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Figure 1: Our method registers multiple NeRF blocks. (a) One of the collected objects from the Objaverse [10] dataset. We
render the images from a predefined camera trajectory to construct our training data. (b) NeRF models are trained in different
coordinate frames. (c) Our method aligns NeRF blocks into the same coordinate frame without accessing raw image data.

Abstract

Although Neural Radiance Fields (NeRF) is popular in
the computer vision community recently, registering mul-
tiple NeRFs has yet to gain much attention. Unlike the
existing work, NeRF2NeRF [14], which is based on tra-
ditional optimization methods and needs human annotated
keypoints, we propose DReg-NeRF to solve the NeRF reg-
istration problem on object-centric scenes without human
intervention. After training NeRF models, our DReg-NeRF
first extracts features from the occupancy grid in NeRF. Sub-
sequently, our DReg-NeRF utilizes a transformer architec-
ture with self-attention and cross-attention layers to learn
the relations between pairwise NeRF blocks. In contrast
to state-of-the-art (SOTA) point cloud registration methods,
the decoupled correspondences are supervised by surface
fields without any ground truth overlapping labels. We con-
struct a novel view synthesis dataset with 1,700+ 3D objects
obtained from Objaverse to train our network. When eval-
uated on the test set, our proposed method beats the SOTA
point cloud registration methods by a large margin with a
mean RPE = 9.67◦ and a mean RTE = 0.038. Our code is
available at https://github.com/AIBluefisher/DReg-NeRF.

1. Introduction
Scene reconstruction has many applications in the real

world, for example, in augmented reality, ancient culture
preservation, 3D content generation, etc. Recently, rapid
progress has been made in increasing the reconstruction
quality using neural radiance fields (NeRF) [27]. While
previous works mostly focused on synthesizing images at
the object level or unbounded scenes within a small area,
Block-NeRF [35] extends NeRF to city-scale scenes by
splitting data into multiple intersected blocks. Specifically,
Block-NeRF trains multiple NeRF models in the same coor-
dinate frame with the ground-truth camera poses provided
by fusing multiple high-precision sensors. However, images
can be collected without absolute pose information in some
cases, e.g., when images are captured with digital cameras
or in GPS-denied areas. In such cases, Block-NeRF cannot
work since NeRF models are trained on different coordi-
nate frames. Consequently, NeRF registration [14] is neces-
sary for synthesizing consistent novel views from multiple
NeRFs trained in different coordinate frames.

Point cloud registration is a classic problem in 3D com-
puter vision, which aims at computing the relative transfor-
mation from the source point cloud to the target point cloud.
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However, NeRF registration is under-explored since exist-
ing works focus mostly on point cloud registration. Unlike
point clouds that are simple explicit representation, NeRF
encodes scenes implicitly, which makes registering multi-
ple NeRFs more challenging. NeRF2NeRF [14] is the first
work that tried to solve registering NeRFs by a traditional
optimization-based approach. However, it requires human-
annotated keypoints for initialization, which limits its ap-
plication in the real world where human annotations can be
impractical. In view of the above-mentioned challenges, we
focus on the study of the NeRF registration problem by an-
swering the following two questions: 1) Can we register two
or multiple NeRFs together where only pre-trained models
are accessible? 2) How to register NeRFs without any hu-
man annotations and initializations?

We further use the following settings in our endeavor
to answer the two challenging questions on NeRF registra-
tion: 1) Images are collected into different blocks and no
images are associated with known absolute position infor-
mation. 2) Multiple NeRF blocks are trained individually
where ground truth camera poses in each block are in their
local coordinate frames. 3) Only the trained NeRF mod-
els are accessible, and all training images are removed and
therefore not available due to plausible privacy-preserving
issues or disk limitations. We emphasize that NeRF reg-
istration is a challenging task, and we focus more on the
object-centric scenes in this paper. See Fig. 1 for the illus-
tration of our task setting and dataset construction.

To solve the NeRF registration problem, we first utilize
an occupancy grid along with each NeRF model to extract
a voxel grid. The voxel grid is then fed into a 3D Feature
Pyramid Network (FPN) [22] to extract features. The re-
sulting voxel feature grids are further processed by a trans-
former module. In the transformer network, we first adopt
a self-attention layer to enhance the intra-feature represen-
tations within each voxel feature grid. We further utilize a
cross-attention layer to learn the inter-feature relations be-
tween the source feature grid and the target feature grid.
Finally, we use an attention head to decode the source fea-
tures and target features into correspondences and confi-
dence scores. Unlike SOTA point clouds registration meth-
ods [16, 43], we utilize NeRF as geometric supervision
and thus do not rely on pre-computed overlapping scores
to mask correspondences outside the overlapping areas.

The main contributions of our work are:

• A dataset for registering multiple NeRF blocks, which
is created by rendering 1, 700+ 3D objects that are
downloaded from the Objaverse dataset.

• A novel network for registering NeRF blocks which do
not rely on any human annotation and initializations.

• Exhaustive experiments to show the accuracy and gen-
eralization ability of our method.

