
Minimum Latency Deep Online Video Stabilization

Zhuofan Zhang1* Zhen Liu2* Ping Tan3 Bing Zeng1 Shuaicheng Liu1,2†

1University of Electronic Science and Technology of China 2Megvii Technology
3The Hong Kong University of Science and Technology

{zhangzf98@std., eezeng@, liushuaicheng@}uestc.edu.cn,
liuzhen03@megvii.com, pingtan@ust.hk

Abstract

We present a novel camera path optimization framework
for the task of online video stabilization. Typically, a sta-
bilization pipeline consists of three steps: motion estimat-
ing, path smoothing, and novel view rendering. Most pre-
vious methods concentrate on motion estimation, proposing
various global or local motion models. In contrast, path
optimization receives relatively less attention, especially in
the important online setting, where no future frames are
available. In this work, we adopt recent off-the-shelf high-
quality deep motion models for motion estimation to re-
cover the camera trajectory and focus on the latter two
steps. Our network takes a short 2D camera path in a
sliding window as input and outputs the stabilizing warp
field of the last frame in the window, which warps the com-
ing frame to its stabilized position. A hybrid loss is well-
defined to constrain the spatial and temporal consistency.
In addition, we build a motion dataset that contains stable
and unstable motion pairs for the training. Extensive ex-
periments demonstrate that our approach significantly out-
performs state-of-the-art online methods both qualitatively
and quantitatively and achieves comparable performance
to offline methods. Our code and dataset are available at
https://github.com/liuzhen03/NNDVS.

1. Introduction
Video stabilization methods aim at removing unwanted

shaky motions of a video caused by unsteady moving cap-
ture [6]. Traditional methods often take three main steps: 1)
camera motion estimating for trajectory recovery; 2) camera
path smoothing; and 3) steady frame synthesis. According
to the adopted motion model in the first step, these meth-
ods can be broadly classified as 2D or 3D. 2D methods
adopt planar motion models such as affine [5], or homog-

*Equal contribution
†Corresponding author

Y
-P

ro
fil

e 
Tr

an
sla

tio
n

X
-P

ro
fil

e 
Tr

an
sla

tio
n

Unstable
Video

Stable
Video

Synthesized
Unstable Video

M
ot
io
n

E
st
im
at
io
n Motion

Transfer

(a) Illustration of the dataset synthesis process.

(b) Illustration of the synthesized camera path.

stable motion

unstable 
motion

Original
Stable Video

Y
-P

ro
fil

e 
Tr

an
sla

tio
n

X
-P

ro
fil

e 
Tr

an
sla

tio
n

Unstable
Video

Stable
Video

Synthesized
Unstable Video

M
ot
io
n

E
st
im
at
io
n Motion

Transfer

(a) Illustration of the dataset synthesis process.

(b) Illustration of the synthesized camera path.

stable motion

unstable 
motion

Original
Stable Video

Figure 1. Illustration of the dataset synthesis process (a) and the
synthesized camera path (b). We transfer an unstable path to a sta-
ble path, creating a synthesized path, which shares high frequen-
cies of the unstable path with low frequencies of the stable path.

raphy [27], or mesh [25, 22, 33], or flow [26, 20, 41], while
3D methods resort to 3D depth [23, 17], or reconstructed
points [18], or epipolar geometry constraints [3].

In comparison, deep learning-based methods learn stabi-
lization models from stable and unstable video pairs [33, 41,
35] without explicit steps of motion estimation and smooth-
ing. However, the results of deep methods are often visually
inferior to those of traditional ones. A potential reason is
that these methods try to learn the three steps all in a unified
framework, each of which has different characteristics but
is learned in the network blindly.

On the other hand, deep affine [12], deep homogra-
phy [38, 8], and deep mesh models [39, 24, 21, 28] have
demonstrated high-quality image registration, even under
adverse cases. They are robust to scenes with large depth
variation, large dynamic objects, and poor textures, fitting
perfectly for the camera motion estimation. In this work,
we argue that it is not necessary to enclose all three steps of
the stabilization into the learning pipeline, but let the mo-
tion estimation to the recent deep motion models [39, 24].

ar
X

iv
:2

21
2.

02
07

3v
3 

 [
cs

.C
V

] 
 1

5 
A

ug
 2

02
3

https://github.com/liuzhen03/NNDVS


In this way, our network only focuses on learning to sta-
bilize the shaky camera motion, which makes the learning
process much more efficient and effective.

Camera path smoothing can be performed offline or on-
line, where the former optimizes the path globally while the
latter smooths the path on-the-fly. In other words, offline
approaches have access to all past and future frames during
optimization, as it often stabilizes a video after it is cap-
tured. In contrast, online methods aim to stabilize a video
during the capture. Note that, the concept of real-time dif-
fers from that of online, as an online method must be in real-
time whereas an offline method can run at real-time speed.
The main distinction is the availability of future frames.

Most existing methods are offline [25, 5, 4, 34, 26].
However, the online setting is critical as many applica-
tions desire instant visual feedback based on live video
streams [22, 33]. Normally, with limited or even no access
to future frames, online methods cannot achieve equal sta-
bility as offline methods, particularly in the suppression of
the low-frequency camera shake, which frequently necessi-
tates a long camera path. One may argue that online meth-
ods can have all the past frames for processing. However,
future motions are important, if not more important than
the past. Because, for one thing, fast camera motions can
happen at any time suddenly, e.g., quick rotation or zoom-
ing. The reaction time is short. Inappropriate processing
may either decrease the stability or create artifacts such as
excessive cropping. For another, all the past frames have
already been shown to the audience, meaning that they are
fixed, and thus cannot be modified. We can only adjust the
unstabled future frames to the frozen past ones.

