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Abstract

Learning a policy with great generalization to unseen
environments remains challenging but critical in visual re-
inforcement learning. Despite the success of augmenta-
tion combination in the supervised learning generalization,
naively applying it to visual RL algorithms may damage
the training efficiency, suffering from serve performance
degradation. In this paper, we first conduct qualitative
analysis and illuminate the main causes: (i) high-variance
gradient magnitudes and (ii) gradient conflicts existed in
various augmentation methods. To alleviate these issues,
we propose a general policy gradient optimization frame-
work, named Conflict-aware Gradient Agreement Augmen-
tation (CG2A), and better integrate augmentation combina-
tion into visual RL algorithms to address the generalization
bias. In particular, CG2A develops a Gradient Agreement
Solver to adaptively balance the varying gradient magni-
tudes, and introduces a Soft Gradient Surgery strategy to al-
leviate the gradient conflicts. Extensive experiments demon-
strate that CG2A significantly improves the generalization
performance and sample efficiency of visual RL algorithms.

1. Introduction

With the development of deep learning in various
tasks [28, 26, 25, 27, 7, 6, 38, 40, 39, 24], visual Rein-
forcement Learning (RL) has achieved impressive success
in various fields such as robotic control [11], autonomous
driving [17], and game-playing [35]. Previous works usu-
ally formulate it as a Partially Observable Markov Deci-
sion Process (POMDP) [33], and the agent receives high-
dimensional image observations as inputs. As depicted
in [15, 14], visual RL generalization refers to the ability

of a pretrained RL agent to perform well in unseen environ-
ments. Due to the dynamic nature of the real world, even
minor perturbations in the environment can result in signifi-
cant semantic shifts in the visual observations, which makes
visual RL generalization challenging.

To improve generalization performance, data augmenta-
tion [29] is a widely adopted technique in reinforcement
learning. Numerous studies [22, 13] utilize data augmen-
tation methods to generate synthetic data and diversify the
training environments, yielding considerable performance
improvements. However, recent methods [14, 3, 44] mostly
select a single augmentation technique to improve the gen-
eralization capability, resulting in a poor performance in the
environments with observations varying far from the aug-
mented images. For instance, ColorJitter [23] is the pre-
ferred choice for addressing color variations, but agents
trained with such augmentation still hard to cope with in-
tricate texture patterns. In other words, the generalization
ability heavily relies on the selection of specific data aug-
mentation technique, which is so-called generalization bias.

Compared to single data augmentation, Augmentation
Combination (AC) [16] integrates multiple data augmenta-
tion methods to enhance the diversity of augmentations and
alleviate the generalization bias, which is a more promising
pre-processing solution. Unfortunately, there is a dilemma
in incorporating AC into visual RL. Although data augmen-
tation combination can effectively improve generalization
capability in the supervised visual tasks, RL algorithms are
quite sensitive to excessive variations, resulting in perfor-
mance degradation and training sample inefficiency. There-
fore, it is necessary to rethink why visual RL algorithms
cannot benefit from AC as much as supervised learning.

From the perspective of gradient optimization, we con-
duct numerous qualitative analysis to illustrate the causes
of performance degradation and training collapse that occur
when employing augmentation combinations during train-
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ing. There are two primary reasons for this phenomenon: (i)
the utilization of diverse data augmentations leads to high
gradient magnitude variations, resulting in biased general-
ization; (ii) the gradient conflicts1 [42] existed cross multi-
ple augmentation methods hinder the policy optimization.
To balance the gradients with high-variance magnitudes,
one effective approach is to customize the weights of the
loss terms with manually defined hyper-parameters [14].
However, hyper-parameter tuning relies heavily on expert
knowledge, which can be inflexible and computationally
expensive when dealing with multiple data augmentations.
Besides, [30] indicates that the widely employed average-
based gradient update strategies tend to converge towards
the speed-greedy direction, and are ill-posed to effectively
handle complex gradient conflicts, leading to local optima
and a decrease in sampling efficiency.