To the best of our knowledge, this is the first work on reg-
istering NeRFs without a) any initializations from key-
points or other registration methods and b) precom-
puted ground-truth overlapping labels.

2. Related Work

Neural Radiance Fields. The differentiable volume ren-
dering technique makes neural networks suitable for encod-
ing scene representations. Vanilla NeRF [27] needs to take
days to train each scene. NSVF [25] encodes scenes ex-
plicitly in a sparse voxel grid with online pruning, which
improves the training and rendering efficiency by a large
margin. PlenOctree [44] adopted the voxel representation,
and further decouple the radiance field from view direc-
tions by spherical harmonics. To further accelerate the net-
work training, PlenOctree finetunes the voxel grid by di-
rectly optimizing the stored features without accessing any
neural networks. Plenoxels [13] optimizes voxel features
without any neural network for initialization. The training
speed is accelerated with a specifically designed CUDA op-
timizer. InstantNGP [28] encodes voxel features implicitly
into a multi-resolution hash grid. TensoRF [4] decomposes
3D voxel into low-rank vector-matrix multiplications. Its
training speed is comparable to InstantNGP even without a
CUDA implementation.

Block-NeRF [35] partition the collected images into dif-
ferent street blocks, each block is trained individually along
with jointly optimizing camera poses [21, 5]. The final im-
ages can be synthesized by fusing from multiple nearby
NeRF blocks. Mega-NeRF [38] also adopted the same
divide-and-conquer strategy as BlockNeRF, but focus more
on aerial images and exploiting the sparse network struc-
tures. To train their network, Block-NeRF obtained camera
poses by fusing data from different sensors, while Mega-
NeRF used Structure from Motion (SfM) [24, 9, 7, 8] tools
to recover camera poses. Both of them assume camera
poses are in the same coordinate frames.

Point Cloud Registration. The Iterative Closest Point
(ICP) [2, 6] algorithm has been widely applied to the indus-
try community and research community for years. Given a
rough initialization, ICP tries to align the source point cloud
to the target point cloud. The global point cloud registration
methods can align point clouds without initialization by ex-
tracting geometric features such as the Fast Point Feature
Histograms (FPFH) [31]. To solve the long-time issue of the
global registration method in evaluating candidate models
within RANSAC [12], Zhou and Park [46] proposed a fast
approach that does not need to evaluate the candidate mod-
els at each iteration. Deep point cloud registration methods
also gained much attention nowadays. Deep Closest Point
[42] is a learned variant of the classical ICP. Inspired by Su-
perGlue [33], which is a deep learning method for matching



2D image correspondences, Predator [16] and REGTR [43]
adopted the self-attention and cross-attention mechanisms
from SuperGlue to learn the correlation for pairwise low-
overlapping point clouds. The ground-truth overlapping
scores are computed from dense point clouds and used to
mask out the correspondences outside the overlapping re-
gions. We also follow the previous attention mechanisms,
but do not rely on the pre-computed overlapping labels.
NeRF Registration. NeRF2NeRF [14] is the first work
that tries to register multiple NeRFs. The initial trans-
formation is estimated from human-annotated keypoints,
and then refined by the surface fields from NeRF. To re-
duce the number of useless samples, NeRF2NeRF adopts
Metropolis-Hasting sampling to maintain an active set. The
whole framework is based on traditional optimization meth-
ods and needs human interaction. ZeroNeRF [29] claims
it can register NeRF without overlap. However, it still re-
quires a global registration method for initialization. Unlike
the previous works, which rely heavily on traditional opti-
mization methods, we try to register multiple NeRF blocks
by learning methods without human interaction.

3. Our Method
Fig. 2 shows an illustration of our framework. Our net-

work takes a source NeRF model and a target NeRF model
as input, and outputs correspondences in the source NeRF
and target NeRF. We first train multiple NeRF blocks in dif-
ferent coordinate frames. For each NeRF model, we asso-
ciate it with an occupancy voxel grid, where each voxel in-
dicates whether it is occupied or not. After training, we ex-
tract a 3D voxel grid for each NeRF model and then feed it
into a 3D CNN backbone to extract features. Subsequently,
we use a transformer with self-attention and cross-attention
layers to learn the relations between the pairwise feature
grids. We then adopt a decoder to decode the resulting fea-
tures Fsource,Ftarget into correspondences {Xsource,Xtarget}
and the corresponding confidence scores {Ssource,Starget}.
Finally, the relative transformation can be solved by the
weighted Kabsch-Umeyama algorithm [39] from the cor-
respondences.

