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Abstract

Single hyperspectral image super-resolution (single-
HSI-SR) aims to restore a high-resolution hyperspectral im-
age from a low-resolution observation. However, the pre-
vailing CNN-based approaches have shown limitations in
building long-range dependencies and capturing interac-
tion information between spectral features. This results in
inadequate utilization of spectral information and artifacts
after upsampling. To address this issue, we propose ES-
SAformer, an ESSA attention-embedded Transformer net-
work for single-HSI-SR with an iterative refining struc-
ture. Specifically, we first introduce a robust and spectral-
friendly similarity metric, i.e., the spectral correlation coef-
ficient of the spectrum (SCC), to replace the original atten-
tion matrix and incorporates inductive biases into the model
to facilitate training. Built upon it, we further utilize the
kernelizable attention technique with theoretical support
to form a novel efficient SCC-kernel-based self-attention
(ESSA) and reduce attention computation to linear com-
plexity. ESSA enlarges the receptive field for features after
upsampling without bringing much computation and allows
the model to effectively utilize spatial-spectral information
from different scales, resulting in the generation of more
natural high-resolution images. Without the need for pre-
training on large-scale datasets, our experiments demon-
strate ESSA’s effectiveness in both visual quality and quan-
titative results. The code will be released at ESSAformer.

1. Introduction
Hyperspectral imaging (HSI) involves densely sampling

spectral features with many narrow bands to encode rich
spectral and spatial structure information for material dif-
ferentiation. It has been widely used in various applica-
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tions. Hyperspectral image super-resolution (HSI-SR) aims
to generate high-resolution HSI from low-resolution HSI
and can be categorized into two approaches: single-HSI-
SR [25, 32, 19, 53] and pansharpening [30, 58, 34, 24].
This paper focuses on the challenging single-HSI-SR task,
which aims to restore high-resolution HSI from a single
low-resolution HSI without auxiliary images.

Conventional methods for single-HSI-SR involve de-
signing a mapping function between low-resolution and
high-resolution HSI using hand-crafted priors such as low-
rank approximation and sparse coding [18, 40, 17, 13].
However, with the fast development of deep learning, pow-
erful convolutional neural networks (CNNs) have led to sig-
nificant progress in the single-HSI-SR task [25, 27, 32, 47,
23, 39, 19]. These CNN-based approaches usually use deep
neural networks to formulate and learn the mapping func-
tion in an end-to-end manner using abundant training data
pairs. As a result, they achieve significant improvements in
both visual quality and quantitative metrics.

However, the CNNs methods show limitations in solving
the single-HSI-SR task. There exists a significant amount
of long-range information in high-dimensional data of HSI,
while the most prevailing CNNs focus on local features cap-
tured by the convolutional kernels [25, 23, 39, 19, 27, 32,
47]. The limited receptive field in the network can thus hin-
der the models’ representation ability. Consequently, un-
wished artifacts, such as the blocking ones, may appear and
affect the model’s generation quality. To address this issue,
we take an attempt to propose a Transformer model for the
single-HSI-SR task. The attention mechanism introduced in
Vision Transformers allows them to capture long-range de-
pendencies and provide powerful representations, leading
to superior performance compared to CNNs in many vision
tasks [7, 60, 57, 9, 59].

While the long-range dependency advantage of Vision
Transformers can potentially address the aforementioned is-
sues, it cannot be directly applied to single-HSI-SR. Firstly,
Vision Transformers typically require a large amount of
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data to learn inductive biases and produce reliable results.
However, the difficulty in obtaining HSIs limits the col-
lection of large-scale datasets, which poses a particular
challenge compared to the millions of images available in
RGB image datasets, thus hindering the training of Vision
Transformers. Secondly, while Transformers can handle
long-range dependencies, the self-attention process has a
quadratic computation complexity of O(N2) with respect
to the token sequence N . This results in a massive com-
putation burden for the network, particularly for ultra-high
resolution HSI.

To address the above issues, we propose a novel Trans-
former model called ESSAformer. The ESSAformer is de-
signed with several adaptations. First, it utilizes an itera-
tive downsampling and upsampling strategy to capture both
global and local information at different scales and encode
the detailed content of the hyperspectral images. Second,
we propose to replace the conventional dot product (cosine
similarity) with the robust and spectral-friendly spectral
correlation coefficient of the spectrum, called SCC. Com-
pared to traditional cosine similarity, the SCC has desirable
properties such as spectral-wise shifting and scaling equiva-
lence. This makes the model insensitive to amplitude-level
changes in spectral curves caused by occlusions or shad-
ows. As a result, SCC brings inductive biases into mod-
els, facilitates training efficiency, and even enables from-
scratch training of Transformer models on small datasets.
Third, we propose to formulate the attention as kernelized
ones to decrease the computation burden. Technically, we
integrate SCC into a nonlinear square exponential kernel,
i.e., Mercer’s kernel, and then express SCC as a dot prod-
uct of two individual terms according to the Mercer the-
orem. Subsequently, we change the multiplication order
of self-attention, i.e., multiplying keys and values first and
then queries, and thus lower the attention complexity from
quadratic O(N2) to linear O(N). Such a pipeline sig-
nificantly relieves the computation burden since the token
number N for high-resolution HSIs is usually significantly
long. Consequently, we propose the novel SCC-kernel-
based self-attention, called ESSA, and a new ESSAformer
Vision Transformer architecture for the single-HSI-SR task.

Thanks to the proposed ESSA, our model efficiently
enlarges the receptive field without imposing a significant
computation burden, thus allowing the features to attend to
the entire feature map at each layer and gather sufficient in-
formation. Consequently, ESSA effectively addresses the
artifact issues caused by limited and inconsistent receptive
fields between any two pixels in hyperspectral images, re-
sulting in more natural high-resolution HSI generation. Un-
like other attention variants [54, 45], our ESSA does not
bring extra parameters and effectively introduces inductive
biases. Consequently, the ESSAformer Transformer model
obtains state-of-the-art performance on three public datasets

without the need for pretraining.
In summary, this paper makes three main contributions.

