation
metric for L2I, dubbed Scene Relation Score (SRS) is pro-
posed to measure how the images preserves rational rela-
tions. Extensive experiments show that our method yields
the state-of-the-art generative performance, especially with
coherent object relations.
Limitation and future work With regards to the limitation
of our work, we only focus on the task of Layout-to-Image
generation whose object categories are pre-defined,fixed,
and closed-world. Additionally, current version fails
to specify scene-level style and semantics with global
scene description. In future, we aim to combine our
LAW-Diffusion with RegionCLIP [45] to achieve open-
vocabulary L2I generation, where the objects generated in
the scene can belong to arbitrary novel categories and both
object-level and scene-level fine-grained semantic controls
can be achieved.
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