3.1. Background

Neural Radiance Fields. Neural Radiance Fields (NeRF)
aims at rendering photo-realistic images from a new view
point. For a 3D point X, the density field σt of X is defined
as the differential probability of a ray r = (o,d) hitting a
particle, where o is the camera center, d is the view direc-
tion. The transmittance T (t) denotes the probability of
ray without hitting any particles when traveling a distance
t, and the discrete form of T (t) is:

Tn = T (0 → tn) = exp
( n−1∑
k=1

−σkδk
)
. (1)

Given a set of points {Xn = o + tnd | n ∈ [0,K]},
NeRF predicts the view-independent volume density σn and
view-dependent radiance field by:

σn, en = F(X;Θ),

cn = F(r, e;Θ), (2)

where en is an embedding vector and Θ denotes the net-
work parameters. The final color of an image pixel can be
rendered by:

C(tN+1) =

N∑
n=1

Tn ·
(
1− exp(−σnδn)

)
· cn. (3)

We recommend interested readers to refer to [27, 34] for the
detailed derivation.

3.2. Querying Radiance Fields from NeRF

To extract features for the latter learning modules, we
first construct a 3D volume from NeRF. Specifically, we as-
sume each NeRF is trained within a bounding box with a 3D
voxel grid of resolution [xref, yres, zres]. We then obtain the
point locations {X} of voxel centers. We also obtain a bi-
nary occupancy mask Mocc from the occupancy grid, where
voxels that are not occupied denote empty space and thus
are ignored. The occupancy grid is the acceleration struc-
ture used in InstantNGP [28] to skip empty space in NeRF
training. Each grid has a resolution of 1283 that is centered
around (0, 0, 0) and stores occupancy as a single bit. Dur-
ing ray marching, a sample point is skipped if the bit of a
grid cell is low. We can query the density fields {σ} and
radiance fields {c} using Eq. (2) with the coordinates {X}.
Since density fields can be noisy, we further obtain a den-
sity mask Mdf = σ > σt by setting a threshold σt (we use
σt = 0.7). We then obtain our mask as M = Mocc ∩Mdf.

One issue with radiance fields is that they are view-
dependent. However, the training views are different for
each NeRF block. Suppose the NeRF is trained by N views
with camera poses P = [R | t] which project points from
camera frame to world frame. To obtain the radiance fields,
we form N viewing rays r = o + td, where d = X−t

∥X−t∥
for each query point and average the queried radiance fields
over all rays. The final color C can be obtained by volume
rendering of Eq. (3). Furthermore, we compute the alpha
compositing value by α = 1− exp(−σδ), where δ is a cho-
sen small value. We associate each point in the voxel grid
with [X,C, α] and feed the voxel grid G ∈ Rxref×yres×zres×C

and a mask M ∈ Rxref×yres×zres×1 into a 3D CNN to ex-
tract backbone features, where C = 7 with 3 channels from
the point coordinate, three from the color channels, and one
from the scalar α.

3.3. Feature Extraction

Given the voxel grid, we adopt the feature pyramid net-
work [22] to extract features. We use ResNet [15] as the
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Figure 2: Network architecture of our method. The pipeline of our method is: 1) We first extract the pairwise voxel grid
G ∈ Rxref×yres×zres×C and a binary mask M ∈ Rxref×yres×zres×1 from the source NeRF and the target NeRF. 2) The voxel grid
G and a binary mask M are fed into the 3D feature pyramid network to extract voxel features. 3) The extracted voxel grid
features are downsampled to a 2-dimensional tensor F ∈ RN×C

′

by their spherical neighborhood. 4) The resulting source
features Fsource and target features Ftarget are strengthened by a transformer, where a self-attention layer is used to enhance
the intra-contextual relations, and a cross-attention layer is used to learn the inter-contextual relations. 5) Finally, we use a
single-head attention layer to decode the features into correspondences and their corresponding confidence scores.

feature backbone, where all the 2D modules are replaced
by their corresponding 3D parts. The feature pyramid net-
work enables the learning of high-level semantic features
at a multi-scale and thus is suitable to extract the voxel
grid features in our task settings. We note the difference
from the original feature pyramid network which utilizes
different scale features for object detection, we adopt only
the features output from the last layer. Since the dimen-
sion of the feature grid from the last layer can be different
from the original voxel grid, we rescale it to the size of the
original voxel grid G and resulted in a voxel feature grid
Gf ∈ Rxref×yres×zres×C

′

.
We cannot use Gf as the input to our transformer since

the voxel feature grid can contain too many points to en-
able the transformer to run on a single GPU. To solve
this issue, we iteratively downsample Gf by the spherical
neighborhood [36] as done in KPConv [37] to obtain the
downsampled voxel points X̂. The downsample iteration
is terminated when the total number of occupied voxels in
the current sampled voxel feature grid is less than 1.5K.
Lastly, we reshape the occupied voxel features into a ten-
sor F ∈ RN×C

′

. The weights of the feature extraction
network are shared across the source and the target NeRFs.
We denote the downsampled voxel points and extracted fea-
tures of the source and target NeRFs as: [X̂source,Fsource]

and [X̂target,Ftarget], respectively.

3.4. Transformer

We then feed the resulting feature Fsource and Ftarget into
a L-layer transformer with self-attention and cross-attention

layers. We follow the same intuition of Predator [16] and
REGTR [43], where a self-attention layer is applied to both
the source feature Fsource and the target feature Ftarget to en-
hance the intra-contextual relations, and a cross-attention
layer is applied to both Fsource and Ftarget to learn the inter-
contextual relations. We follow the classical transformer
architecture [41, 20, 43] with input to be voxel features.