First, we introduce the use of Vision Transformer for the
single-HSI-SR task and propose the ESSAformer model
with strong learning ability. Second, we present a novel and
efficient SCC-kernel-based self-attention method, called
ESSA. The approach significantly reduces the computation
and data-hungry issues in the original Vision Transformer
and helps the model better fit the single-HSI-SR task. Third,
extensive experiments have been conducted to thoroughly
analyze the proposed model, and the state-of-the-art perfor-
mance on three popular datasets demonstrates its superior-
ity regarding both visual quality and objective metrics.

2. Related Work
2.1. HSI super-resolution

For HSI-SR, the existing prevailing approaches are
mostly based on CNNs. Since the researchers first apply
CNN [25] into this task by proposing a deep spectral dif-
ference network, the architecture design for HSI-SR has at-
tracted much attention from the community. For example,
a 3D full convolutional network (3D-FCNN) [32] is pro-
posed to recover high-quality HSI without any auxiliary in-
formation. Besides, a mixed 2D/3D convolutional network
(MCNET) [23] and a bidirectional 3D convolutional net-
work (Bi-3DQRNN) are proposed to take into account the
forward and backward spectral dependence of HSIs [14].
Besides the 3D CNNs, the recursive strategy also demon-
strates its effectiveness [27], which utilizes grouped recur-
sive modules in the global residual structure to depict the
complicated non-linear mapping function. Such group strat-
egy has inspired various works to avoid over-processing the
redundancy in HSIs and save computational costs. For ex-
ample, SSPSR [19] employs grouped convolutional layers
and channel attention to exploit spectral correlation. Be-
sides, Zhang et al. [53] develop a difference curvature net-
work (DCM-NET) in light of the grouping strategy. Nev-
ertheless, prevailing methods are not beyond the limitation
of CNN. They are not good at capturing long-range depen-
dencies and modeling spatial-spectral correlation, resulting
in insufficient utilization of spectral information and thus
unwished artifacts after super resolution. To this end, we
propose a novel Transformer model ESSAformer to solve
super-resolution in HSIs.

2.2. Efficient vision transformer

Transformer is originally proposed in the natural lan-
guage process field [37, 10, 4, 44]. After Dosovitskiy et
al. [12] fed images into a pure Transformer and gained
great success on various image recognition tasks, Vision
Transformer has received much attention from researchers
in various computer vision tasks [7, 60, 57, 9, 59]. Since
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Figure 1. Overview of the proposed ESSAformer. The model is constructed by stacking upsampling/downsampling and encoder layers.
The pipeline follows an iterative refinement process to handle the feature representations at different scales, thereby better encoding details
and contextual information. All encoder layers having the same input resolution, i.e., the same color, share weight for a lightweight design.

the quadratic computation complexity of attention hinders
the Transformer application, especially for high-resolution
images, several works are proposed to relieve such issue.
For example, Geng et al. [16] leverages matrix decomposi-
tion to substitute the original self-attention while modeling
the dependence between different tokens. Similarly, self-
attention is approximated as a linear dot-product of kernel
feature maps [20] to avoid huge computation in attention. In
contrast, kernelized attention [50, 31] aims to find kernels
to approach the attention matrix and relieve the computa-
tion by changing the multiplication order. Our ESSA falls
in this track to improve the computation efficiency. How-
ever, previous works target the original attention with RGB
images, while ESSA proposes an efficient attention method
particularly designed for HSIs. Specifically, ESSA fully
considers the characteristics of the hyperspectral field and
brings channel-wise inductive bias into the models for bet-
ter restoration performance.

Efficient Vision Transformer has also demonstrated its
effectiveness in image restoration tasks. For example,
SwinIR [29, 28] uses window attention to calculate atten-
tion within local windows instead of the whole feature to re-
duce the computation cost. Stoformer [46] studies the win-
dow partition mechanism and proposes a stochastic shift-
ing method. Wang et al. [43] designs a locally-enhanced
window-based attention mechanism and a U-Shape model
architecture for the restoration task, while CAT [56] extends
the window shape to rectangles. Different from them, Lee
et al. [22] established local attention with non-local connec-
tivity using local-sensitive hashing. Besides the spatial-wise
attention, channel-wise attention also proves to work well
for high-resolution image restoration tasks [52, 6]. They
have linear complexity and are most related to our methods.
However, ESSA still conducts spatial-wise attention. With
strict theoretical support, it uses kernelizable techniques to
enable the multiplication exchange, which is significantly

different from channel-wise attention in motivation, mathe-
matical formulation, and performance.

3. Method
In this section, we will first introduce the overall struc-

ture of our proposed ESSAformer model. Then ESSA’s
implementation details, theoretical support, and complexity
analysis are presented in the following part.

3.1. Overall structure

The overall structure is presented in Figure 1. Given the
predefined scaling ratio s and low-resolution HSIs xL ∈
Rh×w×c, ESSAformer outputs the high-resolution HSIs
xH ∈ Rsh×sw×c through the learned mapping function
M(·) of low to high resolution, where h,w, c denote the
height, width and channel of HSIs respectively and s usu-
ally set to 2, 4, 8, etc.

xH =M(xL) (1)

The channel dimension c is usually larger than that in RGB
images for HSIs. Each channel describes the real world at
discrete bands from a wide range of continuous spectrums.

The model first projects the raw HSIs into features with a
projection layer and then contains several stages to sequen-
tially process the features. At the beginning of each stage
is a rescaling module to upsample/downsample the feature
maps. Then the encoder layer that has an ESSA and an FFN
module follows to encode the features, as shown at the top
of Figure 1. For each upsampling/downsampling module,
multiple projections and PixelShuffle/PixelUnshuffle [36]
layers with a rescale ratio of 2 are used sequentially until
they output the feature map to the expected resolution. For
example, we use 3 layers in the rescaling module for the re-
quired scaling ratio s = 8. The features channel dimension
keeps after both upsampling and downsampling modules.
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Figure 2. The structure of our ESSA.

