
Fast Full-frame Video Stabilization with Iterative Optimization

Weiyue Zhao1 Xin Li2 Zhan Peng1 Xianrui Luo1 Xinyi Ye1 Hao Lu1 Zhiguo Cao1*

1Key Laboratory of Image Processing and Intelligent Control, Ministry of Education; School of Artificial
Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

2 Department of Computer Science, University of Albany, Albany NY 12222
{zhaoweiyue, peng zhan, xianruiluo, xinyiye, hlu, zgcao}@hust.edu.cn, xli48@albany.edu

Abstract

Video stabilization refers to the problem of transform-
ing a shaky video into a visually pleasing one. The ques-
tion of how to strike a good trade-off between visual qual-
ity and computational speed has remained one of the open
challenges in video stabilization. Inspired by the analogy
between wobbly frames and jigsaw puzzles, we propose an
iterative optimization-based learning approach using syn-
thetic datasets for video stabilization, which consists of
two interacting submodules: motion trajectory smoothing
and full-frame outpainting. First, we develop a two-level
(coarse-to-fine) stabilizing algorithm based on the proba-
bilistic flow field. The confidence map associated with the
estimated optical flow is exploited to guide the search for
shared regions through backpropagation. Second, we take
a divide-and-conquer approach and propose a novel multi-
frame fusion strategy to render full-frame stabilized views.
An important new insight brought about by our iterative
optimization approach is that the target video can be in-
terpreted as the fixed point of nonlinear mapping for video
stabilization. We formulate video stabilization as a problem
of minimizing the amount of jerkiness in motion trajecto-
ries, which guarantees convergence with the help of fixed-
point theory. Extensive experimental results are reported
to demonstrate the superiority of the proposed approach in
terms of computational speed and visual quality. The code
will be available on GitHub.

1. Introduction
With the growing popularity of short videos on social

media platforms (e.g., TikTok, Instagram), video has played
an increasingly important role in our daily life. However,
casually captured videos are often shaky and wobbly due to
amateur shooting. Although it is possible to alleviate those
problems by resorting to professional equipment (e.g., dol-
lies and steadicams), the cost of hardware-based solutions

*Corresponding author

is often expensive, making it impractical for real-world ap-
plications. By contrast, software-based or computational
solutions such as video stabilization algorithms [12] have
become an attractive alternative to improve the visual qual-
ity of shaky video by eliminating undesirable jitter.

Existing video stabilization techniques can be classified
into two categories: optimization-based and learning-based.
Traditional optimization-based algorithms [11,19,22,28,40]
have been widely studied due to their speed and robust-
ness. The challenges of them are the occlusion caused by
changes in depth of field and the interference caused by
foreground objects on camera pose regression. Further-
more, their results often contain large missing regions at
frame borders, particularly when videos with a large cam-
era motion. In recent years, learning-based video stabiliza-
tion algorithms [6, 24, 46, 52] have shown their superiority
by achieving higher visual quality compared to traditional
methods. However, their stabilization model is too complex
for rapid computation, and its generalization property is un-
known due to the scarcity of training datasets.

To overcome those limitations, we present an iterative
optimization-based learning approach that is efficient and
robust, capable of achieving high-quality stabilization re-
sults with full-frame rendering, as shown in Fig. 1. The
probabilistic stabilized network addresses the issues of oc-
clusion and interfering objects, and achieves fast pose esti-
mation. Then the full-frame outpainting module retains the
original field of view (FoV) without aggressive cropping.
An important new insight brought by our approach is that
the objective of video stabilization is to suppress the implic-
itly embedded noise in the video frames rather than the ex-
plicit noise in the pixel intensity values. This inspired us to
adopt an expectation-maximization (EM)-like approach for
video stabilization. Importantly, considering the strong re-
dundancy of video in the temporal domain, we ingeniously
consider stable video (the target of video stabilization) as
the fixed point of nonlinear mapping. Such a fixed-point
perspective allows us to formulate an optimization problem
of the optical flow field in commonly shared regions. Unlike

ar
X

iv
:2

30
7.

12
77

4v
2

 [
cs

.C
V

]
 3

1
Ju

l 2
02

3

https://github.com/zwyking/Fast-Stab

··
·

··
· ··
·

Unstable video

Pose regression

Flow smoothing

Flow outpainting &

Mask generation

Multi-frame

fusion

Coarse-stabilized video

Fine-stabilized video

Neighboring frames Flow fields

𝑓𝑘

𝑓𝑘+1

𝑓𝑘

𝑓𝑘+𝑛

Full-frame image

Flow

Mask

Motion trajectory smoothing Full-frame outpainting

Figure 1. Overview of our video stabilization framework. It consists of motion trajectory smoothing (in Sec. 3 and Sec. 4) and full-frame
outpainting modules (in Sec. 5). The former adopts the two-level (coarse-to-fine) stabilizing algorithm to obtain a stabilized video. The
latter further render a full-frame video with strategies of flow outpainting and multiframe fusion.

most methods that resort to the ad hoc video dataset [58] or
the deblurred dataset [36] as stabilized videos, we propose
to construct a synthetic training dataset to facilitate joint op-
timization of model parameters in different network mod-
ules.

To solve the formulated iterative optimization problem,
we take a divide-and-conquer approach by designing two
modules: probabilistic stabilization network (for motion
trajectory smoothing) and video outpainting network (for
full-frame video rendering). For the former, we propose
to build on the previous work of PDCNet [38, 39] and ex-
tend it using a coarse-to-fine strategy to improve robustness.
For a more robust estimate of the uncertainty of the op-
tical flow, we infer masks from the optical flow by bidirec-
tional propagation with a low computational cost (around
1/5 of the time Yu et al. [52]). Accordingly, we have devel-
oped a two-level (coarse-to-fine) flow smoothing strategy
that first aligns adjacent frames by global affine transfor-
mation and then refines the result by warping the fields of
intermediate frames. For the latter, we propose a two-stage
approach (flow and image outpainting) to render full-frame
video. Our experimental results have shown highly compe-
tent performance against others on three public benchmark
datasets. The main contribution of this work is threefold:

• We propose a formulation of video stabilization as a
fixed-point problem of the optical flow field and pro-
pose a novel procedure to generate a model-based syn-
thetic dataset.

• We construct a probabilistic stabilization network
based on PDCNet and propose an effective coarse-to-
fine strategy for robust and efficient smoothing of op-
tical flow fields.

• We propose a novel video outpainting network to ren-
der stabilized full-frame video by exploiting the spatial
coherence in the flow field.

2. Related Work

2.1. Video Stabilization

Most video stabilization methods can typically be sum-
marized as a three-step procedure: motion estimation,
smoothing the trajectory, and generating stable frames. Tra-
ditional methods focus primarily on 2D features or im-
age alignment [30] when it comes to motion estimation.
These methods are different in modeling approaches to mo-
tion, including the trajectory matrix [20], epipolar geom-
etry [10, 22, 48, 55], and the optical flow field [23, 56].
Regarding the smoothing trajectory, particle filter tracking
[47], space-time path smoothing [20, 41], and L1 optimiza-
tion [11] have been proposed. Existing methods for gener-
ating stable frames rely mainly on 2D transformations [27],
grid warping [20, 22], and dense flow field warping [23].

Compared to the 2D method, some approaches turn to
3D reconstruction [18]. However, specialized hardware
such as depth camera [21] and light field camera [35] are
necessary for these methods based on 3D reconstruction.
Some methods [31, 44, 45, 51] tackle video stabilization
from the perspective of deep learning. In [51], the opti-
mization of video stabilization was formulated in the CNN
weight space. Recent work [52] represents motion by flow
field and attempts to learn a stable optical flow to warp
frames. Another method [6] aims to learn stable frames by
interpolation. These deep-learning methods generate stable
videos with less distortion.