Multi-Head Attention. The multi-head attention opera-
tion in each layer is defined as:

MH(Q,K,V) = concat(head1, · · · , headh)WO, (4)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ). The at-

tention function is adopted as the scaled dot-product:

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V. (5)

In the self-attention layers, Q = K = V represents the
same feature tensor in each block. In the cross-attention lay-
ers, the keys, and the values are the feature tensors from the
other block. The self-attention mechanism enables the net-
work to learn the relationship inside the same feature points,
while the cross-attention mechanism enables the communi-
cation of the different feature points.

Decoder. After encoding features by transformer, we fur-
ther adopt a single-head attention layer to predict the cor-
responding point locations X̃source and confidence scores
S̃source of the source voxel points X̂source in the target
NeRF’s coordinate frame. Similarly, we also predict the
corresponding point locations X̃target and confidence scores



S̃target of the target voxel points X̂target in the source NeRF’s
coordinate frame. Finally, we utilize the predicted corre-
spondences to compute the relative rigid transformation.
The confidence scores are used as weights that mask out the
irrelevant correspondences and can be interpreted as how
likely the predicted points from X̃source and X̃target are cor-
respondences and are visible in the source NeRF and the
target NeRF.

3.5. Training Loss

Surface Field Supervision. To train the network, we en-
courage the predicted correspondences to have the same
features which are invariant in the corresponding NeRF
model. The naı̈ve way is to adopt density fields as super-
vision instead of radiance fields since density fields are in-
variant to view points. However, density fields can be very
noisy. We thus utilize the surface fields [14] as supervision.
The surface field is defined as the differential probability of
the ray hitting a surface at Xn given by:

S(t) = T (t) · (1− exp(−2σδ)). (6)

Proof: The differential probability of a ray hitting a sur-
face at point X is the product of the probability of a ray
traveling over [0, tn) without hitting any particle before tn
times the differential probability of the ray hitting exactly at
point X(tn). The surface field can then be written as:

S(t) =

∫ t+δ

t−δ

T (s) · σ(s) ds (7)

We derive the exact form of S(t) as follow:

S(t) =

∫ t+δ

t−δ

T (s) · σ(s) ds

=

∫ t+δ

t−δ

T (0 → t− δ) · T (t− δ → s) · σ(s) ds

= T (t− δ) ·
∫ t+δ

t−δ

T (t− δ → s) · σ(s) ds

= T (t− δ) · σt ·
∫ t+δ

t−δ

T (t− δ → s) ds

= T (t− δ) · σt ·
∫ t+δ

t−δ

(
exp

(
−
∫ s

t−δ

σ(µ) dµ
))

ds

= T (t− δ) · σt ·
∫ t+δ

t−δ

(
exp

(
− σt(s− t+ σ)

))
ds

= T (t− δ) · σt · (−
1

σt
) · exp

(
− σt(s− t+ δ)

)∣∣t+δ

t−δ

= T (t− δ) ·
(
1− exp(−2σt · δ)

)
. (8)

The second term holds since transmittance is multiplicative
(c.f . Eq.(18) of [34]). The 4th term holds since we can

assume the density σt is a constant within a small region
[t − δ, t + δ]. To produce the view-independent field, we
first form N viewing rays for each point. Subsequently, we
take the maximum value of all rays as the density field value
instead of averaging the value (as done in Sec. 3.2) for the
radiance field. Finally, we obtain the surface field mask Msf
by checking S(t) > η (we use η = 0.5). We then update our
mask by M = Mocc ∩ Mdf ∩ Msf.

Confidence Loss. We adopt the cross-entropy loss to
supervise the confidence score, with the surface fields
Ŝsource = S(X̂source), Ŝtarget = S(X̂target) queried from
NeRF as the ground truth label:

Lconf = BCE(Ŝsource, S̃source) + BCE(Ŝtarget, S̃target). (9)

Surface Field Loss. In addition to the confidence loss, we
also encourage the predicted correspondences to have con-
sistent surface field values:

Lsf =
1

N
∥S([X̂source, X̂target])− S([X̃source, X̃target])∥1,

(10)
where N is the total number of the concatenated source
voxel points and target voxel points.

Correspondence Loss. We further use a correspondence
loss to constrain the predicted locations of correspondences:

Lcorr =
∑

ρ(S∥T ⋆(xi)− yi∥; η, γ), (11)

where T ⋆ is the ground truth relative transformation be-
tween the source NeRF and target NeRF, ρ(·; η, γ) is the
adaptive robust loss function [1] and {η, γ} are respectively
a smooth interpolation value and a scale parameter, which
are hyperparameters used to control the shape of the robust
function. We use η = 1.0, γ = 0.5 in our experiments.