To this end, we propose a deep online camera path
smooth network that takes a pre-estimated short 2D cam-
era trajectory in a sliding window as input and outputs the
motion compensation warp field of the last frame in the win-
dow for the stabilized view, which is the setting of online
stabilization with the minimum latency. A video can be sta-
bilized on the fly by applying our model repeatedly for ev-
ery incoming frame. To deal with depth changes and mov-
ing objects, we employ the mesh-based motion model [39]
which demonstrates excellent robustness in various scenes.
Instead of directly inputting the mesh structure or mesh cells
as local homographies to the network, we convert the esti-
mated motion to a dense flow field, which can be fed into the
convolutional neural network naturally. We show that it is
a more convenient representation compared to other alter-
natives, e.g., vertex sparse motion vectors or homography
matrix, which cannot be easily adapted as input to CNNs.
Based on that, we further propose a hybrid loss, which con-
sists of the motion-consistency loss, the shape-consistency
loss, and the scale-preserving loss, to maintain the spatial
coherence and temporal continuity of the stabilized video.

Besides, we create a motion dataset, MotionStab, to

train our network. In particular, we capture 110 stable
videos with a cell phone mounted on a hand-held physical
stabilizer. Then, we create a shaky video by transforming
each frame of the stable video according to the motion of
another irrelevant shaky video. In this way, the stable and
unstable motion pairs can be constructed. Fig. 1 shows our
idea. Note that, our dataset is different from DeepStab [33],
which is captured by a stable and a shaky camera simultane-
ously. We directly transfer the motion of a shaky video to a
stable video. The contents of the two videos are not impor-
tant but the motion does. That means DeepStab [33] offers
frame pairs, while our MotionStab offers motion pairs. We
feed the motions to the network instead of RGB frames.

The benefits are three folds: 1) image contents are di-
verse, while motion mappings are much easier to learn; 2)
motion as mesh is lightweight, so does the network; 3)
the network can be more focused by excluding the task
of the motion estimation. As a result, we show that this
motion learning pipeline is effective enough, such that it
can work with straightforward network architectures, e.g.,
UNet, without help from more advanced designs or sophis-
ticated modules. Complex motion types can be learned by
the network successfully, as long as they exist in the training
data. As such, the network can be kept simple yet effective.

In summary, the main contributions of this paper are con-
cluded as follows:

• We propose a novel deep camera path optimization
framework for online video stabilization.

• We propose a hybrid loss to enable robust supervision
for maintaining the spatial and temporal coherence of
the stabilized video.

• We build a comprehensive MotionStab dataset that
covers various motions for camera path optimization.

• We conduct extensive experiments to demonstrate the
effectiveness of the proposed approach against existing
state-of-the-art online and offline methods.

2. Related Works
2.1. Traditional Methods

Early 2D approaches track image features for several
frames and then smooth these feature trajectories to stabi-
lize a video [16, 34]. However, long feature tracks [31]
are hard to be obtained when large camera motions ex-
ist. Later, motion models, such as affine [5] or homogra-
phy [27, 2], are calculated between neighboring frames, re-
laxing the requirement of long feature tracks into feature
matches [30] between adjacent frames. Then, these mo-
tion models are accumulated to generate a 2D camera tra-
jectory, which is shown to be a good replacement against



track-based approaches, owning largely improved robust-
ness. With respect to the motion representation, homogra-
phy mixture [4], mesh [25, 22, 34], and optical flow [26, 20]
based motion models are proposed to deal with scenes that
contain large depth variations. Besides, some approaches
focus on special stabilization tasks, such as Selfie [42],
360 [15], and hyperlapse videos [13].

On the other hand, 3D-based methods require 3D camera
motions or scene structure for stabilization. The 3D struc-
ture can either be calculated from the video by structure-
from-motion (SfM) [18] or acquired from additional hard-
ware, such as a depth camera [23], a gyroscope sensor [14],
or a light field camera [32]. However, full 3D stabilization
is fragile and computationally expensive [18]. Partial 3D
methods proposed 3D constraints, such as subspace projec-
tion [19] and epipolar geometry [3], to alleviate the require-
ment of full 3D reconstruction [7]. Normally, 3D methods
can better handle the scene parallax compared with 2D ap-
proaches due to the physical correctness, as long as the 3D
information can be available.

2.2. Deep Learning Methods

Deep methods take the video frames as input and directly
output the stabilized frames, which are often trained with
stable and unstable frame pairs acquired by special hard-
ware, e.g., DeepStab dataset [33]. Xu et al. used the ad-
versarial network to generate a target image to guide the
warping [35]. Yu et al. learned the flow fields from ini-
tial optical flow estimation for the accurate per-pixel mo-
tion compensation [41]. Deep methods suffer from the gen-
eralization problem, given that DeepStab only contains 60
videos. Yu et al. used the CNN as the optimizer instead of
learning from data to overfit each input example [40].

Recently, deep motion models have achieved good re-
sults for motion estimation, such as deep homography [38,
8] and deep meshflow [39], which is more robust in adverse
cases compared to traditional solutions, such as scenes of
low texture and low light. In this work, we adopt the deep
meshflow [39] for our camera motion estimator and design
a network concentrating on camera path smoothing.