In encoder layers, the feature map after ESSA is concate-
nated with ESSA’s input and then fed into the feed-forward
layer (FFN), which is consisted of several convolution and
activation layers following the common practice [26].

These sequential stages follow an up-down strategy and
thus construct an iterative refinement process by encod-
ing feature representations at different scales, allowing the
model to effectively capture content details and contextual
information. Each stage includes one encoder layer and all
stages that have the same input resolution (the same color
in Figure 1) share weights to enable a lightweight model
design. Besides, ESSAformer uses a residual connection
between features right after the up/downsampling layers of
the adjacent three stages as illustrated in Figure 1. This ap-
proach enables the model to utilize multi-scale features and
generate better feature representations. Finally, after the last
stage with an upsampling module, a convolution layer with
a 3 × 3 kernel projects the feature maps into the required
channel dimension c, resulting in high-resolution HSIs xH .

3.2. SCC self-attention

As one of the cores of Transformer, self-attention en-
larges the dependence distance by attending to the feature
at each position. We will start from the original attention
process and then introduce SCC self-attention that intro-
duces channel-wise inductive biases to improve the data ef-
ficiency. We take the input resolution H ×W for example.

Given the input features in RH×W×C , a projection
layer first embeds them into three token sequences, i.e.,
Q,K, V ∈ RN×C , where N equals to H × W , i.e., the
sequence length, and C is the channel dimension. The at-
tention function computes the dot products of queries with
all keys and applies a softmax function as the weights on the
values. We take the single-head self-attention for simplicity
and the function is thus given by:

Attention(Q,K, V ) = softmax(
QKT

√
C

)V (2)

Then we will introduce the proposed SCC self-attention.
It considers the specific characteristics in hyperspectral im-
ages and brings inductive biases to improve data efficiency
and representation ability.

To make attention spectral-friendly, we utilize a robust
spectral similarity measure named Spectral Correlation Co-
efficient of Spectrum, i.e., SCC. SCC is the utilization of
Pearson’s correlation coefficient r in the hyperspectral field
and represents the cosine of the generalized angle of tokens
after the spectral curves minus their averages, which can be
obtained by:

r(q, k) =
(q − q)(k − k)T

||(q − q)|| · ||(k − k)||
, (3)

where q, k denote the mean value of the any two token
vectors q, k in Q,K. r ∈ [−1, 1] represents whether the
correlation degree of q and k are positive or negative. Fol-
lowing the practice in [11], we propose to use r2 to ensure
the non-negativity value and regard it as the attention matrix
to represent the relationship between any two tokens. Then
we have the following theorem for the inductive biases.

Theorem 3.1 Let q, k be vectors ∈ R1×C and r2 be the
correlation degree that describes the relationship between
any two token vectors, we have the channel-wise transla-
tional inductive biases, i.e., scales and shifts, in r2:

r2(q, s · k + t) = (
(q − q)(s · k + t− (s · k + t)T

||q − q|| · ||s · k + t− (s · k + t)||
)2

= r2(q, k)

(4)

for any s ∈ R, t ∈ R1×C .

Such characteristics indicate that SCC self-attention is
affected by neither shadows nor occlusions that usually lead
to scales and offsets transformation in HSIs, where

SCC(Q,K, V ) = r2(Q,K)V. (5)

Such inductive biases improve the model convergence
and make it easy to train on small datasets from scratch.
Although the operations on local features, such as pixel un-
shuffle, limit the receptive field and tend to produce block-
ing artifacts around the ‘block’ boundaries, as demonstrated
in [42], the attention mechanism can effectively enlarge
the receptive field by building the long-range dependencies
among feature maps, which thus helps to produce natural
and smooth images.



3.3. Efficient SCC-kernel-based self-attention

Based on SCC self attention, we introduce the proposed
efficient SCC-kernel-based self-attention (ESSA) to relieve
the computation burden in attention and the calculation pro-
cess is shown in Figure 2. In a kernel machine, in order to
get the results of ψ(Q) · ψ(K), it is common to find the
kernel function K(Q,K) = ψ(Q) · ψ(K) so that we can
directly calculate K(Q,K) instead of calculating ψ(Q) and
ψ(K) separately, which is known as the kernel trick. In con-
trast, to lower the computation cost of SCC self-attention, a
solution is finding the mapping function ψ(Q) and ψ(K)
so that ψ(Q)ψ(K) = r2(Q,K). Then Equation 5 can
be reformulated as ψ(Q)(ψ(K)TV ) and decreases from
quadratic complexity to linear complexity regarding the to-
ken sequence N . Before finding the mapping function, we
first develop SCC into a radial basis function (RBF)-like
kernel [35] for non-linearity and good derivatives:

KSCC = exp(r2). (6)

In the following, we demonstrate that the SCC-kernel
KSCC is a Mercer’s kernel to confirm the existence of the
mapping function ψ().

Theorem 3.2 (Mercer’s theorem [33]) Let X ,Y be the in-
put space, and H be the Hilbert space. If the mapping
ψ(x) : X −→ H exists, then there is a kernel function
K(x, y) satisfied:

K(x, y) = ⟨ψ(x), ψ(y)⟩ (7)

Theorem 3.3 (Mercer’s kernel closure properties [5]) Let
X ,Y be the input space and K1,K2 be the Mercer’s kernels,
then:

• if K(x, y) = K1(x, y)K2(x, y), then K is Mercer’s
kernel.

• if a, b > 0 and K(x, y) = aK1(x, y)+ bK2(x, y), then
K is Mercer’s kernel.