Moreover, we adopt the feature loss [40, 43] to leverage
the geometric properties when computing the correspon-
dences. Our final loss is therefore defined as:

Lfinal = Lconf + λ1Lsf + λ2Lcorr + λ3Lfeat, (12)

where λ1, λ2, λ3 are the weights associated with the cor-
responding loss functions. In our experiments, we use
λ1 = 1.0, λ2 = 0.1, λ3 = 1.0.

4. Experiments
Datasets. We aim at registering multiple NeRFs. Due to
the lack of a suitable dataset for our task, we downloaded
the 3D mesh models of 1, 700+ objects from Objaverse [10]
to construct our dataset. Objaverse [10] is a massive dataset
that contains 800K+ annotated 3D Objects. It is created
for the text-to-3D task. We utilize it to construct our dataset
for NeRF registration. Specifically, we randomly selected
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Figure 3: An overview of our training data. The training images are rendered from 3D objects collected from the Objaverse
dataset. We randomly picked ∼ 30 classes, on which each class contains 40–80 objects.

30+ categories and each category contains 40− 80 objects.
As Objaverse contains only 3D objects, we render 120 im-
ages for each object where the distribution of camera poses
can be seen from Fig. 1 (a). We then split the images into
2 blocks by KMeans. We also add a randomly generated
transformation to the original camera poses after splitting
data into separate blocks, such that NeRF blocks are trained
in different coordinate frames. Each NeRF block is trained
in 10K iterations. See Fig. 3 for an overview of our selected
training data. The NeRF models trained on all objects are
used to train our NeRF registration neural network, and we
randomly select 44 objects that are not seen during training
for the test.

Implementations. We render images for all 1, 700+ ob-
jects in a computer with an Intel i7 CPU and an NVIDIA
GTX 4090 GPU. We run 8 processes concurrently for
downloading the mesh models and the job is finished within
a week. We use an occupancy grid with a resolution of
128 × 128 × 128 associated InstantNGP [28] as our NeRF
representation. To train NeRF, we sample 1024 points for
each ray. We use Adam [17] as the NeRF optimizer. We
set the initial learning rate to 1e − 2 and decay it at step
5K, 7.5K, 9K with a multiplicative factor being 0.33. Ex-
cept for storing the NeRF models, we also store the camera
poses and intrinsics as metadata. For our NeRF registration
network, we use AdamW [26] as the optimizer with weight
decay 1e− 4. The learning rate is set to 1e− 4 and halved
every 34K iteration. The batch size is 1. Our network is
trained for 60 epochs, which took about 48 hours to finish.
For our transformer, we use L = 6 layers and h = 8 heads.

Evaluation. NeRF2NeRF [14] needs human annotated
keypoints for initialization, which are not available on the
dataset. Therefore, we do not evaluate NeRF2NeRF on this
dataset and use Fast Global Registration (FGR) [46] as the
baseline. We also compared it against the state-of-the-art
deep point cloud registration method REGTR [43]. For
FGR and REGTR, we extract the voxel grid of each NeRF
block to a point cloud and use the pairwise point clouds as
input to them. For REGTR, we use the model that is pre-
trained on the 3DMatch [45] dataset provided by the author.
We do not retrain REGTR on the Objaverse dataset since
the ground-truth overlapping labels are not available on this
dataset. We also evaluated our method Oursdf with the sur-
face fields replaced by the density fields as a comparison.

Results. The quantitative results can be seen from Tab. 1
and Tab. 2. We report the relative rotation errors (RRE) ∆R
(in degree) and the relative translation errors (RTE) ∆t as
metrics. Note that the scale of translation is unknown and
we multiply ∆t by 1e2. As we can see, FGR [46] failed in
most of the scenes. We think it is the low resolution of our
voxel grids that makes FGR [46] fail to find the correspon-
dences. REGTR [43] also fails to find the correct transfor-
mations in almost all the scenes. It is worse than FGR in
both rotations and translations. We also find very poor gen-
eralization ability of Oursdf. We conjecture that it is due to
the density fields being too noisy and not unique for identi-
fying per-scene geometry. In contrast, “Ours” achieves the
best results among almost all the scenes – since the network
can be regularized to focus on the scene geometry proper-
ties by leveraging the surface fields.

We present some qualitative results in Fig. 4. To visual-



Food 5648 Chair 4b05 Chair 4659 Chair 3f2d Cone 37b5 Figurine 260d Figurine 0a5b Figurine 09f0 Banana 3a07 Banana 2373 Banana 0a07

∆R

FGR [46] 178.34 50.50 28.54 81.31 104.52 89.13 26.35 138.00 12.17 6.92 2.86
REGTR [43] 169.07 150.38 92.80 98.67 62.50 111.80 106.12 176.48 136.02 178.36 173.96
Oursdf 77.48 160.13 157.21 22.91 108.09 121.32 10.53 95.89 95.43 3.49 6.96
Ours 6.01 6.53 17.74 18.88 18.79 2.11 7.62 8.25 15.55 10.95 1.36