2.3. Online Approaches

Most of the video stabilization approaches are offline,
where a video is processed after it has been captured. On-
line methods stabilize a video during the capture [37, 33,
22]. One may argue that global path optimization can be
easily modified to online methods by applying a sliding
window scheme. However, the stability would inevitably
decrease, let alone the existence of challenging camera mo-
tions, such as quick rotation and zooming, which may in-
troduce artifacts such as wobble and excessive cropping.
Previously, these difficult motions can only be solved sat-
isfactorily by global camera path smoothing. In this work,

we propose to solve these problems with our proposed deep
online camera path optimization framework.

3. Methodology
3.1. Problem Formulation

Our method is built upon convolutional neural networks.
As illustrated in Fig. 3 (a), given an incoming unsteady
frame It at timestamp t, our deep online video stabilization
aims to predict the corresponding steady frame I

′

t with no
future frames. Here, we use ‘′’ to represent predicted quan-
tities. Note that, previous learning-based methods learn the
mapping f(·) from the input shaky RGB frames and predict
a warp field B

′

t of frame It, which can be formulated as

{B
′

t} = f ({It}) , (1)

where ‘{·}’ represents a set of elements. However, our
experiments show that directly using complex RGB video
frames as input and mixing motion estimation and path
smoothing in a network frequently causes estimation errors,
resulting in wobbling and distortion artifacts.

In this work, we propose our approach from a novel per-
spective, where we separate the motion estimation step from
the network alone and leave the network focus on camera
path smoothing. Specifically, we consider using a fixed
window of r past frames {It}r = ⟨It−r, ..., It−1, It⟩ of
minimum latency (i.e. without using future frames) to sta-
bilize the incoming target frame It. The camera motion
{Ft} is estimated by an off-the-shelf deep motion estima-
tion model. Our camera path smooth network uses only the
estimated motion as input to predict the corresponding warp
field B

′

t, i.e.,

{B
′

t} = Φ({Ft}; θ), (2)

where Φ(·) denotes the camera path smoothing network and
θ is the network parameters to be optimized. We empirically
set r to 15 in our experiments.

3.2. Deep Online Camera Path Optimization

As shown in Fig. 2, the overall pipeline of the proposed
deep online camera path optimization framework mainly
consists of three stages. Firstly, we adopt a deep motion
extraction model for robust camera motion estimation. Sec-
ondly, the camera path smooth network takes the unsteady
camera motion as input and predicts the smoothed warp
field. Finally, the original shaky frame is transformed by the
predicted warp field to synthesize the target steady frame.

Camera Motion Estimation The first step is to estimate
the camera motion. We employ an optimized deep mesh-
flow model [39] to extract the inter-frame motion. Specifi-
cally, given the incoming frame It and past adjacent frame



Camera Motion 
Estimation

Camera Path 
Smoothing

Steady Frame
Synthesize

Deep Motion
Extraction

MC Loss

SC Loss + SP Loss

Ti
m
es
ta
m
p

T-
1

Ti
m
es
ta
m
p

T

…
Unsteady Frames Stabilized Frame

Deep Motion
Extraction

SC Loss + SP Loss

CA
CA
CA

{𝐹!"#}

{𝐹!}

𝐵!"#$

𝐵!$

Camera Path Smooth Network

…

…

Figure 2. The overall pipeline of the proposed deep online camera path optimization framework. (a) We first employ a deep motion
extraction model to estimate the unsteady camera motion. (b) Then, the estimated motion is fed into the camera path smooth network,
yielding the smoothed warp field. (c) Finally, the target steady frame is synthesized by the predicted smooth warp field.

𝐼!"#𝐼!

𝐼!$ 𝐼!"#$

𝐹!

𝐹!"
𝐵!" 𝐵!#$"

𝐼!
%&'𝐼!(#

%&'

𝐼!(#%)* 𝐼!%)*

𝐹!%$
&'(

𝐹!%$&)*
𝐹!%$+&) 𝐹!+&)

(a) (b)

𝐼!𝐼!(#

𝐼!(#$ 𝐼!$

𝐹!

𝐹!"
𝐵!%$" 𝐵!"

𝐼!
%&'𝐼!(#

%&'

𝐼!(#%)* 𝐼!%)*

𝐹!
&'(

𝐹!&)*
𝐹!%$+&) 𝐹!+&)

(a) (b)

Figure 3. Relationships between the unstable/synthesized video
and the stable video. (a) depicts the basic relationships of the un-
stable video {It} and stabilized video {I

′
t}, and (b) illustrates the

main idea of our dataset synthesis strategy that transfers collected
unstable motions {F ust

t } to stable video frames {I stb
t }, generating

synthesized unstable video frames {I syn
t }.

It−1 with size of 640× 360, we estimate Ft by model [39]
(Fig. 3 (a), upper yellow part). Repeat this process,
we accumulate a set of inter-frame motions, {Ft}r−1 =
⟨Ft−r+1, ..., Ft−1, Ft⟩. In particular, we keep the most re-
cent r − 1 motions in our buffer, where historical motions
that are beyond range r − 1 are simply dropped. The deep
meshflow motion estimation is defined as:

Ft =↓s MF (It, It−1), (3)

where MF (·) is the pre-trained deep meshflow model. ‘↓s’
indicates that we collect the sparse motions at the mesh ver-
texes, and shrink them pixel by pixel to form a downsam-
pled dense motion field, for the purpose of feeding it to the
CNNs. The scale factor s is set to 8, and the size of the
dense motion field Ft is 80× 45.

Camera Path Smooth Network Given the estimated cam-
era motion {Ft}r−1 as input, the camera path smooth net-

work predicts the target smoothed warp field B
′

t as Eq. 2.
Note that, the meshflow model is spatially-variant, and so
does the Ft. Therefore, we provide spatial and temporal op-
timizations. The camera path smooth network is designed
as an encoder-decoder architecture and we implement it as
a 4-stage UNet with channels of 64, 128, 256, and 512. We
further employ the channel attention mechanism (CA) [9] to
adaptively learn the weights of different historical motions.