To address these issues, we propose a general policy gra-
dient optimization framework, named Conflict-aware Gra-
dient Agreement Augmentation (CG2A), to integrate aug-
mentation combination into the RL framework and im-
prove its generalization performance. Specifically, the
CG2A contains two key components: an adaptive weight
assigner called Gradient Agreement Solver (GAS) and
a conflict-aware gradient update strategy Soft Gradient
Surgery (SGS). To effectively harmonize high-variance
magnitudes gradients, we formulate the hyper-parameter
tune as a second-order multi-objective optimization prob-
lem and use the GAS to obtain a proximal approximate
solution with minimal computational cost. Moreover, ac-
cording to [30], although gradient conflicts slow down con-
vergence speed, these conflicting gradient components may
contain more semantic-irrelevant information that can im-
prove invariant learning consistency. Motivated by this hy-
pothesis, we propose SGS to improve the gradient update
process, which preserves a small amount of conflicting gra-
dient components to strike a balance between convergence
speed and generalization performance. To validate the ef-
fectiveness of CG2A, we conduct extensive experiments
on DMControl Generalization Benchmark (DMC-GB) and
some robotic manipulation tasks. In summary, our contri-
bution encompasses three main manifolds:

• We point out the generalization bias induced by single
data augmentation and illustrate the primary causes for
performance degradation when naively applying aug-
mentation combination in RL algorithms.

• We propose a general policy gradient optimization
framework named Conflict-aware Gradient Agreement
Augmentation (CG2A), to efficiently integrate data
augmentation combinations into the RL algorithms

1The gradient conflicts mean the gradient directions point away from
each other, e.g., appears a negative cosine similarity.

and significantly improve the generalization perfor-
mance in various environments.

• We devise a Gradient Agreement Solver (GAS) to har-
monize multiple gradients with high-variance magni-
tudes, and propose a Soft Gradient Surgery (SGS)
strategy to alleviate the gradient conflicts existed in
various data augmentations.

• Compared to previous state-of-the-art methods, CG2A
achieves competitive generalization performance and
significantly improves sample efficiency.

2. Related Work
2.1. Data Augmentation in Visual RL

Benefiting from the development in the field of computer
vision [45, 4, 5, 37, 8], data augmentation is widely used in
the visual RL [22, 14, 15]. As noted by Kirk et al. [20],
DA force the agents to learning an invariance knowledge
through regularising models to have same output or inherent
representation for different augmented images. Kostrikov
et al. [21] adopt simple pixel-level transformations to per-
turb image observations and regularize the value function
and policy, which significantly boost the sample efficiency.
Inspired by MixUp [45], Wang et al. [36] propose to train
agents with a mixture of observations and impose linearity
constraints to improve the generalization capability. Mean-
while, Raileanu et al. [31] propose a principle to automat-
ically select an effective augmentation from a set of data
augmentations for RL tasks. More recently, task-aware data
augmentation with Lipschitz constant is devoloped [43],
which maintain the sample efficiency and alleviate insta-
bility caused by the aggressive data augmentations. Unlike
prior work, our method expect to explore the utilization of
augmentation combinations in visual RL to improve gener-
alization capability in various unseen environments instead
of a single manually or automatically data augmentation.

2.2. Generalization in Visual RL

Numerous studies [21, 15, 14, 44] attempt to enhance
the generalization capability of agents through various ap-
proaches, such as data augmentation [22, 43, 21], domain
randomization [32], and self-learning based methods [15].
Hansen et al. [15] build a BYOL [10]-like architecture and
use an auxiliary loss to foster the representations to be in-
variant with the irrelevant perturbations. Hansen et al. [14]
introduce a regularization term for the Q-function which
reduces variance implicitly by linear combining the esti-
mated Q-value between unaugmented and augmented data.
Bertoin et al. [3] integrate saliency maps into the RL [12]
architecture, enabling the agent to guide its focus towards
the most salient aspects of the observation images during
the decision-making process. Yuan et al. [44] utilize a



pre-trained model and extract generalizable representations
from the early layers of the encoder for enhancing the gen-
eralization performance. Unlike previous work, we utilize
data augmentation combination to eliminate the generaliza-
tion bias and develop an effective optimize framework to
avoid the performance collapse during the training stage.