According to Theorem 3.2, we can conclude r is a nor-
malized linear kernel and also a Mercer’s kernel. Mathe-
matically, the Taylor expansion of exp(r2) can be expressed
as exp(r2) = 1 + r2 + (r2)2

2! + (r2)3

3! + · · · . According to
Theorem 3.3, we can easily find r2 and exp(r2) Mercer’s
kernels. It guarantees the existence of the mapping function
ψ(), which can be acquired via Taylor expansion as follows:

KSCC(q, k) = exp(
q2normk

2
norm

σ
)

=

∞∑
i=0

(q2normk
2
norm)i

σii!

=

∞∑
i=0

(
q2inorm

σ
1
2 i
√
i!

k2inorm

σ
1
2 i
√
i!
)

= ⟨ψ(q), ψ(k)⟩

(8)

where qnorm = q − q, knorm = k − k and ψ(q) =

(1,
q2norm

σ
1
2
,
q4norm

2
1
2 σ

, · · · , ). We choose the order of the polyno-
mial, i.e., the number of terms, to balance the performance
and computation cost during experiments. Finally, the cal-
culation of ESSA is given by

ESSA(Q,K, V ) = (ψ(Q)ψ(K)T )V = ψ(Q)(ψ(K)TV )
(9)

By exchanging the multiplication order, the total com-
putation complexity of ESSA is O(NC2), which is sig-
nificantly smaller than conventional attention O(N2C) be-
cause the channel dimension is usually much smaller than
the sequence length, especially for high-resolution images
in HSI-SR. It is noted that the mathematical formulation of
ESSA has a significant difference from channel-wise atten-
tion [52], i.e., Q× softmax(KTV ), demonstrating the dif-
ferent motivations and behaviors between the two methods.

4. Experiments
4.1. Datasets and settings

Chikusei dataset: the Chikusei dataset [49] is acquired us-
ing the Headwall Hyperspec-VNIR-C imaging sensor over
agricultural and urban areas in Chikusei, Ibaraki, Japan.
The dataset comprises images of 19 different classes, which
are collected via a field survey and visual inspection, along
with high-resolution images that are captured concurrently
with the hyperspectral data.
Cave dataset: the Cave dataset [48] is a multispectral
dataset that comprises 32 images of everyday objects. The
dataset contains full spectral resolution reflectance data
from 400 nm to 700 nm at a resolution of 10 nm, result-
ing in a total of 31 bands. The images have a resolution of
512 × 512 pixels and are stored as 16-bit grayscale PNG
images per band.
Pavia dataset: the Pavia Dataset [15] is a hyperspectral
dataset acquired by the ROSIS sensor during a flight cam-
paign over Pavia, northern Italy. The images contain 102
spectral bands with a spatial resolution of 1096 × 1096,
with a geometric resolution of 1.3 m. The image feature
area is divided into 9 categories, each containing 9 samples.



Method MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑ MACs(G)

Bicubic 43.2125 1.7880 3.5981 0.9721 0.0082 0.9781 N/A
GDRRN [25] 46.5412 1.3779 2.5896 0.9872 0.0055 0.9884 1.66
SSPSR [19] 47.4403 1.2072 2.2805 0.9897 0.0050 0.9910 23.47
MCNet [23] 2× 46.7882 1.3311 2.4382 0.9872 0.0055 0.9893 82.77

Bi-3DQRNN [14] 45.7107 1.4306 2.7407 0.9843 0.0061 0.9867 30.24
DCM-NET [53] 48.0238 1.1160 2.1766 0.9906 0.0047 0.9916 101.3

Ours 48.2886 1.1004 2.1268 0.9912 0.0045 0.9920 12.82

Bicubic 37.6377 3.4040 6.7564 0.8954 0.0156 0.9212 N/A
GDRRN [25] 39.6456 2.6306 5.3946 0.9353 0.0122 0.9490 6.65

SSPSR [19] 40.3612 2.3527 4.9894 0.9413 0.0114 0.9565 42.44
MCNet [23] 4× 39.5599 2.7831 5.3687 0.9317 0.0126 0.9481 289.63

Bi-3DQRNN [14] 39.8938 2.5221 5.1923 0.9377 0.0120 0.9518 120.97
DCM-NET [53] 40.5139 2.3012 4.8584 0.9464 0.0112 0.9581 130.9

Ours 40.7648 2.2126 4.7231 0.9487 0.0109 0.9601 48.65

Bicubic 34.5049 5.0436 9.6975 0.8069 0.0224 0.8314 N/A
GDRRN [25] 35.2210 4.6363 9.0720 0.8354 0.0202 0.7977 26.62
SSPSR [19] 35.8279 4.0282 8.3177 0.8538 0.0192 0.8773 118.33
MCNet [23] 8× 35.2643 4.6107 8.7438 0.8321 0.0208 0.8588 2637.51

Bi-3DQRNN [14] 35.6284 4.2259 8.4955 0.8456 0.0196 0.8701 483.89
DCM-NET [53] 35.9809 3.9310 8.1459 0.8580 0.0189 0.8811 249.95

Ours 36.1405 3.8979 8.1181 0.8599 0.0187 0.8823 192.64

Table 1. Quantitative comparison of different methods on the
Chikusei dataset.

Harvard dataset: the Harvard dataset [8] collects fifty in-
door and outdoor scenes real-world images. The images are
taken from a hyperspectral camera (Nuance FX, CRI Inc.)
with wavelengths ranging from 420nm to 730nm at steps of
10nm. Each image has a spatial resolution of 1392 × 1040
with thirty-one spectral measurements at each pixel.
Implementation details: We trained our ESSAformer
model from scratch using PyTorch and the Adam optimizer.
The loss function is L1 loss. We set the initial learning rate
to 1 × 10−4 and gradually decreased it to a minimum of
1 × 10−5. We used the same training settings for all four
datasets (Chikusei, Pavia, Cave, Harvard), without any spe-
cial tuning. Our ESSAformer model consists of five stages,
each with one encoder layer, and an upsampling module in
the last stage. The first 3× 3 convolution layer projects the
channel dimension to C = 256, which is maintained in all
stages except the last 3 × 3 convolution layer that recovers
the original channel size. The temperature σ is set to 1. We
used NVIDIA RTX 3090 GPUs for all experiments.