2.2. Large FOV Video

Unlike the early work (e.g., traffic video stabiliza-
tion [17]), large field of view (Field Of View) video stabi-
lization has been attracting more researchers’ attention. For
most video stabilization methods, cropping is inevitable,
which is why the FOV is reduced. Several approaches have
been proposed to maintain a high FOV ratio. OVS [46]
proposed to improve FOV by extrapolation. DIFRINT [6]
choose iterative interpolation to generate high-FOV frames.
FuSta [24] used neural rendering to synthesize high-FOV

frames from feature space. To a great extent, the perfor-
mance of interpolation-based video stabilization [6, 46] de-
pends on the selected frames. If selected frames have little
correspondence with each other, performance will deterio-
rate disastrously. Neural rendering [24] synthesizes the im-
age by weighted summing, causing blur. Most recently, a
deep neural network [34] (DNN) has jointly exploited sen-
sor data and optical flow to stabilize videos.

3. Stabilization via Iterative Optimization
Motivation. Despite rapid advances in video stabilization
[31], existing methods still suffer from several notable lim-
itations [12]. First, a systematic treatment of various uncer-
tainty factors (e.g., low-texture regions in the background
and moving objects in the foreground) in the problem for-
mulation is still lacking. These uncertainty factors often
cause occlusion-related problems and interfere with the mo-
tion estimation process. Second, the high computational
cost has remained a technical barrier to real-time video pro-
cessing. The motivation behind our approach is two-fold.
On the one hand, we advocate for finding commonly shared
regions among successive frames to address various uncer-
tainty factors in handheld video. On the other hand, in
contrast to these prestabilization algorithms [22, 24, 51, 52]
based on traditional approaches, we proposed a novel high-
efficiency prestabilization algorithm based on probabilistic
optical flow. Flow-based methods are generally more ac-
curate in motion estimation and deserve a high time cost.
Accuracy and efficiency, we have both.
Approach. We propose to formulate video stabilization as
a problem of minimizing the amount of jerkiness in mo-
tion trajectories. It is enlightening to think of video stabi-
lization as a special kind of “video denoising” where noise
contamination is not associated with pixel intensity values,
but embedded into the motion trajectories of foreground and
background objects. Conceptually, for video restoration
in which unknown motion is the hidden variable, we can
treat video stabilization as a chicken-and-egg problem [13]
- i.e., the objective of smoothing motion trajectories is in-
tertwined with that of video frame interpolation. Note that
an improved estimation of motion information can facili-
tate the task of frame interpolation and vice versa. Such an
observation naturally inspires us to tackle the problem of
video stabilization by iterative optimization.

Through divide-and-conquer, we propose to formulate
video stabilization as the following optimization problem.
Given a sequence of n frames along with the set of optical
flows Y , we first define the confidence map, which orig-
inally indicates the reliability and accuracy of the optical
flow prediction at each pixel. Here, we have thresholded the
confidence map as a binary image, which represents accu-
rate matches (as shown in the 4-th column of Fig. 2). Then
we can denote n frames and the corresponding set of confi-

dence maps M by:

Y = {Y1, Y2, · · · , Yq} ,M = {M1,M2, · · · ,Mq} . (1)

4. Probabilistic Stabilization Network
The problem of video stabilization can be formulated as

finding a nonlinear mapping f : Y → Ŷ where Ŷ denotes
the optical flow set of the stabilized video. We hypothe-
size that a desirable objective to pursue f is the well-known
fixed-point property, i.e., Ŷ = f(Ŷ). To achieve this ob-
jective, we aim to minimize an objective function F char-
acterized by the magnitude of optical flows between com-
monly shared regions, as represented by M. Note that M is
the hidden variable in our problem formulation (that is, we
need to estimate M from Y). A popular strategy to address
this chicken-and-egg problem is to alternatively solve the
two subproblems of unknown M and Ŷ . More specifically,
the optimization of F is decomposed into the following two
subproblems:

(M̂1, · · · , M̂q) = argmin
M

F(Ŷ1 ⊙M1, · · · , Ŷq ⊙Mq) ,

(Ŷ1, · · · , Ŷq) = argmin
Y

F(Y1 ⊙ M̂1, · · · , Yq ⊙ M̂q) ,
(2)

where Y/Ŷ denotes the magnitude of the optical flow val-
ues before and after stabilization and ⊙ is the Hadamard
product. Instead of analyzing the estimated motion in the
frequency domain, we hypothesize that stabilized videos
are the fixed points of video stabilization algorithms, which
minimize the above objective function. A fixed point [1]
is a mathematical object that does not change under a
given transformation. Numerically, fixed-point iteration is
a method of computing fixed points of a function. It has
been widely applied in data science [7], and image restora-
tion [5, 26]. Here, we denote F in Eq. (2) as the function
to be optimized, and the fixed point of F is defined as the
stabilized video. Next, we solve these two subproblems by
constructing the module of stabilization.

4.1. Probabilistic Flow Field

First, we start with an interesting observation. When
playing an unstable video at a slower speed (e.g., from 50fps
to 30fps), the video tends to appear less wobbly. It follows
from the observation that the fundamental cause of video in-
stability is the fast frequency and the large amplitude of the
still objects’ motion speed. Therefore, the core task of mo-
tion smoothing is to identify the region that needs to be sta-
bilized. As Yu et al. [52] pointed out, mismatches, moving
objects, and inconsistent motion areas lead to variation of
the estimated motion from the true motion trajectories and
should be masked. An important new insight brought about
by this work is that these regions of inconsistency in the op-
tical flow fields tend to show greater variability as the frame

Source Target Flow Confidence Mask

𝑓𝑘

𝑓𝑘+𝑑

𝑓𝑘+3𝑑

𝑓𝑘+2𝑑

𝑓𝑘+4𝑑

𝑓𝑘+𝑑

𝑓𝑘+2𝑑

𝑓𝑘+3𝑑

𝑓𝑘+4𝑑

𝑓𝑘

𝑌𝑘

𝑌𝑘+𝑑

𝑌𝑘+2𝑑

𝑌𝑘+3𝑑

𝑌𝑘+4𝑑

𝑀𝑘

𝑀𝑘+𝑑

𝑀𝑘+2𝑑

𝑀𝑘+3𝑑

𝑀𝑘+4𝑑

𝑀𝑘

𝑀𝑘+𝑑

𝑀𝑘+2𝑑

𝑀𝑘+3𝑑

𝑀𝑘+4𝑑

Figure 2. Visualization of confidence map back-propagation re-
sults. The flow field and confidence map are predicted by PDCNet
between source and target images. The obtained masks in the last
column represent the shared regions among these frames.

interval increases. Therefore, if these inconsistent regions
are excluded, the video stabilization task can be simplified
to the first sub-problem in Eq. (2) - i.e., minimizing F over
M for a fixed Y .

To detect unreliable matches and inconsistent regions,
we have adopted the probabilistic flow network – PDC-
Net [38, 39], that jointly tackles the problem of dense cor-
respondence and uncertainty estimation, as our building
block. Suppose that PDCNet estimates the optical flow Yk
from frame k + d to frame k with the resulting confidence
map Ck. Although Ck denotes the inaccuracy of the optical
flow estimate in Yk, it is often sensitive to the frame inter-
val d. For example, it is difficult to identify the inconsistent
region when d is small, while the common area is less con-
trollable when d is large. Therefore, simply using an optical
flow field to estimate inconsistent regions is not sufficient.

We have designed a more robust solution to the joint esti-
mation of dense flow and confidence map based on a coarse-
to-fine strategy. The basic idea is to first obtain the prob-
abilistic flow field at a coarse scale (e.g., with the down-
sampled video sequence by a factor of d along the temporal
axis) and then fill in the rest (i.e., the frames between the ad-
jacent frames in the down-sampled video) at the fine scale.
Such a two-level estimation strategy effectively overcomes
the limitations of PDCNet by propagating the estimation re-
sults of probabilistic flow fields bidirectionally, as we will
elaborate next.

Coarse-scale strategy As shown by the second-to-last col-
umn in Fig. 2, the confidence map estimated by PDCNet
can identify the mismatched region, but fails to locate the
objects with small motions (e.g., people and the sky). To
overcome this difficulty, we introduce the binary mask as
a warped and aggregated confidence map (refer to the last
column of Fig. 2). Specifically, we first propose to obtain
the confidence map Ĉk+(n−1)d with down-sampled video

···
flatteninput

⊗
sum

𝑤

𝜃 𝑅 =
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑠
𝑆 =

𝑠 0
0 𝑠

𝑑𝑥 , 𝑑𝑦

𝑇 =
𝑑𝑥
𝑑𝑦

⊖
replace

∆𝜃

∆𝑠

∆𝑥, ∆𝑦

ത𝑌

···

Figure 3. Architecture of the camera pose regression network.
Given the flow field and mask, our network predicts the corre-
sponding affine transformation parameters by closed-loop itera-
tions.