3. Preliminaries
Reinforcement Learning. Considering that the agent can-
not directly observe the underlying state of environment
from the given images [19], visual RL [2] formulates the
interaction between the agent and its environment as a
discrete-time Partially Observable Markov Decision Pro-
cess (POMDP). Formally, a POMDP can be defined as a
6-tuple ⟨O,S,A,P, r, γ⟩, whereO is the high-dimensional
observation space, S is the state space, A is the action
space, P(st+1|st, at) is the conditional transition function
between states, r : S × A → R is the reward function, and
the γ ∈ [0, 1) is the discount factor [33].
Generalization Definition. Given a set of POMDPs M =
{M1,M2, . . . ,Mn}, each POMDP Mi has its own ob-
servation space Oi, but shares a common underlying state
space S and dynamic conditional transition functionP . Our
objective is to learn a general policy that can generalize to
unseen environments in a zero-shot manner. Specifically,
we have access to only one specific POMDPMi ∈ M and
utilize it to learn a general policy π∗. The policy π∗ is ex-
pected to alleviate the dependency on the individual obser-
vation space Oi and explore the inherent state structure to
perform well over the whole set of M.
Optimization Pitfall with Augmentation Combination.
Here, we elucidate the main reasons for limited training per-
formance when data augmentation combinations are naively
applied in policy gradient optimization. Specifically, we
choose a random initialized SAC [12] agent as a base
model and collect multiple data augmentation technolo-
gies, including random shift [21], random convolution [22],
CutOut [8], and MixUp [45], to form a data combination.
Then, a SVEA [14] architecture agent is adopted to in-
tegrate the data combination and calculate corresponding
critic loss items associated with each data augmentation
and obtains the corresponding gradient via backpropaga-
tion. Based on such framework, we conduct various toy
experiments on DMC [34] suite and analyse the composi-
tion of the gradient from the perspective of the magnitude
and direction. There are two primary reasons. (i) High-
variance gradient magnitudes: we collect the normalized
gradients associated with various augmented data over 5000
times for a same agent and compute the arithmetic mean as
the gradient magnitude representation for such augmenta-
tion. As shown in Figure 1(a), the empirical results show
that all agents exhibit high variance in gradient magnitude
over the three tasks and that certain gradients prevail in
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(a) (a) Visualization of normalized gradients’ magnitude associ-
ated with various augmentations in AC. For each task, the op-
timization process can be dominated by specific gradients. Our
method effectively suppresses these aggressive gradients.
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(b) (b) Statistics of cosine similarity between paired gradients for
various augmented data. There are a lot of paired gradients with a
negative direction, which misleads gradient optimization.

Figure 1: The qualitative analysis of gradient magnitudes
and gradient directions for the gradient vectors associated
with data equipped with various augmentations.

magnitude, implying that the corresponding data augmen-
tations dominate the policy optimization and lead to signif-
icant generalization bias. (ii) Gradient conflicts existed in
multiple DAs: we sample 1000 image observations from an
unseen environments and record the mean of gradient co-
sine similarity over 5 times cross paired augmented data. In
our context, we define two gradients as conflicting if they
have negative cosine similarity, indicating that they are far
apart from each other. According to [42], if two gradients
conflict with each other, the agent would struggle to find a
balance between various optimization. Figure 1(b) indicates
that gradient conflicts are a prevalent issue among different
data augmentations, leading to slower convergence and per-
formance degradation.

4. Method
In this section, we propose a general policy gradient

optimization framework, named Conflict-aware Gradient
Agreement Augmentation, to address these pitfalls from the
perspective of gradient magnitude and direction.

4.1. Overview

Soft-critic-actor [12] (SAC) is implemented as the basic
visual reinforcement learning algorithm. Briefly, SAC si-
multaneously learns a stochastic policy and a Q-function to
maximize the discounted rewards, while incorporating en-
tropy regularization to encourage the policy to explore di-



Figure 2: Overview. We input the original observation and augmented data and obtain the estimated Q-values q∗t to calculate
the loss items and the corresponding gradients gi. Given the gradient vectors, CG2A utilizes SGS and GAS to calculate the
weight coefficients w and gradient masks ϑ respectively and update the policy parameters with generated ĝ.

verse actions. Sampling a mini-batch of transitions ζ =
{ot, at, r(st, at), ot+1} from the replay buffer B, the critic
loss function can be expressed as follows:

Lθ =
∑
ζ∈B

||Q∗
θ(ot, at)− q̂t||2, (1)

with the Temporal Difference (TD) target q̂t:

q̂t = r(ot, at) + max
â

Qψ(st+1, â). (2)

To correct the generalization bias caused by single data aug-
mentation, we gather a collection of diverse augmentations,
e.g., random shift [21], random conv [22] and MixUp[45],
to construct an augmentation combination denoted as Γ =
{τ1, τ2, . . . , τN}, where N is the number of augmentations.
As shown in the Figure 2, we inject the vanilla observa-
tion ot and all augmented data {τ1(ot), . . . , τN (ot)} into
the network πθ and then obtain respective estimated state-
action value {q0t , q1t , . . . , qNt }. As per the recommendation
in [14], we employ no data augmentation on the successor
observations to maintain a deterministic Q-target q̂t.