Steady Frame Rendering After obtaining the warp field
B

′

t, we inverse the process of shrinking, where we put the
motions back to the sparse vertex locations to create a mesh,
based on which we warp the shaky frame It to its stabilized
position I ′t:

I ′t = W(It, B
′

t), (4)

where W(·) denotes the backward warping function. The
first parameter is an image and the second is a warp field.

3.3. Training Dataset

Existing training datasets are either captured simultane-
ously by two cameras [33] or synthesized by simulated in-
jected noise [10, 29, 11]. The former would naturally suffer
from parallax problems, while the latter makes the synthe-
sized video paths unrealistic. To address this issue, we of-
fer a novel synthetic method that can build realistic unsta-
ble/stable motion pairs from existing shaky videos.

Our main idea is to transfer the motion of an unstable
shaky video Vust to a stable video Vstb, yielding another
synthesized shaky video Vsyn with motions from Vust but
image contents as Vstb. The videos Vust and Vstb are irrele-
vant. Let’s denote {Iust

t }, {I stb
t }, {Isyn

t } as video frames and



{F ust
t }, {F stb

t }, {F syn
t } as motion between frames of video

Vust,Vstb,Vsyn, accordingly.
To achieve this, we first estimate the motions {F ust

t },
{F stb

t } between adjacent frames of Vust and Vstb by deep
meshflow [39]. Next, we warp the frame {Istb

t } by motion
{F ust

t } to produce {Isyn
t }, for each timestamp t:

Isyn
t = W(Istb

t , F ust
t ). (5)

Applying Eq. 5 to every frame of Vstb creates the desired
Vsyn. The Vstb and Vsyn become a pair of stable/unstable
videos, where the following motion equality holds (Please
refer to Fig. 3 (b) for the relation), for each timestamp t:

F ust
t + F syn

t = F stb
t + F ust

t−1, (6)

where F ust
t , F stb

t have been calculated which are known.
Therefore, F syn

t can be calculated as:

F syn
t = F stb

t + F ust
t−1 − F ust

t . (7)

During the training, our network takes a subset of motions
{F syn

t }r−1 =
〈
F syn
t−r+1, ..., F

syn
t−1, F

syn
t

〉
as input and out-

put a motion field that is as close as the ground-truth label
‘−F ust

t ’, which is the inverse motion of ‘F ust
t ’ as shown in

Fig. 3 (b). On the other hand, the generated videos Vstb and
Vsyn are not important, as all we need are motions that can
be calculated and derived by relations.

To further establish the training dataset, we collected 110
stable videos of five categories (including regular, rotation,
zooming, parallax, and crowd) using a cell phone mounted
on a hand-held physical stabilizer. Next, we collected over
150 unstable videos from the website. Subsequently, we
performed data synthesis on the collected stable and unsta-
ble videos by employing the aforementioned method, con-
structing the MotionStab dataset, which contains paired
unstable/stable camera motion of various complex scenar-
ios. As illustrated in Fig. 1 (b), the camera path of the syn-
thesized video pairs is well-registered and realistic as the
original unstable one.

3.4. Training Loss

To train the camera path smooth network, we define
several losses in our framework: the motion-consistency
loss for maintaining motion continuity between consecutive
frames, the shape-consistency loss for preserving the geom-
etry of the predicted warp field, and the scale-preserving
loss for maintaining the scale of the predicted warp field.

Motion-consistency Loss To keep the continuity of the pre-
dicted consecutive video frames, the inter-frame motion of
the stabilized video F

′

t should be as similar as the ground
truth one F̂t, i.e.,

LMC =
∥∥∥F ′

t − F̂t

∥∥∥
1
. (8)

𝐶!𝐶!"# 𝐶!$#

"𝐶! "𝐶! "𝐶!

𝐹!"# 𝐹!

"𝐻!"# "𝐻!

𝐵!"# 𝐵! 𝐵!$#

𝑣!

𝑣!"

𝑣!#

𝑣!$

𝑣!%
𝑣!"

𝑣! 𝑣!#

𝑣!$

𝑣!%

(a) original meshgrid (b) transformed meshgrid

𝑣&

𝑣"

𝑣#

𝑣$

𝑣%

𝑣"

𝑣& 𝑣#

𝑣$

𝑣%

original meshgrid transformed meshgrid

𝐶!𝐶!"# 𝐶!$#

"𝐶! "𝐶! "𝐶!

𝐹!"# 𝐹!

"𝐻!"# "𝐻!

𝐵!"# 𝐵! 𝐵!$#

𝐶!"%

"𝐶!"%

𝐵!"%

…

…

…

smoothed camera path warp transformationoriginal camera path

𝑣'

𝑣'"

𝑣'#

𝑣'$

𝑣'%
𝑣'"

𝑣' 𝑣'#

𝑣'$

𝑣'%

(a) original meshgrid (b) transformed meshgrid
Figure 4. Illustration of the shape-consistency loss and the scale-
preserving loss. The shape-consistency loss is employed to pre-
serve the geometry shape of a meshgrid and the scale-preserving
loss is used to maintain the scale.

According to the relationship of Fig. 3 (a), Eq. 8 can be
written as

LMC =
∥∥∥(Ft +B

′

t−1 −B
′

t)− (Ft + B̂t−1 − B̂t)
∥∥∥
1

(9)

=
∥∥∥B′

t−1 −B
′

t − B̂t−1 + B̂t

∥∥∥
1
, (10)

where B
′

t denotes network output of the predicted warp
field. That is to say, the motion continuity can be restrained
by the ground truth warp field B̂t and B̂t−1.