(the last row of Fig. 2). In the forward direction, we esti-
mate dense flow and confidence map using PDCNet; then
Ĉk+(n−1)d is backpropagated to update the binary mask M̂
by thresholding and setting intersection operators. Through
bidirectional propagation, the region covered by M is the
shared content from frame k to frame k + (n − 1)d. The
complete procedure can be found in Supp. S1.

Fine-scale strategy Based on the coarse-scale esti-
mation result for downsampled video (i.e., M =
{M̂k, M̂k+d, · · · , M̂k+(n−1)d}), we fill in the missing
d − 1 frames at the fine scale. Specifically, consid-
ering the sequential frames from k to k + d, we can
obtain two sets similar to Eq. (1), which are Y =
{Yk, Yk+1, · · · , Yk+d−1, Ŷk+d} and their corresponding
confidence map set C. Note that M̂k+d ∈ M has been
calculated in coarse stage. Setting d = 1, we can call the
algorithm again to obtain the set of output masks M for the
rest of d− 1 frames.

4.2. Coarse-scale Stabilizer

To coarsely stabilize the video, we first propose aligning
the adjacent frames with a global affine transformation [54].
The optimization function F in Eq. (2) is represented as

T∗ = argmin
T

T(Y ⊙ M̂) , (3)

where T(·) denotes the image transformation applied to the
shared region M̂ (the result of Sec. 4.1) of the optical flow
field Y . Most conventional methods [24,45,52] adopt image
matching to obtain T(·)- e.g., keypoint detection [2,25,32],
feature matching [2, 3, 53]; and camera pose estimation is
implemented by OpenCV-python. However, these methods
are often time-consuming and computationally expensive.
For example, two adjacent frames of unstable videos usu-
ally share a large area and are free from perspective trans-
formation. Thus, an affine transformation, including trans-
lation, rotation, and scaling, is sufficient. More importantly,
within the optimization-based learning framework, we can
regress these linear parameters of T(·) from the optical flow
field, which characterize the relative coordinate transforma-
tion of the matched features.

We propose a novel camera pose regression network, as
shown in Fig. 3. Given an optical flow field Y and the cor-

responding mask field M̂ , our network Φ(·) can directly
estimate the unknown parameters T(·) ∝ {θ, s, dx, dy} =

Φ(Y, M̂). To solve the optimization problem of Eq. (3), we
use the estimated parameters to iteratively compute the cor-
responding residual optical flow fields such that

Ȳ = Y − (S ·R · V + T) , (4)

where T , S, and R, respectively, denote the translation,
scaling, and rotation matrix, and V ∈ R2×H×W represents
an image coordination grid. Then {∆θ,∆s,∆x, δy} =
Φ(Ȳ , M̂) is calculated iteratively to produce the updated
parameters {θ+∆θ, s ·∆s, dx+∆x, dy+∆y}. The finally
estimated affine transformation is smoothed by a moving
Gaussian filter with a window size of 20 pixels.

Loss functions Our loss functions include robust loss ℓ1
and grid loss commonly applied in consistency filtering
[53]. We directly calculate the ℓ1 loss between the predic-
tions and their ground truth {θ̂, ŝ, d̂x, d̂y},

Lgt =λθ ∥| θ − θ̂ |∥1 +λs ∥| 1−
s

ŝ
|∥1

+ λt ∥| dx − d̂x | + | dy − d̂y |∥1 .
(5)

For better supervision of the estimated pose, we calculate
the loss Lgrid with the grid V ∈ R2×h×h in Eq. (4), i.e.,

Lgrid =∥ (Ŝ · R̂ · V + T̂)− (S ·R · V + T) + ϵ ∥1 (6)

where ·̂ denotes the ground truth and ϵ is a small value for
stability. The final loss Lstab consists of Lgt and Lgrid,

Lstab = Lgt + λgridLgrid . (7)

4.3. Fine-scale Stabilizer

The assumption with an affine transformation of the
coarse-scale stabilizer could cause structural discontinuity
and local distortion. Therefore, our objective is to refine the
coarsely stabilized video by optical flow smoothing. Unlike
Eq. 3 which applies an image transformation matrix to opti-
mize the optical flow field, we optimize it at the pixel level
by a flow warping field W. Thus, the function F in Eq. (2)
is given by

W∗ = argmin
W

N−1∑
i=0

Wi(Yi ⊙ M̂i) . (8)

The flow smoothing network follows the U-Net architecture
in [58]. We useN frames of optical flow fields F and mask
fields M̂ as input and obtain (N−1) frame warp fields W of
intermediate frames. Specifically, for the optical flow field
Yk (from frame k + 1 to frame k), we denote the aligned
matrices of each frame in Sec. 4.2 as Hk ∈ R2×3 and

Source

Flow WarpTarget

Figure 4. Illustration of flow fields and warped images under
different FOVs. The target image with large FOV presents the
smoother flow field and better warped result.

Hk+1 ∈ R2×3, respectively. Then the input optical flow
Fk ∈ R2×HW can be represented by

Fk = Hk+1 · [V + Yk | 1]−Hk · [V | 1] , (9)

where V ∈ R2×HW and [·|1] denote the normalized coor-
dinate representation. Furthermore, to better adapt the flow
smoothing network to the mask field M̂ , we fine-tune it us-
ing our synthetic dataset (as we will elaborate in Sec. 6.1).
The loss function follows the motion loss [51]

Lsmooth =

N−1∑
k=0

(Fk +Wk − Fk(Wk+1))⊙ M̂ , (10)

where W0 = WN = 0 .

5. Video Outpainting Network
Most video stabilization methods crop an input video

with a small field of view (FOV), excluding missing mar-
gin pixels due to frame warping. In contrast, full-frame
video stabilization [6, 24, 27] proposes to generate a video
that maintains the same FOV as the input video without
cropping. They directly generate stabilized video frames
with large FOV by fusing the information from neighboring
frames. An important limitation of existing fusion strategies
is the unequal importance of different frames (i.e., the cur-
rent and neighboring frames are weighted equally), which
would lead to unpleasant distortions in fast-moving situa-
tions. To overcome this weakness, we propose a two-stage
framework to combine flow and image outpainting strate-
gies [33]. In the first stage, we used flow-outpainting to iter-
atively align the neighboring frames with the target frame.
In the second stage, we fill the target frame with adjacent
aligned frame pixels by image outpainting.

5.1. Flow Outpainting Network

Let It denote the outpainted target image and Is the
neighboring source image. We aim to fill the missing pixel
region M t

∅ of It with the pixels of Is. As shown in Fig. 4,
we take two different FOVs of It as input and obtain the
corresponding optical flow fields and warped results Iswarp.
The small FOV It cannot guide Is well to fill the regions in
M t

∅. Since the predicted optical flow field in M t
∅ is unreli-

able due to the lack of pixel guidance of It, the out-of-view

Gated-Conv+ReLUMaxPooling Upsample

Conv Skip Connection

𝑀𝑣𝑎𝑙𝑖𝑑

𝑌𝑙𝑎𝑟𝑔𝑒

𝑌𝑠𝑚𝑎𝑙𝑙

Figure 5. Architecture of flow outpainting network. Given a
small FOV flow field and valid mask, the network predicts the
large FOV flow field.

region of M t
∅ has artifacts (marked in the last column of

Fig. 4). We observe that the optical flow field of the large
FOV It is continuous in M t

∅, which inspired us to extrapo-
late the flow of M t

∅ using the reliable flow region (the 3rd
column of Fig. 4).