To mitigate the high-variance cross various gradient
magnitudes, we associate an adaptive weight coefficient wi
to each critic loss term and reformulate it as follows:

Lθ =
N∑
i=0

∑
ζ∈B

wi||Q∗
θ(τi(ot), at)− q̂t||2. (3)

Then, we joint the optimization of coefficient w into the
agent policy training and formulate it as a multi-objective
optimization. Motivated by [9], we apply proximal approx-
imation using Taylor series and obtain an optimal solution
of the weights w. To directly adjust the overall gradient

magnitude, we opt to multiply the weight coefficients wi
with the individual gradient vectors gi in the practical im-
plementation. Next, we utilize the soft gradient surgery to
locate the conflicting gradient components in the gradient
vectors and randomly clip a certain proportion of conflict
components to rectify the gradient direction. Considering
the above process only involves linear or sign operations,
the two modules can be computed independently and use
linear multiplication to obtain the final update gradients g.
More details are shown in Figure 2.

4.2. Gradient Agreement Solver

To avoid some dominant augmentations to misguide the
policy gradient optimization, we devise gradient agreement
solver to adaptively assign weight coefficients w to all loss
items, which can directly affect the gradient magnitude.
Here, we aim to simultaneously optimize the policy param-
eters θ and find optimal coefficients w, and thus we model it
as a two order multi-objective optimization process. Addi-
tionally, we incorporate L2 regularization into the objective
function to mitigate over-fitting and promote the weights
smoothing, defined as follows:

θ̂, ŵ = argmin
θ,w

∑
i∈T
Liθ(θ(w)) + λ||w||22

s.t. θ(w) = argmin
θ

wiLiθ, (θ), ||w||1 = 1,
(4)

where λ is a regularization item. Considering that the opti-
mal solution is not influenced by the scale of w, we nor-
malize the magnitude of w to one by default. A typical
method of addressing second order derivative problems is
the implicit differentiation [9]. Briefly, implicit differenti-
ation solves second-order optimization problems by differ-



entiating the equation of the objective function, and then
solving for the rate of change of the variable being opti-
mized, which is computationally intensive. To reduce com-
putational cost, we assume the objective function have suf-
ficient differentiability and then adopt the Taylor series to
derive a proximal approximation. Specifically, we approxi-
mate the i-th loss item Lτiθ in Eq. (4) using the Taylor series
as follows:

Liθ(θ) ≈ Liθ(θt) + gi(θ − θt). (5)

By plugging Eq. (5) into Eq. (4) and temporarily ignoring
the L1 normalization constraint, we can obtain the follow-
ing objective function:

θt+1, ŵ = argmin
θ,w

∑
i∈T

[Liθ(θt) + gi(θ(w)− θt)]

s.t. θ(w) = argmin
θ

wi[Liθ(θt) + gi(θ − θt)] +
||θ − θt||22

2ϵ
,

(6)

The closed-form solution [1] to the quadratic problem in
Eq (6) can be θ(w) = θt − ϵwT g, which is a classical SGD
update process, and we compute the derivative:

wi = λ
∑
j∈T

(gTi gj). (7)

Finally, we add the L1 constraint to normalize the weight
coefficients w, we obtain wi as follows:

wi =

∑N
j=0(g

T
i gj)∑N

k=0 |
∑N
j=0(g

T
k gj)|

. (8)

Intuitively, we can regard the weight wi as a linear expan-
sion of a dot product between the gradient vector gi and the
average of all gradients. Hence, the GAS entails assigning
greater weights to loss items that exhibit well-aligned with
the average of all gradients. Consequently, GAS enable to
guide the policy optimize towards a direction that exhibits
greater agreement among all data augmentations.