∆t

FGR [46] 17.44 2.27 7.10 8.65 30.49 19.25 10.93 35.22 8.50 1.53 1.36
REGTR [43] 30.72 15.41 24.97 60.53 84.20 62.07 35.48 42.10 10.75 50.40 13.17
Oursdf 15.52 7.32 11.72 2.29 21.70 33.61 1.95 21.40 13.14 4.28 0.50
Ours 1.78 4.13 8.74 5.07 3.06 3.54 10.68 3.18 0.46 1.00 1.22

Fireplug 06d5 Fireplug 0063 Fireplug 0152 Shoe 18c3 Shoe 1627 Shoe 0bf9 Shoe 022c Teddy 1b47 Elephant 183a Elephant 1608 Elephant 1a39

∆R

FGR [46] 6.19 20.32 7.50 10.23 178.14 71.55 50.28 8.05 7.65 21.37 30.97
REGTR [43] 156.92 99.60 4.04 2.55 175.21 97.92 154.91 149.17 177.15 172.28 102.62
Oursdf 156.17 45.76 12.34 14.69 131.66 158.66 6.84 6.32 6.97 3.92 126.94
Ours 7.96 17.43 4.86 6.06 12.95 6.48 2.93 11.44 8.00 11.13 13.84

∆t

FGR [46] 5.83 0.83 1.17 0.04 4.99 8.82 35.47 1.11 4.51 14.08 11.03
REGTR [43] 68.71 38.74 2.13 3.53 43.40 61.37 102.00 42.84 52.26 66.15 34.54
Oursdf 10.54 5.32 2.60 4.66 28.63 24.82 4.40 2.20 4.26 1.40 33.57
Ours 1.58 5.08 0.96 2.08 12.80 1.81 0.65 1.06 8.97 6.17 7.80

Table 1: Quantitative results (first part) of registration on the Objaverse dataset. ∆R denotes the relative rotation errors in
degree, ∆t denotes the relative translation errors multiplied by 1e2 with unknown scales. FGR [46] denotes the fast global
matching method, Oursdf denotes our method with surface fields replaced by density fields.

Piano 0e0d Piano 0a6e Truck 1431 Guitar 15b4 Guitar 14f8 Guitar 0ceb Guitar 0aa0 Lantern 0231 Lamp 0230 Bench 0b05 Shield 22a7

∆R

FGR [46] 23.09 77.63 7.46 7.80 5.25 13.07 39.94 130.36 17.44 19.51 170.27
REGTR [43] 30.54 117.90 178.49 5.18 29.47 103.84 5.95 139.32 160.45 122.12 157.38
Oursdf 160.71 168.79 117.07 11.43 164.87 177.62 7.96 7.76 173.09 179.16 178.00
Ours 16.30 13.51 16.68 12.60 3.43 1.08 9.53 9.17 16.44 12.98 8.21

∆t

FGR [46] 7.43 14.50 5.95 2.86 3.46 1.83 8.42 9.06 0.69 12.52 15.57
REGTR [43] 44.24 65.99 50.63 15.18 18.41 89.20 9.91 57.25 64.44 31.97 44.29
Oursdf 22.86 26.18 24.83 10.27 8.50 43.21 4.09 3.35 26.77 28.59 34.71
Ours 4.80 12.54 0.04 5.72 5.03 3.01 1.20 3.29 1.31 1.68 11.33

Shield 1973 Shield 14a6 Shield 00ad Controller 0866 Fighter Jet 16c6 Fighter Jet 089f Fighter Jet 0000 Telephone 1a8c Telephone 0354 Lampshade ab66 Skateboard 10c7

∆R

FGR [46] 130.83 178.99 7.06 164.01 11.91 40.21 39.86 150.10 19.76 147.50 176.90
REGTR [43] 138.94 169.78 14.76 102.05 154.74 150.64 178.35 144.47 1.13 148.44 3.88
Oursdf 178.93 4.92 7.78 179.13 9.75 23.97 178.68 132.49 16.59 5.79 179.97
Ours 12.94 12.26 2.29 4.03 6.88 10.53 6.46 15.60 9.01 5.67 1.92

∆t

FGR [46] 49.44 55.62 0.22 8.97 6.90 11.73 3.44 57.53 18.51 67.08 19.03
REGTR [43] 72.01 48.56 6.57 65.87 52.97 82.10 28.79 51.09 0.91 54.45 5.14
Oursdf 59.08 0.66 1.58 23.68 2.64 13.98 19.28 63.76 15.65 4.81 12.20
Ours 2.79 4.38 1.26 0.99 2.53 7.55 2.09 1.28 3.57 0.81 0.16

Table 2: Quantitative results (second part) of registration on the Objaverse dataset. ∆R denotes the relative rotation errors in
degree, ∆t denotes the relative translation errors multiplied by 1e2 with unknown scales. FGR [46] denotes the fast global
matching method, Oursdf denotes our method with surface fields replaced by density fields.

ize the rendered images, we first transform the camera poses
Psource in the source NeRF model to the target NeRF and
obtain the transformed camera poses P

′

source, and then we
concatenate the transformed camera poses with the camera
poses in target NeRF Prender = concat([P

′

source, Ptarget]).
We use Psource as the camera trajectories to synthesize im-
ages for the target NeRF model. Similarly, we use P