Shape-consistency Loss The shape-consistency loss is ef-
fective to prevent the distortion problem of the predicted
warp field. Following Wang et al. [33], we implement the
SC loss as an intra-grid loss term and an inter-grid loss term:

LSC = Lintra + Linter. (11)

Note that each pixel of our dense warp field is actually a
vertex of the mesh grid. As depicted in Fig. 4, the intra-grid
loss term is defined as:

Lintra =
1

N

∑
vi

∥∥(v1i − vi) · (v2i − vi)
∥∥
1
, (12)

where i denotes the i-th vertice and N is the total number of
vertices. Besides, the inter-grid loss term is used to maintain
the geometric consistency of adjacent grids:

Linter =
1

N

∑
vi

∥∥(v1i − vi)− (vi − v3i )
∥∥
1
. (13)

Scale-preserving Loss Since we convert the sparse motions
at the mesh vertexes as a dense motion field and predict
the mesh warp field, we introduce a scale-preserving loss to
maintain the scale consistency of the predicted warp field:

LSP =
1

N

∑
vi

∥∥∥∥∥
∥∥v1i − vi

∥∥
2

s
− 1

∥∥∥∥∥
1

. (14)



Table 1. Quantitative comparisons on the NUS dataset [25]. We use the Cropping ratio (C), the Distortion value (D), and the Stability
score (S) as evaluation metrics. All of these metrics are in the range of 0 to 1, and the higher the better. The ‘∗’ denotes the results of
Bundled [25] are computed directly from the NUS dataset. The bests are marked in red and the second bests are in blue.

Methods Regular Rotation Zooming
C D S C D S C D S

Offline
∗ Bundled [25] 0.6658 0.9409 0.9048 0.6477 0.8692 0.9194 0.5773 0.9073 0.9236
Robust L1 [5] 0.7157 0.9252 0.8454 0.7206 0.8231 0.8617 0.7107 0.8329 0.7730
DIFRINT [1] 0.9854 0.9555 0.8177 0.9413 0.8813 0.8701 0.9528 0.8531 0.8763
Yu et al. [41] 0.9486 0.9752 0.8427 0.7661 0.7616 0.9317 0.8971 0.8630 0.9107

PWStableNet [43] 0.9319 0.9852 0.8162 0.8801 0.9707 0.9251 0.9303 0.9792 0.8906
DUT [36] 0.9485 0.9600 0.8717 0.7609 0.6940 0.9203 0.8986 0.8606 0.9221

Online
Meshflow [22] 0.8081 0.9168 0.8386 0.7578 0.7679 0.9092 0.7773 0.8715 0.8839
StabNet [33] 0.7491 0.8393 0.8406 0.7417 0.7205 0.8384 0.7376 0.7807 0.8697

Ours 0.9433 0.9917 0.8030 0.9021 0.9847 0.9341 0.9185 0.9736 0.8982

Methods Crowd Parallax Avg.
C D S C D S C D S

Offline
∗ Bundled [25] 0.6685 0.8910 0.8744 0.7158 0.8965 0.8964 0.6550 0.9010 0.9037
Robust L1 [5] 0.7208 0.9077 0.8504 0.7132 0.8054 0.8778 0.7162 0.8589 0.8417
DIFRINT [1] 0.9662 0.8713 0.8456 0.9746 0.8823 0.8600 0.9641 0.8887 0.8539
Yu et al. [41] 0.9081 0.9191 0.8660 0.9209 0.9219 0.8896 0.8882 0.8872 0.8881

PWStableNet [43] 0.9181 0.9790 0.8162 0.9244 0.9802 0.8549 0.9170 0.9789 0.8606
DUT [36] 0.8986 0.8617 0.9042 0.9254 0.8774 0.9127 0.8860 0.8507 0.9062

Online
Meshflow [22] 0.7888 0.8246 0.8280 0.8121 0.8429 0.8488 0.7882 0.8762 0.8617
StabNet [33] 0.7247 0.7725 0.7912 0.6967 0.7660 0.8289 0.7280 0.7758 0.8338

Ours 0.9247 0.9816 0.8408 0.9326 0.9827 0.8762 0.9242 0.9829 0.8705

where s is the scale factor in Eq. 3. Eventually, the overall
loss is the combination of the above three loss terms:

L = LMC + αLSC + βLSP, (15)

where α and β are empirically set to 0.01.

4. Experimental Results
4.1. Implementation Details

Evaluation Metrics For quantitative comparison, we em-
ploy three widely used metrics: cropping ratio, distortion
value, and stability score, as in prior methods [25, 36, 43,
22]. For cropping ratio and distortion value, we first fit a
global homography between the input and output videos
at each frame. The cropping ratio measures the remain-
ing frame area after cropping out undefined pixels due to
motion compensation and is computed as the average scale
component of the entire video. The distortion value, which
is defined as the worst ratio of the two largest eigenval-
ues of the affine component across all frames, measures the
anisotropic scaling of the homography between the input
and output frames. The stability score measures the smooth-
ness of the stabilized videos and the camera path is utilized
to determine the value. We compute this metric by using a
frequency domain analysis as in Bundled [25].
Implementation Details Our network is implemented by
PyTorch. We use Adam as the optimizer for training, with

an initial learning rate of 1×10−4 and no weight decay. We
set β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8, respectively. We
train the network for 100,000 iterations. The overall train-
ing time on two NVIDIA 1080Ti GPUs is 20 hours. During
training, two adjacent frames and their corresponding his-
torical frames are selected as a training sample. The Mo-
tionStab dataset comprises 65238 training samples in total.
For inference, the overall framework can process a frame
of size 640 × 360 in real-time. Specifically, we spend 12
ms, 10 ms, and 4 ms to extract camera motion, smooth the
camera path, and synthesize stable frames, respectively.