4.3. Soft Gradient Surgery

Here, we propose to modify the standard average based
gradient descent by incorporating a soft gradient surgery
step before updating the neural parameters θ of agent pol-
icy. Instead of directly computing similarity between pair-
wise gradient vectors, we focus on recognizing the element-
level gradient conflicting component cross the all gradient
items. Our approach aims to adjust the model parameters θ
by modifying the gradient updates to point towards conflict-
free direction and improve consistency across all data aug-
mentation. Specifically, given a set of gradient vectors (one
for each data augmentation), we construct semantic agree-
ment gradients by retaining the components with the same

Algorithm 1: Soft Gradient Surgery.
Input: Hyper-parameters α, β; gradient set

G = {g0, g1, . . . , gN}
Output: The new gradient set G
// flatten each gradients

1 foreach gi in gradient set G do
2 gi ← flatten(gi)
3 end
4 M ← len(g0);
5 G← concat(g0, g1, . . . , gN );
// obtain the elemental mask

6 for j ← 1 to M do
7 if

∑N
i=0 sign(gji ) = N + 1 then

8 ϑ[j]← 1;
9 else

10 ϑ[j]← 0;
11 end
12 end
// randomly clipping the conflicting

gradient components

13 γ ← randomly sample from U(α, β);
14 G← ϑ×G+ γ× ∼ ϑ×G;
15 for i← 0 to N do
16 gi ← reshape(G[i])
17 end
18 return {g0, g1, . . . , gN}

sign and clipping the conflicting components with a damp-
ing factor γ to restrain excessive exploration caused by con-
flicting components. In particular, we introduce the follow-
ing element gradient mask ϑ as an indicator to determine
which component is in conflict:

ϑ[j] =

{
1,

∑N
i=0 sign(gji ) = N + 1,

0, otherwise,
(9)

where gji denotes j-th component in the flattened gradient
vectors gi. Note that ϑ[·] = 1 denotes that such gradient
component is consistently agree upon all data augmenta-
tions, so we preserve the complete gradient information. In
contrast, ϑ[·] = 0 indicates the component is in conflict
and would be clipped. To precisely constrain the semantic-
irrelevant information in conflicting gradient components,
we introduce a damping factor γ, sampling from a uni-
form distribution γ ∈ U(α, β), to control the clipping ra-
tio. Compared to constant clipping, random sampling can
effectively enhance the policy exploration ability and pre-
vent falling into local optima. Hence, the gradient update
procedure for gradient vector gi can be written as follows:

gi = ϑ× gi + γ× ∼ ϑ× gi, (10)



DMCGB [15] SAC [12] DrQ [21] DrQv2 [41] RAD [41] PAD [13] SODA [15] SVEA [14] TLDA [43] PIE-G [44] SGQN [3] Ours

R
andom

C
olors

Walker,Walk 144±19 520±91 168±90 400±61 468±47 692±68 749±61 823±58 884±20 785±57 902±46

Walker,Stand 365±79 770±71 413±61 644±88 797±46 893±12 933±24 947±26 960±15 929±12 972±23

Ball in cup,Catch 151±36 365±210 469±99 541±29 563±50 805±28 959±5 932±32 964±7 864±75 972±10

Finger,Spin 316±119 402±208 478±46 667±154 803±72 793±128 912±6 876±45 922±54 905±43 928±43

Cartpole,Swingup 248±24 586±52 277±80 590±53 630±63 949±19 832±23 760±60 749±46 840±13 856±40

Cheetah,Run 76±25 100±27 109±45 121±79 159±28 228±76 273±23 371±51 369±53 162±38 375±32

Table 1: Generalization on random colors environments. Experiments are conducted on 6 challenging tasks in the DMC-
GB. Our CG2A agent perform well over all tasks and exceeds the prior SOTA methods with a significant margin.

where ∼ ϑ is obtained by applying the bitwise NOT oper-
ator to the mask ϑ. The whole update procedure of the SGS
algorithm is provided in Algorithm 1. The computational
overhead of our SGS is minimal, primarily involving sim-
ple operations such as sign and addition functions applied
to the flatten gradient vectors.