Evaluation metrics: We use six popular metrics for all
experiments to thoroughly evaluate the model’s perfor-
mance in both spatial and spectral perspectives: the peak
signal-to-noise ratio (PSNR), spectral angle mapper (SAM)
[51], erreur relative globale adimensionnelle de synthese
(ERGAS) [38], structure similarity (SSIM) [41], root mean
square error (RMSE), and cross correlation (CC) [30].

4.2. Qualitative results

We compare our methods with five representative deep
learning methods includes GDRRN [25], SSPSR [19], MC-
Net [23], Bi-3DQRNN [14], and DCM-NET [53], besides
traditional bicubic interpolation. All the models are trained
from scratch. The qualitative and visual results will be pre-
sented below by datasets:

Bicubic GDRRN SSPSR

MCNet Bi-3DQRNN Ours Ground Truth

Figure 3. Chikusei’s visual results, i.e., the patch in red rectan-
gle, of different methods are provided for comparison. We set the
bands of 70/100/36 as the R/G/B channels for better visualization.

Experiments on the Chikusei dataset: Images in Chiku-
sei have 2517 × 2335 pixels with 128 bands. We fol-
low SSPSR [19] to crop non-overlapped patches of 512 ×
512 resolution. For each image in Chikusei, four cropped
patches are used for testing and the rest are for training. We
have three scale factors for experiments. Specifically, the
input resolutions for scale factors of 2, 4, and 8 are set to
32× 32, 16× 16, and 16× 16, respectively. The output res-
olutions are 64× 64, 64× 64, and 128× 128, respectively.

The quantitative results for the different methods are
demonstrated in Table 1 with the best performance high-
lighted in bold. Our ESSA outperforms other approaches in
almost all metrics at all three scale factors, demonstrating
the effectiveness of our model. For example, ESSAformer
outperforms the second, i.e., DCM-Net [53], by 0.26 dB
in PSNR and 0.13 in ERGAS for the 4× scale factor. To
further measure the performance of our model, the visual
results are presented in Figure 3. We zoomed in the area
in red rectangle and provide the details produced by each
method. It can be seen that only SSPSR, DCM-NET, and
our method recovered the two vertical lines of the origi-
nal image clearly, and among these three methods, SSPSR
yields the worst result whose reconstructed lines are bro-
ken in many places. DCM-NET recovers relatively bet-
ter than SSPSR, but discontinuation also appears, and our
ESSA produces the best results.

Experiments on the Cave dataset: The Cave dataset [48]
has 32 images with 512 × 512 resolution of different scenes
with full spectral resolution reflectance data from 400 to 700
nm at a resolution of 10 nm (31 bands in total). We ran-
domly chose 8 scenes for testing and the remained images
are for training. The same cropping settings of Chikusei are
used for experiments with Cave.

The results are represented in Table 2. As can be seen,
our network still obtains the best performance in most met-
rics and scale factors, which confirms ESSAformer’s supe-
riority. Besides, we compare the spectral profile of the im-



Method
Pavia Cave

MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑ MPSNR↑ SAM↓ ERGAS↓ MSSIM↑ RMSE↓ CC↑
Bicubic 34.4107 5.2881 4.4877 0.9387 0.0197 0.9760 38.0603 3.237 4.9579 0.9662 0.0147 0.9907

GDRRN [25] 37.4868 4.7773 3.2812 0.9651 0.0138 0.9867 40.9785 3.7454 4.2106 0.9738 0.0126 0.9948
SSPSR [19] 37.7264 4.6532 3.1757 0.9668 0.0135 0.9875 41.3895 3.1472 3.3333 0.9752 0.0101 0.9953
MCNet [23] 2× 37.2858 4.7874 3.3173 0.9638 0.0143 0.9864 41.9772 2.6656 3.1483 0.9765 0.0095 0.9956

Bi-3DQRNN [14] 36.9049 4.7343 3.4460 0.9623 0.0148 0.9855 40.7212 2.8859 3.6087 0.9744 0.0108 0.9945
DCM-NET [53] 37.1815 5.2427 3.3738 0.9600 0.0144 0.9861 41.9867 2.7051 3.1217 0.9771 0.0095 0.9957

Ours 38.7896 4.5576 2.8806 0.9712 0.0120 0.9896 42.2174 2.6623 3.0443 0.9778 0.0092 0.9958
Bicubic 29.6732 6.9353 7.5858 0.8154 0.0347 0.9321 33.0421 4.7962 7.846 0.9202 0.0258 0.9767

GDRRN [25] 30.8474 6.5915 6.7641 0.8677 0.0302 0.9477 34.897 4.3822 6.7552 0.938 0.0206 0.9830
SSPSR [19] 30.6447 6.4081 6.776 0.8619 0.0312 0.9461 35.3433 4.1654 6.5045 0.9434 0.0200 0.9838
MCNet [23] 4× 30.9330 6.6822 6.5725 0.8628 0.0299 0.9488 35.5813 3.7189 6.3928 0.9470 0.0194 0.9845

Bi-3DQRNN [14] 30.4242 7.2323 7.0308 0.8525 0.0317 0.9417 35.3269 3.9294 6.5136 0.9438 0.0199 0.9839
DCM-NET [53] 30.6048 7.2623 6.8190 0.8507 0.0312 .9454 35.5055 3.9460 6.4092 0.9445 0.0197 0.9957

Ours 31.6126 6.3032 6.1063 0.8847 0.0275 0.9558 35.8947 3.8390 6.1621 0.9467 0.0190 0.9869
Bicubic 26.6043 8.4814 10.7741 0.6509 0.0500 0.8597 29.2466 6.6079 12.2687 0.832 0.039 0.9439