We propose a novel flow outpainting network (Fig. 5),
which extrapolates the large FOV flow field using a small
FOV flow field and the corresponding valid mask. Specifi-
cally, we adopt a U-Net architecture and apply a sequence of
gated convolution layers with downsampling / upsampling
to obtain the large flow field of FOV Ylarge. Note that the
input flow field Ysmall and the valid maskMvalid have been
estimated by PDCNet (see Sec. 4.1).

Loss functions Our loss functions include robust loss ℓ1
and loss in the frequency domain [4]. We directly calculate
the ℓ1 loss between Ylarge and its ground truth Ŷlarge,

LY =λin· ∥| Ylarge − Ysmall | ⊙Mvalid ∥1
+ λout· ∥| Ylarge − Ŷlarge | ⊙(∼ Mvalid) ∥1 .

(11)

To encourage low frequency and smoothing Ylarge, we add
the loss in the frequency domain LF =∥ Ĝ · FYlarge ∥2 ,
where the normalized Gaussian map Ĝ with µ = 0 and σ =
3 is inverted by its maximum value and FYlarge denotes the
Fourier spectrum of Ylarge. The final loss consists of LY

and LF ,
Loutpaint = LY + λFLF . (12)

5.2. Image Margin Outpainting

Based on our proposed flow-outpainting network, we
design a margin-outpainting method by iteratively align-
ing frame pairs (see Fig. 6). As discussed in Sec. 5.1, we
can obtain a large FOV flow field Ylarge. The neighbor-
ing reference frame Is is warped as Iwarp = Ylarge(I

s) as
shown in Fig. 6. In theory, the outpainted frame Iresult =
It ·Mvalid + Iwarp · (∼Mvalid). However, we notice that
there are obvious distortions at the image border. To fur-
ther align the margins, we take a margin fusion approach
(the detailed algorithm can be found in Supp. S1) We crop
Iwarp and It to Isc and Itc. Then, we can obtain a new
warped frame Iwarp

c by flow outpainting. In particular, we
did not choose to add Iwarp

c and It directly. To identify the

flow outpainting

𝐼𝑠

𝐼𝑡

𝑌𝑙𝑎𝑟𝑔𝑒 𝐼𝑤𝑎𝑟𝑝

𝑀𝑣𝑎𝑙𝑖𝑑

PDCNet

𝑌𝑠𝑚𝑎𝑙𝑙

warp

𝐼𝑟𝑒𝑠𝑢𝑙𝑡

refine

Figure 6. Overview image margin outpainting. Given the target
frame It, the reference frame Is is coarsely aligned to Iwarp by
the predicted large-FOV flow field Ylarge . Then, we adopt a mar-
gin fusion approach to obtain the result frame Iresult, by carefully
aggregating It and Iwarp.

misaligned region, we propose to outpaint the mask MIt

by extending the watershed outward from the center. In-
stead of a preset threshold, we adaptively choose between
the target image It and the warped image Iwarp

c . Then,
the final frame Iresult consists of It and Iwarp

c : Iresult =
It · MIt + Iwarp

c · (∼ MIt) . Compared to the two re-
sults Iresult, our strategy successfully mitigates misalign-
ment and distortions at the boundary of video frames.

Multi-frame fusion During the final stage of rendering, we
use a sequence of neighboring frames to outpaint the target
frame, while they may have filled duplicate regions. It is
important to find out which frame and which region should
be selected. We proposed the selection strategy for multi-
frame fusion (the details can be found in Supp. S1). By
weighing the metric parameters of each frame, we finally
obtain the target frame with large FOV. Note that each frame
has an added margin in the stabilization process, so we need
to crop them to the original resolution. Although we have
outpainted the target frame, some missing pixel holes may
still exit at boundaries. Here, we apply the state-of-the-art
LaMa image inpainting method [37] to fill these holes using
nearest-neighbor interpolation.

6. Experiments

6.1. Synthetic Datasets for Supervised Learning

Due to the limited amount of paired training data, we
propose a novel model-based data generation method by
carefully designing synthetic datasets for video stabiliza-
tion. For our base synthetic dataset, we used a collection
of images from the DPED [14], CityScapes [8] and ADE-
20K [57] datasets. To generate a stable video, we randomly
generate the homography parameters for each image, in-
cluding rotation angle θ, scaling s, translations (dx, dy) and
perspective factors (px, py). Then we divide these transfor-
mation parameters into N bins equally and obtain a video
of N frames by homography transformations. To simulate

Method
NUS dataset [22] DeepStab dataset [40] Selfie dataset [50]

C.↑ D.↑ S.↑ C.↑ D.↑ S.↑ C.↑ D.↑ S.↑

Grundmann et al. [11] 0.71 0.76 0.62 0.77 0.87 0.80 0.75 0.81 0.83
Liu et al. [22] 0.81 0.78 0.82 0.80 0.90 0.85 0.74 0.89 0.8
Wang et al. [40] 0.67 0.72 0.41 - - - 0.68 0.71 0.82
Yu and Ramamoorthi [51] 0.78 0.77 0.82 0.85 0.89 0.76 0.79 0.77 0.84
Yu and Ramamoorthi [52] 0.85 0.81 0.86 0.87 0.92 0.82 0.83 0.87 0.86
Yu [52]+OVS∗ [46] 0.92 0.78 0.83 - - - - - -
DUT [45] 0.71 0.81 0.83 - - - - - -
DIFRINT [6] 1.00 0.85 0.84 1.00 0.91 0.78 1.00 0.78 0.84
FuSta [24] 1.00 0.87 0.86 1.00 0.92 0.82 1.00 0.83 0.87
Ours 1.00 0.91 0.86 1.00 0.94 0.84 1.00 0.87 0.87

Table 1. Quantitative results on the NUS dataset [22], the DeepStab dataset [40] and the Selfie Dataset [50]. We evaluate the following
metrics: Cropping Ratio(C.), Distortion Value(D.), Stability Score(S.). ∗ indicates the results obtained from original paper. We highlight
the best method in bold and underline the second-best.

the presence of moving objects in real scenarios, the stable
video is further augmented with additional independently
moving random objects. To do so, the objects are sam-
pled from the COCO dataset [16] and inserted on top of
the synthetic video frames using their segmentation masks.
Specifically, we randomly choose m objects (no more than
5), and generate randomly affine transformation parameters
for each independent of the background transformation. Fi-
nally, we cropped each frame to 720 × 480 around its cen-
ter. For different training requirements, we apply various
combinations of synthetic dataset. The implementation and
training details can be found in Supp. S2 , S3.

6.2. Quantitative Evaluation

We compare the results of our method with various video
stabilization methods, including Grundmann et al. [11],
Liu et al. [22], Wang et al. [40], Yu and Ramamoor-
thi [51, 52], DUT [45], OVS [46], DIFRINT [6], and
FuSta [24]. We obtain the results of the compared meth-
ods from the videos released by the authors or generated
from the publicly available official implementation with de-
fault parameters or pre-trained models. Note that OVS [46]
does not honor their promise to provide code, thus we only
report the results from their paper.

Datasets. We evaluate all approaches on the NUS
dataset [22], DeepStab dataset [40], and Selfie dataset [50].
The NUS dataset consists of 144 videos and the correspond-
ing ground truths in 6 scenes. The DeepStab dataset con-
tains 61 videos and the Selfie dataset consistsof 33 videos.

Metrics. We introduce three metrics widely used in many
methods [6, 24, 52] to evaluate our model:1) Cropping ra-
tio measures the remaining frame area after cropping off
the invalid boundaries. 2) Distortion value evaluates the
anisotropic scaling of the homography between the input
and output frames. 3) Stability score measures the stabil-
ity of the output video. We calculate the metrics using the
evaluation code provided by DIFRINT.

Stabilizer Stability↑ Distortion↑

Image-level
w.o. mask 0.76 0.88
with mask 0.83 0.91

Pixel-level
w.o. mask 0.81 0.84
with mask 0.83 0.91

Table 2. The importance of mask to video stabilization. We vali-
date on the Crowd category of NUS dataset [22].