5. Experiments
To evaluate the generalization performance and sample

efficiency of our proposed CG2A, we compare it to sev-
eral state-of-the-art methods on a set of standard tasks from
the DMControl Generalization Benchmark (DMC-GB) and
two vision based robotic manipulation tasks.
Setup. Following prior works [14, 3], we implement the
SAC [12] algorithm with random shift as baseline and adopt
the same network architecture and hyper-parameter setup as
Hansen et al. [15] for all applicable methods. The observa-
tion for DMC-GB tasks is a sequence of three consecutive
RGB frames with dimensions of 84 × 84 × 3, except for
robotic manipulation tasks which use a single frame. Be-
sides, the hyper-parameter α and β in SGS are set as 0.22
and 0.28 respectively. In all experiments, the generaliza-
tion evaluations are executed in a zero-shot paradigm and
we report the average result over 5 times.
Baselines and Data Augmentations. To evaluate the gen-
eralization capability of our CG2A, we benchmark CG2A
against strong baselines and several state-of-the-art meth-
ods: SAC [12], DrQ [21], DrQv2 [41], RAD [22], PAD [13]
SODA [15], SVEA [14], TLDA [43], PIE-G [44], and
SGQN [3]. For all compared methods, we report the best
performance in the available literature as well as in the re-
produced results. Considering that most methods use data
augmentation in one of their stages, we adopt random over-
lay [15] as default, which mixup observations and random
images from the Places365 dataset [46] D, as follows:

τoverlay(o) = (1− µ)o+ ϵ, ϵ ∈ Dplace, (11)

where µ ∈ [0, 1) is the interpolation coefficient and default
set as 0.5. For µ values smaller than 0.20, we consider the
augmentation to be perceptually insensitive and label it as

overlay-S for brevity. To reduce computational overhead,
we choose three augmentations (N = 3) to construct the
augmentation combination, including random conv [22],
random overlay [15], random overlay-S [15].

5.1. Evaluation on DMC-GB

The DMC-GB contains a set of vision-based continuous
control tasks [34], which allows agents to be trained in a
fixed environment and evaluate generalization capability on
unseen environments with distribution shifts, including ran-
dom colors and video backgrounds. For video backgrounds
setting, video easy benchmark modifies solely the back-
ground of images with a distracting image, whereas the hard
version extends this modification to include the ground and
the shadows, which is more challenging. The training pro-
cess includes 500,000 interaction steps with 4 action repeats
as default, and the agents are evaluated with 100 episodes.
Random Colors. The experimental results, as depicted
in Table 1, show that CG2A outperforms prior state-of-
the-art methods in all tasks, indicating its superior perfor-
mance. These results demonstrate that integrating augmen-
tation combination can effectively enhance the robustness
of agent to color change in unknown environment, which
exposing the potential of augmentation combination mech-
anism for improving generalization in Visual RL.
Video Background. As illustrated in Table 2, our CG2A
surpasses the baselines in 11 out of 12 instances in terms of
mean cumulative rewards. Notably, CG2A achieves com-
petitive performance with all prior methods in the context
of video easy setting. In particular, for tasks such as “Fin-
ger, Spin” and “Cartpole, Swingup”, CG2A obtains a sub-
stantial profit margin of 8.9% and 10.1% respectively, out-
performing other state-of-the-art methods. Additionally,
CG2A achieves near-perfect scores in such setting on the
“Walker, walk” and “Ball in cup, catch” tasks while signif-
icantly reducing the empirical variance to an inconsequen-
tial level. Moreover, the agent trained with CG2A demon-
strates robust policy acquisition in more challenging video
hard environments. These results highlight the effectiveness
of CG2A in enhancing the agents’ performance and gener-
alization ability in complex and dynamic scenarios.



DMCGB [15] SAC [12] DrQ [21] DrQv2 [41] RAD [22] PAD [13] SODA [15] SVEA [14] TLDA [43] PIE-G [44] SGQN [12] Ours

V
ideo

E
asy

Walker,Walk 245±165 682±8 175±117 608±92 717±79 771±66 819±71 873±83 871±22 910±24 918±20

Walker,Stand 389±131 873±83 560±48 879±64 935±20 965±7 961±8 946±6 957±12 955±9 968±6

Ball in cup,Catch 192±157 318±157 453±60 363±158 436±55 939±10 871±106 892±68 922±20 950±24 963±28

Finger,Spin 152±8 533±119 456±15 334±54 691±80 535±52 808±23 744±18 837±107 609±61 912±69