GDRRN [25] 26.7832 9.2154 10.5724 0.6718 0.0488 0.8698 30.3026 7.151 11.0352 0.8513 0.0353 0.9533
SSPSR [19] 26.8435 10.1753 10.4754 0.6692 0.0487 0.9595 31.129 5.5101 10.1804 0.8749 0.0325 0.9595
MCNet [23] 8× 27.0388 8.7111 10.2412 0.6808 0.0475 0.8734 31.323 5.7398 10.0206 0.8804 0.0320 0.9607

Bi-3DQRNN [14] 26.9813 8.4730 10.312 0.6802 0.0479 0.8715 31.1791 5.3401 10.1370 0.8792 0.0322 0.9601
DCM-NET [53] 25.6571 13.4698 12.014 0.5487 0.0559 0.8331 31.3766 5.3067 9.9363 0.8822 0.0316 0.9618

Ours 27.1114 8.9197 10.1681 0.6918 0.0471 0.8757 31.4387 5.3041 9.9058 0.8845 0.0316 0.9629
Table 2. Quantitative comparison of different methods on the Cave and Pavia datasets. The results of different scales are given respectively,
where the best performance of each scale is highlighted in bold.
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Figure 4. The test image in Cave and the spectral profile of the area
in red rectangle are provided respectively. The red line refers to the
ground truth and the closest green line refers to the ESSAformer’s
result, which shows the strong ability of the ESSAformer to re-
cover the texture detail.

ages from different methods in Figure 4. As can be seen
in right right image of Figure 4, our method, i.e., the green
line, is closest to the groundtruth (the red line) and recov-
ers better details, while the other methods cannot restore the
peak value as well as ours.

Experiments on the Pavia dataset: The size of Pavia is
significantly small compared with Chikusei and Cave. It
has only one 1096 × 1096 image with the available part
1096×714. Similarly, we crop non-overlapped patches with
a spatial resolution of 120× 714. For each image in Pavia,
three patches are used for testing and the rest for training.

As can be seen in Table 2, ESSAformer reaches the best
performance and significantly outperforms other methods in
most metrics. For example, it obtains 38.79 dB and 31.61
dB in PSNR and has more than 1 dB gain when comparing

Bicubic GDRRN SSPSR

MCNet Bi-3DQRNN Ours Ground Truth

Figure 5. The test image from Pavia dataset and details of the area
in red rectangle offered by various methods. Bands 10/70/50 are
visualized as the R/G/B channels.

the second. ESSAformer obtains the best 0.0275 and 0.955
for RMSE and CC, respective. This confirms the effective-
ness of the proposed techniques for small datasets, i.e., the
channel-wise inductive bias in ESSA. It is noteworthy that
the performance decreases when the scale factor rises from
2× to 8× because of the increased task difficulty.

Table 3. Comparison of different methods on Harvard dataset.

Methods
Harvard 2× Harvard 4×

PSNR ↑ SAM ↓ PSNR ↑ SAM ↓
DCM-NET [53] 50.2559 2.7389 45.4087 3.3102

SSPSR [19] 50.2929 2.7017 45.2164 3.4292
Ours 50.6928 2.6489 45.5091 3.3031

Experiments on the Harvard dataset: In addition to the
aforementioned three datasets, we conduct experiments on
the Harvard dataset [8] and compare ESSAFormer with



other methods. We follow the training settings in [53] for
our method and present the results in Table 3. It can be seen
that ESSAFormer outperforms the others by a significant
margin regarding both PSNR and SAM metrics, demon-
strating the effectiveness of our proposed model.

Method CNN MHSA[37] Swin[29] ESSA(0) ESSA(1) ESSA(2) ESSA(3)

PSNR 40.5672 40.4310 40.1122 40.5474 40.7648 40.7891 40.8012
SAM 2.2455 2.3835 2.5107 2.3000 2.2126 2.2100 2.2106
SSIM 0.9473 0.9456 0.9426 0.9466 0.9487 0.9491 0.9495

MACs(G) 62.23 77.14 50.51 47.12 48.65 50.47 52.75
Params(M) 13.47 11.64 11.64 11.1 11.1 11.1 11.1

Table 4. The ablation study results of ESSAformer with different
attention mechanisms.

4.3. Ablation study

Several ablation studies are conducted to thoroughly un-
derstand the proposed network. All the experiments are
based on the Chikusei dataset with a scale factor of 4 un-
less specifically indicated.

Ablation study on polynomial order in ESSA: To ver-
ify the effectiveness of ESSA, we compare several atten-
tion types with ESSA, and the results are demonstrated
in Table 4. ‘CNN’ refers to using two 3 × 3 convolu-
tion layers with interval LeakyRelu to replace ESSA. For
‘MHSA’, we use the original Multi-head Self-Attention.
For ‘Swin’, we substitute ESSA with the shifted win-
dow self-attention from Swin Transformer. ‘ESSA(0)’,
‘ESSA(1)’, ‘ESSA(2)’, and ‘ESSA(3)’ all denote using
ESSA, while the difference is the order of Taylor expansion.
‘3’ means that the term below or equal to the third order of
the Taylor expansion is kept to approach the function. For
‘ESSA(0)’, the constant value of 1 is used for the mapping
function ψ() and the attention matrix becomes constant.

As can be seen in Table 4, using two approaching terms
for the mapping function ψ(), i.e., ESSA(1), is signifi-
cantly better than ESSA(0) and the performance increases
from 40.5474dB/2.3/0.9466 to 40.7340dB/2.2283/0.9487
on MPSNR/SAM/MSSIM. When increasing the order of
kept terms, the PSNR performance improves at a cost of
increased computation. Thus we choose to expand the Tay-
lor polynomial to an order of 1 to balance between perfor-
mance and computation cost. Thanks to the inductive biases
in ESSA, ESSAformer fits HSIs well and has better data
efficiency. Therefore, it obtains significantly better perfor-
mance and less computation than CNN, MHSA, and Swin,
which demonstrates the effectiveness of the proposed ESSA
method in the super-resolution task.