Quantitative comparison. The results of the NUS
dataset [22] are summarized in Table 1 (Per-category result
can be found in Supp. S5). Overall, our method achieves
the best distortion value compared to the state-of-the-art
method, FuSta [24]. Especially in the quick-rotation and
zoom categories, our method outperforms pure image gen-
eration methods [6,24]. We suspect that the reduction of the
shared information between frames causes the image gen-
eration methods to prefer artifacts. However, our method
can ensure local structural integrity when outpainting the
margin region. Furthermore, our method achieves an av-
erage cropping ratio of 1.0 and stability scores comparable
to recent approaches [6, 24, 51, 52]. Since FuSta [24] uses
Yu et al. [52] to obtain stabilized input videos, they have the
same stability scores. It is important to note that although
the stability scores are competitive, our method runs 5 times
faster than [52] in the video stabilization stage. Moreover,
the comparison results on DeepStab dataset [40] and Selfie
dataset [50] are also reported in Table 1. Our method still
shows effectiveness in different datasets, proving the gen-
eralizability of the proposed method. Note that, due to that
Wang et al. [40] is trained on the DeepStab dataset, we do
not report its results on the DeepStab dataset for a fair com-
parison. Qualitative comparisons can be found in Supp. S4
and supplementary video.

6.3. Ablation Study

Importance of mask generation. We investigate the influ-
ence of the mask on video stabilization at different stages.
To better demonstrate the necessity of mask in complex sce-

PSNR↑ SSIM↑ Distortion↑
PCAFlow [43] 11.34 0.50 0.72
Our flow outpainting 19.65 0.77 0.93

w.o. margin outpainting 18.04 0.64 0.81
w.o. mask MIt 20.35 0.78 0.86
w.o. multi-frame selection 21.99 0.84 0.90
Ours 23.17 0.86 0.91

Table 3. Ablation study of image filling. The evaluation is con-
ducted on our model-based synthetic validation set.

narios, we choose the Crowd category of NUS dataset [22]
which includes a display of moving pedestrians and occlu-
sions. Stability and distortion at different settings are shown
in Table 2. It can be seen that the performance with mask
increases significantly in both stabilizers. Specifically, the
mask can both improve stability globally and alleviate im-
age warping distortion locally. This result demonstrates the
importance of mask generation for video stabilization.

Flow outpainting. We compare our flow outpaint-
ing method with the traditional flow inpainting method
PCAFlow [43]. Following [52] we fit the first 5 principal
components proposed by PCAFlow to the Mvalid = 1 re-
gions of the optical flow field, and then outpaint the flow
vectors in the Mvalid = 0 regions with reasonable values
of the PCA Flow fitted. The result is obtained by warping
the source image with the outpainted optical flow field. We
perform this comparison on our synthetic validation set and
evaluate it with the corresponding ground truth. Addition-
ally, we use PSNR and SSIM [42] to evaluate the quality of
the results. As shown in Table 3, ours dramatically outper-
forms PCAFlow [43] in all objective metrics.

Importance of image filling strategies. We explore the
following proposed strategies for image filling: margin out-
painting, mask generation MIt , and multiframe selection.
We isolate them from our method to compare their results
with the complete version. The results are shown in Ta-
ble 3. The proposed strategies are generally helpful in im-
proving image quality. Especially, margin outpainting and
mask MIt are crucial to the results.

6.4. Runtime Comparison

Our network and pipeline are implemented with PyTorch
and Python. Table 4 is a summary of the runtime per frame
for various competing methods. All timing results are ob-
tained on a desktop with an RTX3090Ti GPU and an In-
tel(R) Xeon(R) Gold 6226R CPU. First, we compare the
run-time of pose regression. Traditional pose regression
is time consuming in feature matching [2, 9], homography
estimation, and SVD decomposition [29]. Although our
learning-based pose regression network runs 10 times faster
than the traditional framework. Then, we report the aver-
age run time of different methods, including optimization-

Method Runtime

Traditional pose regression 216ms
Our pose regression network 21ms

Grundmann et al. [11] 480ms
Liu et al. [22] 1360ms
Wang et al. [40] 460ms
Yu and Ramamoorthi [51] 1610ms
Yu and Ramamoorthi [52] 570ms
DIFRINT [6] 1530ms
FuSta [24] 9820ms
Ours 97ms

Table 4. Per-frame runtime comparison of camera pose regression
and video stabilization.

-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6

D
ev

ia
ti

o
n

(/
p

ix
el

)

Frame

Iter. 0 Iter. 1

Iter. 2 Iter. 3

(a) shaky frames

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6

D
ev

ia
ti

o
n
(/

p
ix

el
)

Frame

Iter. 0 Iter. 1

Iter. 2 Iter. 3

(b) stable frames

Figure 7. Experiment of fixed-point iteration on shaky and sta-
ble frames. (a) Our fixed-point iteration helps the shaky frames
converge to a steady state. (b) For stable frames, the fixed-point
iteration guarantees the stability of results.

based [22, 51] and learning-based [6, 11, 24, 40, 52]. Our
method takes 97ms which gives ∼ 5x speed-up. This is be-
cause our method computes the optical flow field only once
and without the help of other upstream task methods and
manual optimization.

6.5. Fixed-point Experiment

To demonstrate the stability of our fixed-point optimiza-
tion solution, we performed an interesting toy experiment.
We input a sequence of shaky frames into our coarse-to-fine
stabilizers, and the stabilized result will be iteratively re-
stabilized by our stabilizers. For each iteration, we calcu-
late the average magnitude of optical flow filed with global
transformation and flow warping for each frame. Specifi-
cally, the regions where we calculate are marked by M̂ . As
shown in Fig. 7(a), the deviation of the shaky frames de-
creases rapidly with each iteration. Furthermore, we have
pointed out that plugging a stabilized video into the sta-
bilization system should not have an impact on the input.
Thus, we plug stable frames into the coarse-to-fine stabi-
lizers and iteratively stabilize them. The result is shown in
Fig. 7(b). The deviation of each frame is perturbed around
the value of zero. Obviously, our method has no effect on
stable frames, which shows that stabilized video is indeed
the fixed point of our developed stabilization system.

7. Conclusion
In this paper, we have presented a fast full-frame video

stabilization technique based on the iterative optimization

strategy. Our approach can be interpreted as the com-
bination of probabilistic stabilization network (coarse-to-
fine extension of PDC-Net) and video outpainting outwork
(flow-based image outpainting). When trained on syn-
thetic data constructed within the optimization-based learn-
ing framework, our method achieves state-of-the-art perfor-
mance at a fraction of the computational cost of other com-
peting techniques. It is also empirically verified that stabi-
lized video is the fixed point of the stabilization network.

References
[1] Ravi P Agarwal, Maria Meehan, and Donal O’regan. Fixed

point theory and applications, volume 141. Cambridge uni-
versity press, 2001.

[2] Relja Arandjelović and Andrew Zisserman. Three things ev-
eryone should know to improve object retrieval. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 2911–
2918. IEEE, 2012.

[3] Adam Baumberg. Reliable feature matching across widely
separated views. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., volume 1, pages 774–781. IEEE, 2000.

[4] Ronald Newbold Bracewell and Ronald N Bracewell. The
Fourier transform and its applications, volume 31999.
McGraw-hill New York, 1986.

[5] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-
and-play admm for image restoration: Fixed-point conver-
gence and applications. IEEE Transactions on Computa-
tional Imaging, 3(1):84–98, 2016.

[6] Jinsoo Choi and In So Kweon. Deep iterative frame interpo-
lation for full-frame video stabilization. ACM Trans. Graph.,
39(1):1–9, 2020.

[7] Patrick L Combettes and Jean-Christophe Pesquet. Fixed
point strategies in data science. IEEE Trans. Signal Process.,
69:3878–3905, 2021.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., pages 3213–
3223, 2016.

[9] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, 1981.

[10] Amit Goldstein and Raanan Fattal. Video stabilization using
epipolar geometry. ACM Trans. Graph., 31(5), sep 2012.

[11] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-
directed video stabilization with robust l1 optimal camera
paths. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 225–232, 2011.

[12] Wilko Guilluy, Laurent Oudre, and Azeddine Beghdadi.
Video stabilization: Overview, challenges and perspec-
tives. Signal Processing: Image Communication, 90:116015,
2021.