4.2. Comparisons with Existing Methods

To evaluate the proposed approach, we compare it with
the state-of-the-art methods on the NUS dataset [25]. The
compared methods include three traditional methods, Bun-
dled [25], Robust L1 [5], Meshflow [22], and five deep
learning based methods, DIFRINT [1], Yu et al. [41], PW-
StableNet [43], DUT [36], and StabNet [33]. It is worth
noting that Meshflow [22], StabNet [33], and ours are on-
line, while the rest are offline. The results of the compared
methods are obtained from publicly accessible implementa-
tions with default parameters or pre-trained models.
Quantitative results Table 1 presents the quantitative re-
sults for each of the five categories (including regular, quick
rotation, zooming, crowd, and parallax), as well as the aver-
age results across all categories. From Table 1, we can see
that offline approaches generally outperform online meth-



(a) Meshflow (d) Input frame(c) Ours(b) StabNet

R
eg

ul
ar

R
ot

at
io

n
Zo

om
in

g
C

ro
w

d
Pa

ra
lla

x

Figure 5. Qualitative comparisons with the online methods Meshflow [22] and StabNet [33]. We keep the original warped frames for
comparison. The red boxes indicate the preserved frame content after cropping. The red arrows highlight the shear and distortion artifacts.

ods, especially in challenging scenarios. In comparison to
existing online approaches, our method achieves significant
performance improvements. Taking Meshflow [22] as the
baseline, the cropping ratio and the distortion value of our
method increase by 17.25% and 12.18%, respectively. No-
tably, our method can achieve approaching results to several
compared offline methods.

Qualitative results Fig. 5 illustrates the flaws that can be
noticed directly from the video frames, including shear, dis-
tortion, and over-cropping. As can be seen, Meshflow suf-
fers from shear and distortion in some scenes due to its re-
liance on well-optimized parameter tweaking. The shear
and over-cropping problems in StabNet [33] are more se-
vere because they directly employ video frames as input
for mixed camera motion estimation and path smoothing,
making the performance and generalization ability difficult
to even approach the traditional approach Meshflow [22].
On the contrary, since our network solely smooths and op-
timizes the camera path, regardless of image content, it is
more generic on diverse challenging scenes and can avoid
the aforementioned issues in an online setting.

User Study We also conduct a user study comparing our
method to the PWStableNet [43], which is one of the deep
offline approaches that achieves overall good performances
according to Table 1. Note that we do not compare with
the online methods [22, 33], because our qualitative results
are significantly better than theirs. Specifically, we prepare
a test set containing 15 videos (3 videos per category), and
each of the 20 participants is asked to choose the better one
from the results of the two compared methods. The videos
are arranged randomly and the original unstable videos are
provided. The results of the user study are shown in Fig. 7.

4.3. Ablation Studies

To analyze the capability of each component, we conduct
extensive ablation experiments on the NUS dataset [25].
Ablation on losses We first conduct experiments on the
motion-consistency loss, the shape-consistency loss, and
the scale-preserving loss. In the first row of Table 2, we take
the vanilla UNet optimized by the MC loss as our baseline.
In the next two rows, we add the SC loss and the SP loss to
train the model, respectively. Comparing the first three rows



(a) MC (d) Input frame(c) MC + SC + SP(b) MC + SC

R
ot

at
io

n
Zo

om
in

g

Figure 6. Qualitative results of the ablation study on the motion-consistency loss (MC), the shape-consistency loss (SC), and the scale-
preserving loss (SP). The red arrows show the shear and distortion regions, and the red boxes show the preserved frame region.

StabNet+DeepStab

D
is
to
rti
on
Va
lu
e

Ours+DeepStab Ours+MotionStab

StabNet+DeepStab

D
is
to
rti
on
Va
lu
e

Ours+DeepStab Ours+MotionStab
Regular Rotation Zooming Crowd Parallax Avg.

Regular

Crowd

Zooming

Rotation

Parallax

PW
St
ab
le
N
et

O
ur
s

Figure 7. User study results comparing with PWStableNet [43].

Table 2. Quantitative results of the ablation studies on the hybrid
loss and the channel attention mechanism (CA).

MC SC SP CA C D S

Baseline ✓ 0.80 0.84 0.87
Variant 1 ✓ ✓ 0.85 0.90 0.86
Variant 2 ✓ ✓ ✓ 0.90 0.95 0.86
Ours ✓ ✓ ✓ ✓ 0.92 0.98 0.87

reveals that adding the SC loss and the SP loss respectively
improves performance. The best performance is gained by
combining them together. Fig. 6 shows some qualitative re-
sults. As seen, when only using the MC loss, substantial
shear, and distortion occur (Fig. 6 (a), highlighted by red
arrows.). The distortion artifacts can be effectively resolved
by adding the SC loss (Fig. 6 (b)). However, the scale of the
stabilized frame is not well preserved, resulting in larger
cropped regions. This issue can eventually be solved by the
proposed SP loss (Fig. 6 (c), distinguished by red boxes).
Analysis of the quality of the dataset To verify the impact
of the dataset, we train the network on the DeepStab [33]
and our MotionStab dataset, respectively. Fig. 8 shows the
quantitative results on the NUS dataset. As seen, when
trained using the proposed MotionStab dataset, both our
method and StabNet [33] yield better results than training
on the DeepStab dataset, respectively, especially in terms
of cropping ratio and distortion value. We conclude that the
main reasons are twofold. Firstly, our MotionStab dataset
contains richer scenarios and unstable motions, improving
the performance and generalization ability of the network.