′

render =

concat([Psource, P
′

target]) for the source NeRF model to syn-
thesize images, where P

′

target is the transformed camera
poses from target NeRF to source NeRF. The results are
respectively given in columns 1 and 2. We also visual-
ize the aligned camera poses Prender in column 3 and 4.
The red and green color respectively denotes the camera
poses aligned by ground truth and our estimated transfor-
mations. Moreover, we transform the source prediction to
the target coordinate frame and visualize the result in the
last column. We further use ground truth transformation to
align the camera poses to obtain Pgt

render, and simply con-
catenate source and target camera poses together to obtain

Pno trans
render . Subsequently, we provide the target NeRF respec-

tively with Pgt
render,Prender,P

no trans
render to render RGB images

and depth images. Some of the results are shown in Fig. 6.

Ablation Studies. We further show the mean of RRE and
RTE in Tab. 3 to ablate our method. “w.o. conf” denotes
training our method without the confidence loss, “w.o. sf”
denotes training our network without the surface field loss,
“Oursdf” denotes our method with the surface fields re-
placed by the density fields. We can see that the surface
fields are critical to our network training.

FGR [46] REGTR [43] w.o. conf w.o. sf Oursdf Ours

∆R (◦) 61.59 113.78 71.84 101.17 86.22 9.67
∆t (×1e2) 13.50 43.31 12.97 20.35 16.06 3.85

Table 3: Ablations studies of our method. The results are
averaged on the 44 test objects.

Performance Analysis. To accelerate the network train-
ing, we do not query the NeRF model to obtain the voxel
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Figure 4: The qualitative results on Objaverse [10] dataset after NeRF registration. From left to right are respectively
the rendered images by the source NeRF model, the rendered images by the target NeRF model, the side view (SV) of the
aligned camera poses, the birds-eye-view (BEV) of the aligned camera poses, the concatenated predictions by transforming
the source prediction to the target NeRF’s coordinate frame. red and green, respectively, denote the results from source NeRF
and target NeRF.

Figure 5: Our method failed on unbounded scenes where
noisy points are extracted from the occupancy grid.

grid. Instead, we pre-compute the voxel grids G and the
corresponding binary mask M for all NeRF blocks and
store them on disks. The voxel grid G and binary mask
M are loaded into memory at each iteration. During train-
ing, our network takes about 2.8 seconds per iteration. The
bottleneck on the training time is from loading G, M, and
the source and target NeRF models. During inference, our
model takes about 0.4 seconds with the input voxel grid
containing about 10K points. Further acceleration can be
achieved by pre-downsampling the voxel grid to a lower
resolution.

4.1. Further Discussion

Limitations. Our method has shown good performance in
registering NeRF blocks. However, registering NeRF is still
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Figure 6: View synthesis comparison on object ‘Lampshade
a166’. Top row: results from ground truth transformation.
Middle row: results from the predicted transformation. Bot-
tom row: results without applying any transformations.

a challenging problem in large-scale scenes. We summarize
the limitations of our work as follows (more discussions are
given in the supplementary):



• Generalizability vs. out-of-distribution (OOD). While
our method is generalizable to unseen in-distribution
scenes during testing, we postulate that performance
would drop when tested on OOD scenes/object classes,
e.g., training on indoor and testing on outdoor scenes,
etc.

• Application to real-world data & unbounded scenes.
We emphasize that our training data contains real-
world objects (e.g. Shoes in Fig. 3). Our method cur-
rently cannot be applied to unbounded scenes since
NeRF is not good at geometry estimation. Conse-
quently, incorrect geometries like floaters can influ-
ence the performance of our model. It means that
our method can fail if the extracted occupancy grid
contains too many noisy points (See Fig. 5). We ar-
gue that better results can be obtained by applying
RANSAC [12] to filter outliers based on our predicted
correspondences, or training better NeRF blocks by
utilizing depth supervision [11, 30], or utilizing a ro-
bust loss [32] to ignoring floaters during training NeRF
blocks. In addition, for real-world data that contain
background, techniques like [3] can also be applied to
our method to get the interested objects. We leave this
as our future work.

• Scale in the relative transformation. We follow the
assumption of NeRF2NeRF that the scales for two
NeRFs are the same, which can be violated in real-
world settings. Nonetheless, additional sensors such
as IMU, wheel encoders, etc., are easily available to
get the absolute scale. For settings where only RGB
images are available, the scale can be a problem. Addi-
tional scene priors are needed to fix the scale for RGB
images as input.