[13] Tae Hyun Kim and Kyoung Mu Lee. Generalized video de-
blurring for dynamic scenes. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., pages 5426–5434, 2015.

[14] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth
Vanhoey, and Luc Van Gool. Dslr-quality photos on mobile
devices with deep convolutional networks. In Proc. IEEE
Int. Conf. Comput. Vis., pages 3277–3285, 2017.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. Int. Conf. Learn. Repr.,
2014.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proc. Eur. Conf. Comput. Vis., pages 740–755. Springer,
2014.

[17] Qiang Ling and Minda Zhao. Stabilization of traffic videos
based on both foreground and background feature trajecto-
ries. IEEE Trans. Circuits Syst. Video Technol., 29(8):2215–
2228, 2018.

[18] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agar-
wala. Content-preserving warps for 3d video stabilization. In
ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, New York,
NY, USA, 2009. Association for Computing Machinery.

[19] Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin, and
Aseem Agarwala. Subspace video stabilization. ACM Trans.
Graph., 30(1):1–10, 2011.

[20] Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin, and
Aseem Agarwala. Subspace video stabilization. ACM Trans.
Graph., 30(1), feb 2011.

[21] Shuaicheng Liu, Yinting Wang, Lu Yuan, Jiajun Bu, Ping
Tan, and Jian Sun. Video stabilization with a depth camera.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
89–95, 2012.

[22] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM Trans. Graph.,
32(4):1–10, 2013.

[23] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun.
Steadyflow: Spatially smooth optical flow for video stabi-
lization. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
pages 4209–4216, 2014.

[24] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Hybrid neural fusion for full-
frame video stabilization. In Proc. IEEE Int. Conf. Comput.
Vis., pages 2279–2288, 2021.

[25] David G Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vis., 60(2):91–110, 2004.

[26] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image
restoration using very deep convolutional encoder-decoder
networks with symmetric skip connections. Proc. Adv. Neu-
ral Inf. Process. Syst., 29, 2016.

[27] Y. Matsushita, E. Ofek, Weina Ge, Xiaoou Tang, and Heung-
Yeung Shum. Full-frame video stabilization with mo-
tion inpainting. IEEE Trans. Pattern Anal. Mach. Intell.,
28(7):1150–1163, 2006.

[28] Carlos Morimoto and Rama Chellappa. Evaluation of image
stabilization algorithms. In Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), volume 5,
pages 2789–2792. IEEE, 1998.

[29] Théodore Papadopoulo and Manolis IA Lourakis. Estimat-
ing the jacobian of the singular value decomposition: The-
ory and applications. In Proc. Eur. Conf. Comput. Vis., pages
554–570. Springer, 2000.

[30] Giovanni Puglisi and Sebastiano Battiato. A robust im-
age alignment algorithm for video stabilization purposes.
IEEE Trans. Circuits Syst. Video Technol., 21(10):1390–
1400, 2011.

[31] Marcos e Roberto, Helena de Almeida Maia, and Helio
Pedrini. Survey on digital video stabilization: Concepts,
methods, and challenges. ACM Comput. Surv., 55(3):1–37,
2022.

[32] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In Proc.
IEEE Int. Conf. Comput. Vis., pages 2564–2571. Ieee, 2011.

[33] Mark Sabini and Gili Rusak. Painting outside the box:
Image outpainting with gans. Comput. Res. Repository,
abs/1808.08483, 2018.

[34] Zhenmei Shi, Fuhao Shi, Wei-Sheng Lai, Chia-Kai Liang,
and Yingyu Liang. Deep online fused video stabilization.
In Proc. Winter Conf. Appl. Comput. Vis., pages 1250–1258,
2022.

[35] Brandon M. Smith, Li Zhang, Hailin Jin, and Aseem Agar-
wala. Light field video stabilization. In Proc. IEEE Int. Conf.
Comput. Vis., pages 341–348, 2009.

[36] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., pages 1279–1288, 2017.

[37] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proc. Winter Conf. Appl. Comput.
Vis., pages 2149–2159, 2022.

[38] Prune Truong, Martin Danelljan, Radu Timofte, and Luc
Van Gool. Pdc-net+: Enhanced probabilistic dense corre-
spondence network. arXiv preprint arXiv:2109.13912, 2021.

[39] Prune Truong, Martin Danelljan, Fisher Yu, and Luc
Van Gool. Probabilistic warp consistency for weakly-
supervised semantic correspondences. Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2022.

[40] Miao Wang, Guo-Ye Yang, Jin-Kun Lin, Song-Hai Zhang,
Ariel Shamir, Shao-Ping Lu, and Shi-Min Hu. Deep online
video stabilization with multi-grid warping transformation
learning. IEEE Trans. Image Process., 28(5):2283–2292,
2019.

[41] Yu-Shuen Wang, Feng Liu, Pu-Sheng Hsu, and Tong-Yee
Lee. Spatially and temporally optimized video stabilization.
IEEE Trans. Vis. Comput. Graphics, 19(8):1354–1361, 2013.

[42] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004.

[43] Jonas Wulff and Michael J. Black. Efficient sparse-to-dense
optical flow estimation using a learned basis and layers.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pages
120–130, 2015.

[44] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-
Min Hu. Deep video stabilization using adversarial net-
works. Computer Graphics Forum, 37(7):267–276, 2018.

[45] Yufei Xu, Jing Zhang, Stephen J Maybank, and Dacheng
Tao. Dut: learning video stabilization by simply watch-
ing unstable videos. IEEE Trans. Image Process., 31:4306–
4320, 2022.

[46] Yufei Xu, Jing Zhang, and Dacheng Tao. Out-of-boundary
view synthesis towards full-frame video stabilization. In
Proc. IEEE Int. Conf. Comput. Vis., pages 4842–4851, 2021.

[47] Junlan Yang, Dan Schonfeld, and Magdi Mohamed. Ro-
bust video stabilization based on particle filter tracking of
projected camera motion. IEEE Trans. Circuits Syst. Video
Technol., 19(7):945–954, 2009.

[48] Xinyi Ye, Weiyue Zhao, Hao Lu, and Zhiguo Cao. Learning
second-order attentive context for efficient correspondence
pruning. In Proc. AAAI Conf. Artificial Intell., volume 37,
pages 3250–3258, 2023.

[49] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated
convolution. In Proc. IEEE Int. Conf. Comput. Vis., pages
4471–4480, 2019.

[50] Jiyang Yu and Ravi Ramamoorthi. Selfie video stabilization.
In Proc. Eur. Conf. Comput. Vis., pages 551–566, 2018.

[51] Jiyang Yu and Ravi Ramamoorthi. Robust video stabilization
by optimization in cnn weight space. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., pages 3795–3803, 2019.

[52] Jiyang Yu and Ravi Ramamoorthi. Learning video stabiliza-
tion using optical flow. In Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., pages 8156–8164, 2020.

[53] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hongen
Liao. Learning two-view correspondences and geometry us-
ing order-aware network. In Proc. IEEE Int. Conf. Comput.
Vis., pages 5845–5854, 2019.

[54] Lei Zhang, Qian-Kun Xu, and Hua Huang. A global ap-
proach to fast video stabilization. IEEE Trans. Circuits Syst.
Video Technol., 27(2):225–235, 2015.

[55] Weiyue Zhao, Hao Lu, Zhiguo Cao, and Xin Li. A2b: An-
chor to barycentric coordinate for robust correspondence.
Int. J. Comput. Vis., pages 1–25, 2023.

[56] Weiyue Zhao, Hao Lu, Xinyi Ye, Zhiguo Cao, and Xin Li.
Learning probabilistic coordinate fields for robust correspon-
dences. IEEE Trans. Pattern Anal. Mach. Intell., 2023.

[57] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. Int. J. Com-
put. Vis., 127(3):302–321, 2019.

[58] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018.

In this supplementary, we will expand more details that
are not included in the main text due to the page limitation.

Appendix A. Algorithm Details
We introduce 3 algorithms in the main paper. In this sec-

tion, we supplement the algorithm details of the confidence
map back-propagation, margin fusion approach and multi-
frame fusion strategy in the main paper.