StabNet + DeepStab
Ours + DeepStab

StabNet + MotionStab

Cropping Ratio

Regular

Crowd

Zooming

Rotation

Parallax

PW
St
ab
le
N
et

O
ur
s

Distortion Value Stability Score

Ours + MotionStab

StabNet + DeepStab
Ours + DeepStab

StabNet + MotionStab

Ours + MotionStab

Cropping Ratio Distortion Value Stability Score

StabNet + DeepStab
Ours + DeepStab

StabNet + MotionStab
Ours + MotionStab

Cropping Ratio Distortion Value Stability Score

Figure 8. Comparisons of the quantitative results between Stab-
Net [33] and our method when trained with different datasets.

Secondly, the synthesized pairs in MotionStab suffer no par-
allax issue inherent in DeepStab, leading to fewer distor-
tion artifacts (i.e., higher distortion value) in the stabilized
frames. Additionally, our method outperforms StabNet [33]
on both datasets, demonstrating its superiority over directly
predicting stable warp fields from input video frames.

5. Conclusions

This work presents a deep camera path optimization
framework for online video stabilization. We leave the mo-
tion estimation to recent off-the-shelf deep motion models
and concentrate on path smoothing. Our model takes a 2D
camera path in a sliding window as input and outputs a
warp field for the last frame in that window. A video can
be stabilized online by applying our model repeatedly for
every incoming frame. We introduce a hybrid loss to en-
hance the spatial and temporal consistency of the stabilized
video. Moreover, we created a motion dataset to train our
model. Results show that our method outperforms previous
approaches both qualitatively and quantitatively.
Acknowledgements This work was supported by Sichuan
Science and Technology Program of China under grants
Nos.2023NSFSC0462, 2023NSFSC1972, 2022YFQ0079,
2021YFG0001, and National Natural Science Foundation
of China (NSFC) under grant No.62031009.



References
[1] Jinsoo Choi and In So Kweon. Deep iterative frame inter-

polation for full-frame video stabilization. ACM Trans. on
Graphics (TOG), 39(1):1–9, 2020. 6

[2] Michael L Gleicher and Feng Liu. Re-cinematography: Im-
proving the camerawork of casual video. ACM transac-
tions on multimedia computing, communications, and appli-
cations (TOMM), 5(1):1–28, 2008. 2

[3] Amit Goldstein and Raanan Fattal. Video stabilization us-
ing epipolar geometry. ACM Trans. on Graphics (TOG),
31(5):1–10, 2012. 1, 3

[4] Matthias Grundmann, Vivek Kwatra, Daniel Castro, and Ir-
fan Essa. Calibration-free rolling shutter removal. In Proc.
ICCP, pages 1–8, 2012. 2, 3

[5] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-
directed video stabilization with robust l1 optimal camera
paths. In Proc. CVPR, pages 225–232, 2011. 1, 2, 6

[6] Wilko Guilluy, Laurent Oudre, and Azeddine Beghdadi.
Video stabilization: Overview, challenges and perspec-
tives. Signal Processing: Image Communication, 90:116015,
2021. 1

[7] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 3

[8] Mingbo Hong, Yuhang Lu, Nianjin Ye, Chunyu Lin, Qijun
Zhao, and Shuaicheng Liu. Unsupervised homography es-
timation with coplanarity-aware gan. In Proc. CVPR, pages
17663–17672, 2022. 1, 3

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proc. CVPR, pages 7132–7141, 2018. 4

[10] Chia-Hung Huang, Hang Yin, Yu-Wing Tai, and Chi-Keung
Tang. Stablenet: semi-online, multi-scale deep video stabi-
lization. arXiv preprint arXiv:1907.10283, 2019. 4

[11] Maria Silvia Ito and Ebroul Izquierdo. A dataset and evalu-
ation framework for deep learning based video stabilization
systems. In Proc. VCIP, pages 1–4. IEEE, 2019. 4

[12] Dengchao Jin, Jianjun Lei, Bo Peng, Wanqing Li, Nam Ling,
and Qingming Huang. Deep affine motion compensation net-
work for inter prediction in vvc. IEEE Trans. on Circuits and
Systems for Video Technology, 32(6):3923–3933, 2021. 1

[13] Neel Joshi, Wolf Kienzle, Mike Toelle, Matt Uyttendaele,
and Michael F Cohen. Real-time hyperlapse creation via
optimal frame selection. ACM Transactions on Graphics
(TOG), 34(4):1–9, 2015. 3

[14] Alexandre Karpenko, David Jacobs, Jongmin Baek, and
Marc Levoy. Digital video stabilization and rolling shutter
correction using gyroscopes. CSTR, 1(2):13, 2011. 3

[15] Johannes Kopf. 360 video stabilization. ACM Transactions
on Graphics (TOG), 35(6):1–9, 2016. 3

[16] Ken-Yi Lee, Yung-Yu Chuang, Bing-Yu Chen, and Ming
Ouhyoung. Video stabilization using robust feature trajec-
tories. In Proc. CVPR, pages 1397–1404, 2009. 2

[17] Yao-Chih Lee, Kuan-Wei Tseng, Yu-Ta Chen, Chien-Cheng
Chen, Chu-Song Chen, and Yi-Ping Hung. 3d video stabi-
lization with depth estimation by cnn-based optimization. In
Proc. CVPR, pages 10621–10630, 2021. 1