Why localization methods based on SfM tools are not
compared? A simple solution is to first synthesize im-
ages using NeRF. We can then use SfM to get 2D-2D cor-
respondences from keypoints matcher and do triangulation
to recover the 3D scene points. Consequently, localization-
based methods such as perspective-n-points (PnP) [18] or
iterative closest point (ICP) [2, 6] can be applied on the 3D
scene points to register the NeRF models. However, we ar-
gue that SfM is fragile in scenes where keypoint correspon-
dences are difficult to establish. One failure case is given
in Fig. 7. As a result, all methods that rely on keypoint
correspondences can potentially fail due to wrong matches.
Particularly, it is often hard to obtain enough matches for
texture-less scenes/objects. False matches can also occur
due to changes in image appearance. We circumvent this
problem by learning the correspondences from NeRF rep-
resentations, i.e. the density field, which is shown robust to
image appearance changes in the experiments. Moreover,

our method is an end-to-end solution and therefore can be
much faster than other methods that rely on keypoints, e.g.,
iNeRF [23] takes more than 50 secs to register an image in
an existing NeRF model (c.f. Fig. 4 of the iNeRF paper),
while ours only takes 0.4 secs to register two NeRFs.

images point clouds from COLMAP camera poses from COLMAP

Missing 
Part

Figure 7: COLMAP failed on synthetic dataset due to
wrong correspondences.

Why not register images in the same coordinate frame
by global bundle adjustment (BA)? We argue that there
are cases where using BA to recover all poses may not be
the best option:

• Robustness. BA relies on good keypoint correspon-
dences which can be challenging to obtain in texture-
less scenes, etc. In contrast, our DReg-NeRF leverages
NeRF features for registration without explicit corre-
spondence search on the images.

• Scalability and efficiency. Images of a large scene
can be collected in smaller batches. It is more scalable
and efficient to build smaller NeRF models on each
batch of images and subsequently do NeRF registra-
tion to get the NeRF model of the full scene.

• Modularity. It is easier to update a modular NeRF
model. Any module can be easily replaced or added
via NeRF registration.

5. Conclusion
In conclusion, we have proposed a novel network archi-

tecture that registers NeRF blocks into the same coordinate
frame. Unlike existing methods, our method does not rely
on any initialization and human-annotated keypoints. We
constructed a dataset with 1, 700+ objects where images
are rendered from 3D textured meshes of the Objaverse
dataset. We train our method on our constructed dataset.
Our method surpasses the state-of-the-art traditional and
learning-based point cloud registration methods when eval-
uated on the test set.
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6. APPENDIX
6.1. NeRF Network Architecture

We present the network architecture of our used NeRF
network in Fig. 8. The resolution level is 16. The num-
ber of hash table entries in each level is 219, where the fea-
ture dimension of each hash table entry is 2. The coars-
est level is 16. We use NeRFAcc [19] to train NeRF mod-
els, where only a single resolution occupancy grid is used
to skip empty space instead of multi-resolution occupancy
grids as in the original InstantNGP implementation.

6.2. More Qualitative Results

We present more qualitative results in Fig. 9. We fur-
ther visualize the rendered RGB images and depth images
in Fig. 10, Fig. 11 and Fig. 12. In the left part of each
figure, we visualize the rendered RGB images and depth
images, where the top row shows results from the ground
truth transformation, the middle row shows results from the
predicted transformation, and the bottom row shows results
without applying transformation. The right part of each fig-
ure presents camera poses and occupancy grids before regis-
tration on the top row, and the camera poses and occupancy
grids after registration on the bottom row.
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Figure 8: Network architecture of our used NeRF. A single-resolution occupancy grid is used to skip empty space. The
dimension of each hidden layer is 64. The view direction is concatenated with the feature embedding after the first hidden
layer without applying positional encodings.
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Figure 9: The qualitative results on Objaverse [10] dataset after NeRF registration. From left to right are respectively
the rendered images by the source NeRF model, the rendered images by the target NeRF model, the side view (SV) of the
aligned camera poses, the birds-eye-view (BEV) of the aligned camera poses, the concatenated predictions by transforming
the source prediction to the target NeRF’s coordinate frame. red and green, respectively, denote the results from source NeRF
and target NeRF.



aligned 
(pred)

unaligned

aligned 
(gt)

Rendered Image (source nerf) Rendered Depth (source nerf) Rendered Image (target nerf) Rendered Depth (target nerf)

Before Registration

After Registration

aligned 
(pred)

unaligned

aligned 
(gt)

Rendered Image (source nerf) Rendered Depth (source nerf) Rendered Image (target nerf) Rendered Depth (target nerf)

Before Registration

After Registration

Figure 10: View synthesis comparison. Left: (1) Top row: results from ground truth transformation; (2) Middle row: results
from the predicted transformation; (3) Bottom row: results without applying the transformation. Right: (1) Camera poses
and occupancy grids before registration; (2) Camera poses and occupancy grids after registration.
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Figure 11: View synthesis comparison on object. Left: (1) Top row: results from ground truth transformation; (2) Middle
row: results from the predicted transformation; (3) Bottom row: results without applying the transformation. Right: (1)
Camera poses and occupancy grids before registration; (2) Camera poses and occupancy grids after registration.
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Figure 12: View synthesis comparison. Left: (1) Top row: results from ground truth transformation; (2) Middle row: results
from the predicted transformation; (3) Bottom row: results without applying the transformation. Right: (1) Camera poses
and occupancy grids before registration; (2) Camera poses and occupancy grids after registration.