Confidence map back-propagation. Algorithm 1 sum-
maries the strategy of confidence map back-propagation in
the main paper Section 4.1. The parameters in Algorithm 1
are set to k = 5, d = 10, and δC = 0.5.

Algorithm 1 Back-propagation for aggregated confidence
map
Input: Y: optical flow; C: confidence map; δC : threshold

for confidence map; d: sampling interval; k: index of
the first frame;

Output: M: updated mask containing aggregated confi-
dence map;

1: setmpre = 1(Ĉk+(n−1)d−δC) ∈ C, putmpre into M;
2: for i = n− 1; i >= 0; i−− do
3: the optical flow field Ywarp = Yk+id ∈ Y;
4: using Ywarp to warpmpre to m̂pre = Ywarp(mpre);
5: the binarized confidence map mnew = 1(Ck+id −
δC), where Mk+id ∈ C;

6: the final mask field M̂k+id = m̂pre &mnew

7: put M̂k+id into M;
8: mpre = M̂k+id

9: end for

Margin fusion. The complete pipeline of the margin fusion
approach is shown in Fig. 8. At first, we coarsely align the
reference frame Is and the target frame It. We then crop
Iwarp and It to Isc and Itc , and re-align them by the optical
flow outpainting. Per Algorithm 2, we further calculate the
mask MIt which indicates the chosen regions of It. The
final result Iresult is obtained by combining It, MIt , and
Iwarp
c . The parameters in the Algorithm 2 are set to δD =
0.2, ηt = 20, and ktin = 11.

Multi-frame fusion. To adaptively determine which frame
and which region should be selected, the multi-frame fusion
strategy is illustrated in Algorithm 3. The parameters in the
Algorithm 3 are set to ηu = 25k, ηr = 1.2, and ηs = 2k.

Appendix B. Synthetic Dataset for Training
We proposed a model-based synthetic dataset in this pa-

per. The settings of the homography parameters are as fol-
lows: The maximum rotation angle θ is set to 10◦. The
range of scaling s is set to 0.7 ∼ 1.3. The maximum trans-
lations (dx, dy) in the x and y directions are 100 and 70,

Algorithm 2 Outpainting mask Algorithm
Input: It: target frame; Itc: cropped target frame; Isc :

cropped source frame; Iwarp
c : warped frame of Isc ; M t:

valid mask of It; M t
c : valid mask of Itc;

Output: MIt : unchanged mask of It;
1: extract feature maps with VGG-16 network f tc =
V GG(Itc) , fwarp

c = V GG(Iwarp
c);

2: calculate the Euclidean distance in feature space D =∥
f tc − fwarp

c ∥2;
3: MD = D < δD;
4: labeled region Mlabel;
5: for i, j = 0; i < h, j < w; i++, j ++ do
6: if ∼M t[i, j] then Mlabel[i, j] = 1;
7: else if M t[i, j]&(∼ M t

c [i, j]) then Mlabel[i, j] =
2;

8: else if M t[i, j]&M t
c [i, j]&MD[i, j] then

Mlabel[i, j] = 0;
9: elseMlabel[i, j] = −1;

10: end if
11: end for
12: tin =Mlabel, tout = 0, f lag = True;
13: while Sum(tin − tout) > ηt do
14: if flag then
15: tin = tout, f lag = False;
16: end if
17: inflate tin with kernel size ktin , obtain tout =

inflate(tin);
18: tout[Mlabel == 1] = 1;
19: tout[Mlabel == −1] = −1;
20: end while
21: MIt = (tout == 2);

respectively. The maximum perspective factors in the x di-
rection and in the y direction are 0.1 and 0.15.

For different training requirements, we apply various
combinations of synthetic dataset, as shown in Fig. 9 (more
visualizations can be found in the Supplementary Video).
For camera pose regression, we use the large FOV video
pair of stable and unstable. For training the flow smooth-
ing network, we alternatively adopt small FOV video pairs,
which simulate coarsely stabilized video. Aiming at the
flow outpainting network, we take small-FOV stable videos
for training and large-FOV for ground-truth supervising.

Data for Camera Pose Regression. For training the cam-
era pose regression network, we need to generate unstable
videos. For every frame, a random homography matrix pro-
duces an unstable frame. In practice, the perspective ef-
fects in the x direction and the y direction are restricted to
1e−5 ∼ 5e−5. The pose between two unstable frames is
parameterized by rotation, scaling, and translation.
Data for Flow smoothing. For training the flow smoothing

PDC-Net

flow outpainting
warp

flow

outpainting
⊝

outpainting mask

⨂

⨁

⨂

⨁

⨂ element-wise multiplication

⊖element-wise subtraction

⨁ element-wise addition

crop

warp

cr
o

p

𝐼𝑠

𝐼𝑡

𝐼𝑐
𝑡

𝐼𝑐
𝑠

𝑌𝑙𝑎𝑟𝑔𝑒 𝐼𝑤𝑎𝑟𝑝

𝑀𝑣𝑎𝑙𝑖𝑑

𝐼𝑟𝑒𝑠𝑢𝑙𝑡

𝐼𝑐
𝑤𝑎𝑟𝑝 𝑀𝐷 𝑀𝑙𝑎𝑏𝑒𝑙 𝑀𝐼𝑡

𝑌𝑠𝑚𝑎𝑙𝑙

Figure 8. Pipeline of margin fusion approach. Given the target frame It, the reference frame Is is coarsely aligned to Iwarp by the
predicted large-FOV flow field Ylarge . Then, It and Iwarp are cropped and re-aligned. Per Algorithm 2, the deduced mask MIt is fused
with It and Iwarp

c to obtain the resulting frame.

Flow outpaintingFlow smoothingCamera pose regression

Stable (large FOV) Unstable (large FOV) Stable (small FOV) Unstable (small FOV) Stable (large FOV) Stable (small FOV)

Figure 9. Visualization of our model-based synthetic dataset. We designed different combinations of dataset for varying tasks.

network, we need to generate unstable videos with small
FOV. Specifically, for the stable video, we randomly gener-
ate a series of cropping mask. The cropped stable video will
be jittered by random homography transformations. Then,
we obtain a cropped unstable video for training and the
cropped stable video for supervision.

Data for Flow Outpainting. To supervise the learning of
large-FOV optical flow fields, we mask the boundaries of
stable videos. Specifically, we set up a sliding window
640 × 360, which moves randomly with the video time-
line. Then, we obtain a cropped video for training and the
corresponding full-frame video for supervision.

Algorithm 3 Multi-frame Fusion Algorithm
Input: It: target frame; Iwarp

ck
: warped of cropping source

frame Isk; Iresultk : margin outpainting result of Iwarp
ck

;
Mwarp

k : valid mask of Iwarp
ck

;
Output: Ifuse: output fusion frame;

1: calculate the filling areaAs
k, misaligned region areaAu

k ,
and corresponding IoU ration Sk = Au

k/(A
s
k + 1) of

Iwarp
ck

;
2: sorted by As

k to obtain index list IDs;
3: Ifuse = It,Mfuse =Mwarp

k ;
4: for k in IDs do
5: if (Au

k < ηu)&(Sk > ηr)&(As
k > ηs) then

6: compute overlapped area Ao
k between Iwarp

ck

and Ifuse;
7: if (Ao

k/A
s
k < δr) then

8: Ifuse = Ifuse · (∼ Mwarp
k) + Iresultk ·

Mwarp
k

9: end if
10: else
11: continue;
12: end if
13: end for

Appendix C. Implementation Details
We will illustrate the training details of different net-

works, including the camera pose regression network, the
optical flow smoothing network, and the flow outpainting
network. All networks are implemented using Pytorch.
Camera pose regression network. We first describe the
architecture of the camera pose regression network. The
network processes each input concatenated tensor fin ∈
Rb×3×h×w with several 2D convolutional layers, where b
indicates the batch dimension and h×w indicates the spatial
dimensions. The final predicted parameters are obtained by
a series of 1D convolutional layers. We use a batch size of
40 and train for 10k iterations. we use Adam optimizer [15]
with a constant leaning rate of 10−4 for the first 4k iter-
ations, followed by an exponential decay of 0.99995 until
iteration 10k. The input resolution is set to 256× 512. The
weights in training loss Eq. (5) and Eq. (7) in the main pa-
per are set to λθ = 1.0, λs = 1.0, λt = 1.5, λgrid = 2.0
for the first 6k iterations and λθ = 2.0, λs = 8.0, λt =
1.0, λgrid = 2.0 for the remaining 4k iterations.