Cartpole,Swingup 472±26 485±105 267±41 391±66 521±76 678±120 702±80 671±57 587±61 717±35 788±24

Cheetah,Run 87±21 102±30 64±22 43±21 206±34 184±64 249±20 308±57 287±20 269±33 314±49

V
ideo

H
ard

Walker,Walk 122±47 104±22 34±11 80±10 189±54 312±32 385±63 271±55 600±28 739±21 687±18

Walker,Stand 231±57 289±49 151±13 229±45 411±36 736±132 747±43 602±51 852±56 851±24 895±35

Ball in cup,Catch 101±37 92±23 97±27 98±40 174±71 381±163 403±174 257±57 786±47 782±57 806±44

Finger,Spin 25±6 71±45 21±4 15±6 144±19 221±48 335±58 241±29 762±59 540±53 819±38

Cartpole,Swingup 153±22 138±9 130±3 117±22 255±60 339±87 393±45 286±47 401±21 428±60 472±24

Cheetah,Run 28±6 32±13 23±5 21±7 35±22 94±75 105±37 90±27 134±17 144±34 168±16

Table 2: Generalization on video backgrounds environments. Episode return in two kind of dynamic video background
environments, e.g., video easy (Top) and video hard (Bottom). Bold font indicates the best performance among all methods.

5.2. Evaluation on Robotic Manipulation Tasks

To validate the performance of the agent in realistic
scenarios, we follow prior work [14, 3] and incorporate
two goal-reaching robotic manipulation tasks, “Reach” and
“Peg In Box”, from the vision-based robotic manipula-
tion simulator outlined in [18]. To provide a comprehen-
sive view, the RGB camera is positioned in front of the
entire setup, providing a third-person view with a large
field of view encompassing the robot, target objects, and
workspace. The “Reach” is required to locate the goal with
a red disc on the table and control the robotic gripper move
to there. And “Peg in Box” aim to guide the robot insert a
peg affixed to its arm into a box, which is more challeng-
ing. The position of the gripper and target objects is ran-
domized in all tasks, and there are significant variations in
lighting and texture between the training and testing envi-
ronments. More training hyper-parameters details and envi-
ronment descriptions are provided in Appendix.

We train all agents for 250, 000 steps with default set-
ting and evaluate its generalization performance in com-
parison to the agents trained with SAC [12], SODA [15],
SVEA [14], and SGQN [3]. Table 3 demonstrates that all
agents trained with prior SOTA fail to maintain their per-
formance when evaluated on the three test environments.
Instead, our approach outperforms these baselines in all
robotic manipulation tasks, achieving advanced mean cu-
mulative rewards by a significant margin. Particularly, our
approach achieves remarkable performance in the first envi-
ronment (Test1), surpassing the previous methods by 99.3%
and 919.5% respectively in the Reach and PegInBox tasks.

5.3. Sample Efficiency

To verify the sample efficiency of our proposed CG2A,
we compare our method with prior state-of-the-art methods,
including DrQ [21], SVEA [14], and SGQN [3], on DM-
Control suite [34] and robotic benchmark. Figure 3 demon-

Task Settings SAC [12] SODA [15] SVEA [14] SGQN [3] Ours

R
each

train 9.7±2 31.8±1 32.2±5 31.8±1 39.6±4

test1 -20.9±16 -30.9±43 -17.6±10 14.4±14 28.7±1

test2 -21.9±14 -20.2±29 -2.1±39 31.0±3 36.7±4

test3 -43.2±6 -68.4±30 1.4±29 29.2±7 35.4±4

PegInB
ox

train -46.7±7 180.1±2 177.5±3 183.9±9 189.9±11

test1 -20.9±16 16.9±44 -21.3±10 -72.0±14 155.4±17

test2 -21.9±14 0.7±30 96.8±42 110.7±3 157.8±22

test3 -43.2±6 73.6±31 40.5±28 154.6±7 174.0±21

Table 3: Generalization on robotic manipulation tasks.
Our CG2A significantly outperforms other methods by a
large margin in both tasks, with only a slight decrease in
performance observed across all testing scenarios.