[18] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agar-
wala. Content-preserving warps for 3d video stabilization.
ACM Trans. on Graphics (ToG), 28(3):1–9, 2009. 1, 3

[19] Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin, and
Aseem Agarwala. Subspace video stabilization. ACM Trans.
on Graphics (TOG), 30(1):1–10, 2011. 3

[20] Shuaicheng Liu, Mingyu Li, Shuyuan Zhu, and Bing Zeng.
Codingflow: Enable video coding for video stabilization.
IEEE Trans. on Image Processing, 26(7):3291–3302, 2017.
1, 3

[21] Shuaicheng Liu, Yuhang Lu, Hai Jiang, Nianjin Ye, Chuan
Wang, and Bing Zeng. Unsupervised global and local ho-
mography estimation with motion basis learning. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 2022.
1

[22] Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, and Bing
Zeng. Meshflow: Minimum latency online video stabiliza-
tion. In Proc. ECCV, pages 800–815, 2016. 1, 2, 3, 6, 7

[23] Shuaicheng Liu, Yinting Wang, Lu Yuan, Jiajun Bu, Ping
Tan, and Jian Sun. Video stabilization with a depth camera.
In Proc. CVPR, pages 89–95, 2012. 1, 3

[24] Shuaicheng Liu, Nianjin Ye, Chuan Wang, Kunming Luo,
Jue Wang, and Jian Sun. Content-aware unsupervised deep
homography estimation and beyond. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2022. 1

[25] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM Trans. on Graph-
ics (TOG), 32(4):1–10, 2013. 1, 2, 3, 6, 7

[26] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun.
Steadyflow: Spatially smooth optical flow for video stabi-
lization. In Proc. CVPR, pages 4209–4216, 2014. 1, 2, 3

[27] Yasuyuki Matsushita, Eyal Ofek, Weina Ge, Xiaoou Tang,
and Heung-Yeung Shum. Full-frame video stabilization with
motion inpainting. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 28(7):1150–1163, 2006. 1, 2

[28] Lang Nie, Chunyu Lin, Kang Liao, Shuaicheng Liu, and Yao
Zhao. Depth-aware multi-grid deep homography estimation
with contextual correlation. IEEE Trans. on Circuits and Sys-
tems for Video Technology, 32(7):4460–4472, 2022. 1

[29] Hui Qu, Li Song, and Gengjian Xue. Shaking video synthe-
sis for video stabilization performance assessment. In Proc.
VCIP, pages 1–6. IEEE, 2013. 4

[30] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In Proc.
ICCV, pages 2564–2571, 2011. 2

[31] Jianbo Shi et al. Good features to track. In Proc. CVPR,
pages 593–600, 1994. 2

[32] Brandon M Smith, Li Zhang, Hailin Jin, and Aseem Agar-
wala. Light field video stabilization. In Proc. ICCV, pages
341–348, 2009. 3

[33] Miao Wang, Guo-Ye Yang, Jin-Kun Lin, Song-Hai Zhang,
Ariel Shamir, Shao-Ping Lu, and Shi-Min Hu. Deep online
video stabilization with multi-grid warping transformation
learning. IEEE Trans. on Image Processing, 28(5):2283–
2292, 2018. 1, 2, 3, 4, 5, 6, 7, 8

[34] Yu-Shuen Wang, Feng Liu, Pu-Sheng Hsu, and Tong-Yee
Lee. Spatially and temporally optimized video stabiliza-



tion. IEEE Trans. on Visualization and Computer Graphics,
19(8):1354–1361, 2013. 2, 3

[35] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-
Min Hu. Deep video stabilization using adversarial net-
works. In Computer Graphics Forum, volume 37, pages
267–276, 2018. 1, 3

[36] Yufei Xu, Jing Zhang, Stephen J Maybank, and Dacheng
Tao. Dut: Learning video stabilization by simply watch-
ing unstable videos. IEEE Trans. on Image Processing,
31:4306–4320, 2022. 6

[37] Junlan Yang, Dan Schonfeld, Chong Chen, and Magdi Mo-
hamed. Online video stabilization based on particle filters.
In Proc. ICIP, pages 1545–1548, 2006. 3

[38] Nianjin Ye, Chuan Wang, Haoqiang Fan, and Shuaicheng
Liu. Motion basis learning for unsupervised deep homog-
raphy estimation with subspace projection. In Proc. ICCV,
pages 13117–13125, October 2021. 1, 3

[39] Nianjin Ye, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Jue
Wang, and Yongqing Cui. Deepmeshflow: Content adap-
tive mesh deformation for robust image registration. arXiv
preprint arXiv:1912.05131, 2019. 1, 2, 3, 4, 5

[40] Jiyang Yu and Ravi Ramamoorthi. Robust video stabilization
by optimization in cnn weight space. In Proc. CVPR, pages
3800–3808, 2019. 3

[41] Jiyang Yu and Ravi Ramamoorthi. Learning video stabiliza-
tion using optical flow. In Proc. CVPR, pages 8159–8167,
2020. 1, 3, 6

[42] Jiyang Yu, Ravi Ramamoorthi, Keli Cheng, Michel Sarkis,
and Ning Bi. Real-time selfie video stabilization. In Proc.
CVPR, pages 12036–12044, 2021. 3

[43] Minda Zhao and Qiang Ling. Pwstablenet: Learning pixel-
wise warping maps for video stabilization. IEEE Trans. on
Image Processing, 29:3582–3595, 2020. 6, 7, 8