Ablation study on the number of stages: ESSAformer
uses shared parameters to save the model size and thus each
stage can be regarded as a refinement process. We ablate
how the number of stages affects the performance as shown

Blocks PSNR SAM SSIM MACs(G)

3 40.4200 2.3703 0.9451 31.58
5 40.7648 2.2126 0.9487 48.39
7 40.7314 2.2359 0.9488 63.39
9 40.7191 2.2279 0.9489 78.30

Table 5. The ablation study results regarding the impact of the
block number.

image resolution
10 × 10 20 × 20 30 × 30 40 × 40

MHSA 23.67 G 142.09 G 494.70 G 1326.80 G
ESSA 19.06 G 76.22 G 173.66 G 304.97 G

Table 6. Computation cost (FLOPs) comparison between MHSA
and ESSA. The scale factor is 4× and the channel dimension is
128.

GDRRN SSPSR MCNet Bi-3DQRNN DCM-NET Ours

MPSNR (dB) 39.65 40.36 39.56 39.89 40.51 40.76
MACs(G) 6.65 42.44 289.63 120.97 130.9 48.65
Params(M) 0.442 14.88 2.17 1.29 12.61 11.1

Time (per epoch) 2m23s 6m00s 46m52s 53m26s 53m04s 4m26s

Table 7. Model efficiency of different approaches on Chikusei 4×.

Methods DCM-NET [53] MCNet [23] Bi-3DQRNN [14] SSPSR [19] Performer [50]
FPS (n/s) 5.58 20.00 14.12 36.75 55.74
Methods NPRF [31] ELAN [55] RLFN [21] SwinIR [28] Ours
FPS (n/s) 71.43 51.47 336.70 63.29 151.06

Table 8. Inference speed of various methods on the Chikusei
dataset 4× with an NVIDIA 3090 GPU.

in Table 5, where the results of PSNR, SAM, SSIM, and
MACs are given for comparison. When the stage increases
from 3 to 5, the performance significantly improves from
40.42 to 40.76 dB in PSNR and the computation cost also
rises by 28 G. When the number of stages further increases
to 7 and 9, the performance saturates and thus we set 5
stages for the proposed ESSAformer.

Efficiency analysis: Due to the O(N2) complexity,
MHSA handles images with large resolutions in an expen-
sive manner. In Table 6, we compare the overall compu-
tational cost with different image resolutions regarding dif-
ferent attention, i.e., conventional MHSA and our proposed
ESSA. We adopt the ESSAformer architecture for fair com-
parison. It can be seen that the computational cost of ESSA
and MHSA is relatively similar for infrequent small images
with the resolution 10 × 10. With the resolution going up,
the computational cost of MHSA rises sharply and the dif-
ference between MHSA and ESSA increases rapidly. The
cost of MHSA is 4 times over ESSA when the input image
has 40× 40 resolution, i.e., 1326 GFlops, a huge computa-
tion burden for the computing resources.

To further highlight the efficiency of our ESSA, we have
conducted comprehensive experiments comparing the effi-
ciency of various HSI-SR models in Table 7. We also eval-
uate the inference speed of HSI-SR SOTAs, RGB-SR SO-
TAs, and linear attention variants in Table 8. The results
clearly demonstrate that our model excels in striking a bal-
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Figure 6. Visualization of the similarity map of ESSA and MHSA
before and after noise for comparison.

ance between computational cost, training speed, and per-
formance when compared to other state-of-the-art methods.
This further underscores the effectiveness of ESSAformer.

(a) Performance (b) Train Loss
Figure 7. Comparison between the proposed ESSA and channel-
wise attention.

Comparison to other linear attention. In contrast to tra-
ditional linear attention targeting RGB images, our ESSA
considers the characteristics of the hyperspectral field and
excels at handling HSIs. We compare ESSA and other
linear attention mechanisms using the Chikusei and Pavia
datasets (4× and show the experimental results in Tab. 9,
where all methods use the same model architecture of ES-
SAFormer except attention for fair comparisons. From the
table, we can see that the best performance of ESSA show-
cases its superiority among all attention choices, underscor-
ing the method’s effectiveness in processing HSIs.

Comparisons on large size datasets 1 We perform com-
parisons on the popular large ICVL [1] and NTIRE [2, 3]
datasets, whose data volumes are larger than the previous
Chikusei and Pavia. According to the results in Tab. 11,
although the initial design targets at improving data effi-
ciency from small-scale datasets, ESSAFormer obtains the
best performance on ICVL and NTIRE2022, demonstrat-
ing its efficacy in learning from large-size datasets. It is
noted that ESSAFormer achieves comparable performance
to SwinIR on NTIRE2020 while exhibiting more than 2×
faster inference speed as shown in Tab. 8, showing a better
trade-off between performance and efficiency.

Attention map analysis. We compare the similarity maps
from the original attention and ESSA in Fig. 6. We consider
the first-order results for ESSA due to the infinite Fourier
series decomposition. We simulate the occlusions or shad-

ows by using scaling factors and shifts as noise and visual-
ize the resulting heatmaps before and after the simulation.
From the figure, we can see ESSA recognizes a highly sim-
ilar pattern to MHSA. Also, ESSA demonstrates insensitiv-
ity to the introduced noise and still focuses on the discrimi-
native features, while MHSA collapses under the same con-
ditions, highlighting the suitability of ESSA for denoising
HSIs in the SR task. This merit originates from ESSA’s
superior designs and accompanies the mathematical prin-
ciples, i.e., channel-wise translational inductive biases, as
proved in Theorem 3.1.

Comparison between proposed ESSA and channel-wise
attention We plot the performance and training loss of
ESSA and channel-wise attention [52, 6] in Figure 7. The
same architecture is adopted for two attentions for a fair
comparison. It can be seen that the ESSA has much better
training efficiency than the counterpart channel-wise atten-
tion, demonstrating the effectiveness of our proposed ESSA
mechanism.