strates that our proposed CG2A agent significantly outper-
forms the other SOTA agents across selected tasks, in terms
of asymptotic performance and sample efficiency, on all
evaluation settings. Compared with SVEA [14], our method
shows better performance and stability with a smaller vari-
ance. Notably, SGQN [3] exhibits severe performance col-
lapse on some tasks, which can be attributed to the limi-
tations of saliency-based self-learning. Once the auxiliary
task parameters get into a local dilemma, it can cause the
performance of the RL agent to crash to maintain gradient
balance. Therefore, our CG2A avoids the introduction of
any learnable parameters for constructing the auxiliary task
to ensure training stability. Besides, the CG2A converges
to optimal performance for the ‘Ball in Cup, Catch’ and
‘Cartpole, Swingup’ tasks at least 100,000 training steps
earlier than other methods like SVEA and SGQN. These
experimental results demonstrate that the utilization of data
augmentation combinations not only enhances the policy’s
generalization ability but also effectively improves sam-
pling efficiency and training stability.
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Figure 3: Training sample efficiency. Comparison of
CG2A (Green Line) with sample-efficient RL algorithms,
including DrQ [21] (Yellow Line), SVEA [14] (Red Line)
and SGQN [3] (Blue Line). Our method achieve better per-
formance on all tasks.

5.4. Ablation Study

To evaluate the effectiveness of our proposed CG2A,
we conduct comprehensive ablation analyses to closely val-
idate the individual components of the CG2A. All these
agents are trained on four standard tasks from DMControl
suite [34] with 500, 000 training steps and evaluated on the
challenging video hard benchmark. More ablation results
about additional tasks and various augmentation combina-
tions are provided in Appendix.
Effectiveness of Individual Components. Compared with
vanilla SAC algorithm, CG2A gathers multiple data aug-
mentations to construct augmentation combination and en-
hance the SAC architecture with an adaptive weight solver
GAS and a conflict-aware gradient fusion strategy named
SGS. We perform an ablation study to investigate the effec-
tiveness of individual components in CG2A and the results
are shown in Table 4. Individually, each of these features
contributes significantly to the improvement of generaliza-
tion performance across all environments. The introduction
of augmentation combination provides great performance
gains over vanilla SAC, which can achieve the compara-
ble performance with SVEA [14]. Notably, agents trained
with naive augmentation combination lead to higher per-
formance variances than the vanilla SAC agents. Heavy
data augmentations lead to higher performance variances
against the vanilla over all tasks, which also leads to the se-
vere gradient conflicts. The SGS strategy provides the most
significant performance gains and stabilize the training pro-
cess through randomly clipping conflicting gradient compo-
nents. The impact of hyper-parameter γ in the SGS is also
illustrate in the next section. Experimental results suggest
that the agents trained with the complete CG2A achieve the
most superior generalization performance on all tasks.

AC GAS SGS
Walker,

walk
Walker,
stand

ball in cup,
run

Finger,
spin

144 ±34 289 ±49 92 ±23 71 ±45
✓ 274 ±78 557 ±87 418 ±56 473 ±64
✓ ✓ 424 ±42 618 ±21 563 ±90 474 ±77
✓ ✓ 619 ±38 805 ±41 724 ±53 757 ±23
✓ ✓ ✓ 687 ±18 895 ±35 806 ±44 819 ±38

Table 4: Ablation study of individual components.
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Figure 4: Ablation study of the damping factor γ.

Impact of Damping Factor γ. In our experiments, the
value of the damping factor γ was sampled from a uniform
distribution with hyper-parameters α and β, which were ob-
tained through grid search. To assess the sensitivity of the
hyper-parameter γ in SGS, we compared it with constant
values of γ ∈ 0, 0.2, 0.3 and other random distributions.
Figure 4 shows that our method is robust to variations in the
hyper-parameter γ and achieves superior performance on
most tasks. Notably, when γ is set to 0, some gradient com-
ponents are removed, limiting its performance upper bound.

6. Conclusion
In this paper, we integrate augmentation combination

into visual RL to eliminate the generalization bias induced
by single data augmentation, and propose Conflict-aware
Gradient Agreement Augmentation, which can efficiently
harmonize gradients with high-variance magnitudes and
significantly mitigates performance degradation caused by
gradient conflicts. Experimental results demonstrate that
our method achieves state-of-the-art generalization perfor-
mance with great sample efficiency. In the future, we will
further explore the impact of the augmentation combination
composition on generalization performance.
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