Methods
Chikusei 4× Pavia 4×

PSNR ↑ SAM ↓ PSNR ↑ SAM ↓
NPRF [31] 40.4344 2.3435 31.3306 7.372

Performer [50] 40.5833 2.2373 31.4690 6.2658
Linear [20] 40.3824 2.4021 31.3164 6.7403

Ours 40.7648 2.2126 31.6126 6.1063
Table 9. Comparison with different linear attention methods.

ELAN [55] RLFN [21] SwinIR [28] Ours
PSNR ↑ 39.5227 39.6813 39.5165 40.7648
SAM ↓ 2.6945 2.6583 2.6212 2.2126

Table 10. Comparisons with RGB-SOTA methods on Chikusei
4×.

Methods
ICVL [1] NTIRE2020 [2] NTIRE2022 [3]

PSNR ↑ SAM ↓ PSNR ↑ SAM ↓ PSNR ↑ SAM ↓
RLFN [21] 38.2526 2.2179 34.2946 1.9554 37.0744 1.3873

SwinIR [28] 39.0727 1.9303 34.9186 1.8421 37.7432 1.4881
DCMNet [53] 38.7663 2.3337 34.5316 2.0283 37.4761 1.6257

Ours 39.5158 1.9130 34.8674 1.7040 37.8432 1.2202
Table 11. Comparisons on large-scale datasets.

5. Conclusion
This paper presents a novel Transformer network, i.e.,

ESSAformer, for the single-hyperspectral image super-
resolution task. The Transformer has an iterative refinement
architecture to encode the feature representation and con-
text information at different scales. Besides, we utilize the
characteristics in HSI and propose a particular ESSA atten-
tion mechanism to effectively improve the data efficiency
and model performance by involving channel-wise induc-
tive biases. The model also significantly relieves the com-
putation burden with strict theoretical support from kernel
machines. Thanks to the particular design, the model builds



long-range dependencies and produces better restoration re-
sults without involving much compute cost. Extensive ex-
periments on different datasets at various super-resolution
scales demonstrate the SOTA performance of ESSAformer
regarding both visual quality and objective metrics.
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A. Supplementary materials
A.1. Ablation study on different attention types

To study the effectiveness of the proposed method, we
use the ESSAformer structure with different attention types,
i.e., conventional MHSA, inductive bias-induced SCC at-
tention and the proposed ESSA, for a thoroughly compari-
son. The results of PSNR, SSIM, and SAM are given in Ta-
ble 12. Different from the test set settings in the paper, we
crop the test image from 512 × 512 to 128 × 128 due to the
huge computational and GPU footprint burden in MHSA
and SCC attention. Thanks to the channel-wise inductive
bias in SCC attention, it outperforms MHSA significantly
on all the metrics. Meanwhile, ESSA has significantly less
computation cost and achieves the performance on par with
the SCC attention. The results demonstrate the effective-
ness of the proposed ESSA.

Method Dataset PSNR SSIM SAM
MHSA

×4 Chikusei
41.1242 0.952 2.3693

SCC 41.3273 0.9539 2.3127
ESSA 41.4177 0.9554 2.3096
MHSA

×4 Cave
44.5341 0.969 6.9794

SCC 44.9210 0.9720 5.1792
ESSA 45.2727 0.9710 4.9596
MHSA

×4 Pavia
29.8248 0.8351 5.6746

SCC 30.0249 0.8410 5.5294
ESSA 30.1598 0.8468 5.5235

Table 12. Comparison on different attention. The experiments are
conducted on three datasets with a scale factor 4×.

A.2. Qualitative result

A.2.1 Spectral profiles

First, we select several images in the test set from Pavia,
Chikusei, and Cave and plot the spectral profiles of the red
circle regions as shown in Figure 8, 9, 10, 12, 13, and
11, respectively. It can be seen that our method, i.e., the
green line, recovers the most information and is the closest
to the groundtruth red line in all figures at all data values.
For example, the green line approaches the red most in the
high-value range, i.e., the index between 60 and 100, in Fig-
ure 8, while others fail to reach the peaks compared to ES-
SAformer. In contrast, as shown in Figure 10, all the models
tend to generate higher values in spectral profiles compared
to the groundtruth. Our ESSAformer, however, relieves this
tendency most thanks to the introduced channel-wise induc-
tive bias in ESSA attention.

A.2.2 Visualized absolute error

We visualize the absolute error maps of different methods
as shown in Figure 14, 15, 16, 17, and 18. The original im-
ages after re-formatting to RGB ones are also given in each
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Figure 8. The spectral profiles of a test image from the Pavia
dataset.

figure for reference. The pixels with dark colors denote the
small error and the bright refer to having a large absolute
error. From the figure, we can see that ESSAformer gen-
erates the images with the least textures and thus obtains
the best performance. For example, our method produces
results with the slightest difference from the ground truth,
better recovering the bird’s eye view image of Pavia city,
as shown in Figure 14. Besides, the residual maps of other
methods in Figure 15 and 16 show the ‘road’ clearly while
ESSAformer has a strong ability to restore such edges in
its outputs. When comparing the living area with abundant
variance in the figures, ESSAformer also has darker results
than the others, demonstrating its superiority for process-
ing such challenging regions. Besides, as shown in the bot-
tom leather and upper ‘rectangle’ regions in Figure 17, ES-
SAformer effectively restores the details, leading to a con-
clusion similar to the previous analysis.
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Figure 9. The spectral profiles of a test image from the Chikusei dataset.
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Figure 10. The spectral profiles of a test image from the Chikusei dataset.
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Figure 11. The spectral profiles of a test image from the Chikusei dataset.
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Figure 12. The spectral profiles of a test image from the Cave dataset.
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Figure 13. The spectral profiles of a test image from the Cave dataset.
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Figure 14. The absolute error map of a test image from the Pavia dataset.
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Figure 15. The absolute error map of a test image from the Chikusei dataset.
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Figure 16. The absolute error map of a test image from the Chikusei dataset.
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Figure 17. The absolute error map of a test image from the Cave dataset.
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Figure 18. The absolute error map of a test image from the Cave dataset.