Optical flow smoothing network. We use a batch size of
6 and train for 20k iterations. we use Adam optimizer [15]
with a constant leaning rate of 10−4 for the first 10k iter-
ations, followed by an exponential decay of 0.99995 until
iteration 20k. The input resolution is set to 488× 768.

Flow outpainting network. We apply an Unet architecture
with gated convolution layers [49] as a flow-outpainting net-

work. We use a batch size of 12 and train for 20k iterations.
we use the Adam optimizer [15] with a constant leaning
rate of 10−4. The input resolution is set to 488 × 768. The
weights in training loss Eq. (14) in the main article are set
to λin = 2.0, λout = 1.0, λF = 10.0 for the first 10k itera-
tions and λin = 0.6, λout = 1.0, λF = 0.0 for the remain-
ing 10k iterations.

Appendix D. Qualitative Evaluation
We show the results of the comparison of our method

and the latest approaches in Fig. 10. Most methods [11,
22, 40, 52] suffer from a large amount of cropping, as in-
dicated by the green checkerboard regions. Compared to
full frame rendering approaches for interpolation [6] / gen-
eration [24], our method shows fewer visual artifacts. In
particular, FuSta [24] would discard most of the input frame
content for stabilization and deblurring, while we argue that
video stabilization is based on destroying as little of the in-
put frame content as possible. Thus, our method preserves
the original content of the input frame as much as possible.
We strongly recommend that the reviewers see our addi-
tional supplementary video, especially the comparison with
other full-frame approaches (FuSta [24], DIFRINT [6]).

Appendix E. More Experimental Results

Per-category Evaluation. We present the the average
scores for the 6 categories in the NUS dataset [22].
Two-stage Stabilization. To illustrate our two-stage stabi-
lization method, we conduct an interesting experiment. We
tracked the position (x, y) of a fixed keypoint in 10 frames,
where every two frames were spaced 5 frames apart. As
shown in Fig. 12, the trajectory of the shaky keypoint con-
verges to a fixed/stable position through two-stage stabiliza-
tion.
Analysis of Runtime. We attribute the faster runtime of
our approach against FuSta to the following three reasons:
i) The traditional pose regression algorithm used in FuSta is
10 times slower than our proposed pose regression network
(see Section 6.4); ii) Our method only requires computing
optical flow once per frame, while FuSta requires comput-
ing it three times and relies on additional task-specific op-
timization and manual adjustments (see Section 6.4); iii) In
the rendering stage, FuSta takes input from 11 RGB frames
and their corresponding optical flow, whereas our approach
only requires 7 frames. We will highlight these reasons in
the final version of the manuscript.

Appendix F. Network Architectures

Camera pose regression network. We first describe the
architecture of the camera pose regression network. Given

Grundman et.al. Liu et.al. Wang et.al.

Input

Yu et.al.

FuStaDIFIRINT Ours

Grundman et.al. Liu et.al.

Input

Yu et.al.

FuStaDIFIRINT Ours

Wang et.al.

Grundman et.al. Liu et.al.

Input

Yu et.al.

FuStaDIFIRINT Ours

Wang et.al.

Figure 10. Visual comparison to state-of-the-art methods. Our proposed method does not suffer from aggressive cropping of frame
borders [11,22,40,52] and rendering artifacts than DIFRINT [6] and FuSta [24]. Specially, we keep more of the content in the input frames
than FuSta [24].

a concatenated input tensor fin ∈ R3×H×W , we process
it with multiple down-sampled convolution layers and flat-
ten the output feature map to fout ∈ Rd× HW

D×D , where d,D
denotes the dimension of the feature channel and the spa-

tial down-sampling ratio, respectively. The feature vector
fsum, obtained by weighting the sum of fout along the fea-
ture channel, regresses all parameters of the affine transfor-

0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

C
ro

p
p
in

g
D

is
to

rt
io

n
S

ta
b
il

it
y

Crowd Parallax QuickRotation Regular Running Zooming

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 11. Per-category quantitative evaluation on NUS
dataset. We compare the cropping ratio, distortion value, and sta-
bility score with state-of-the-art methods [6, 11, 22, 24, 40, 51, 52].

x y

Unstable

Coarse-

stabilization

Refine-

stabilization

···

Figure 12. Illustration of our iterative optimization-based sta-
bilization algorithm.

mation. given by

w = ψ(fout), fsum =

HW
D×D∑
i=0

wifout(i, ·), {θ, s, dx, dy} = ℧(fsum) .

(13)
Specifically, The network processes each input concate-
nated tensor fin ∈ Rb×3×h×w with several 2D convolu-
tional layers, as shown in Table 5, where b indicates the
batch dimension and h×w indicate the spatial dimensions.
The final predicted parameters are obtained by a series of
1D convolutional layers.

Flow outpainting network. We apply a Unet architecture
with gated convolution layers [49] as a flow outpainting net-
work, as shown in Table 6.

Table 5. Modular architecture of camera pose regression network
modules. Each convolution operator is followed by batch normal-
ization and LeakyReLU (negative slope=0.1), except for the last
one. K refers to the kernel size, s denotes the stride, and p indi-
cates the padding. We apply the Max-pooling layer to downsample
each feature map.
Input Size Convolution Layer Output Size

(K ×K, s, p)

Feature map extraction

input: b× 3× h× w conv0: (3× 3, 1, 1) b× 8× h× w

conv0: b× 8× h× w conv1: (3× 3, 1, 1) b× 32× h× w

conv1: b× 32× h× w pool1: (5× 5, 2, 4) b× 32× h
4
× w

4

pool1: b× 32× h
4
× w

4
conv2: (3× 3, 1, 1) b× 64× h

4
× w

4

conv2: b× 64× h
4
× w

4
pool2: (5× 5, 2, 4) b× 64× h

16
× w

16

pool2: b× 64× h
16

× w
16

conv3: (3× 3, 1, 1) b× 64× h
16

× w
16

Camera pose regression

input: b× 64× 1 conv1: (1, 1, 0) b× 32× 1

conv1: b× 32× 1 conv2: (1, 1, 0) b× 16× 1

conv2: b× 16× 1 conv3: (1, 1, 0) b× 4× 1

Table 6. Architecture of the flow-outpainting network. Each 2D
gated-convolution [49] (‘G conv’) is followed by batch normal-
ization and Sigmoid. The final ‘conv’ denotes the 2D convolution
layer without batch normalization and Sigmoid. K refers to the
kernel size, s denotes the stride, and p indicates the padding. We
apply the Maxpooling Layer for downsampling (‘down’) and bi-
linear interpolation for upsampling (‘up’).
Input Size Convolution Layer Output Size

(K × K, s, p)

input: b × 3 × h × w down 0 b × 3 × h
4 × w

4

down 0: b × 3 × h
4 × w

4 G conv0: (3 × 3, 1, 1) b × 16 × h
4 × w

4

G conv0: b × 16 × h
4 × w

4 down 1 b × 16 × h
8 × w

8

down 1: b × 16 × h
8 × w

8 G conv1: (3 × 3, 1, 1) b × 64 × h
8 × w

8

G conv1: b × 64 × h
4 × w

4 down 2 b × 64 × h
16 × w

16

down 2: b × 64 × h
16 × w

16 G conv2: (3 × 3, 1, 1) b × 64 × h
16 × w

16

G conv2: b × 64 × h
16 × w

16 conv0: (3 × 3, 1, 1) b × 64 × h
16 × w

16

conv0: b × 64 × h
16 × w

16 G conv3: (3 × 3, 1, 1) b × 32 × h
16 × w

16

G conv3: b × 32 × h
16 × w

16 up 0 b × 32 × h
8 × w

8

up 0+G conv1: b × 96 × h
8 × w

8 G conv4: (3 × 3, 1, 1) b × 16 × h
8 × w

8

G conv4: b × 16 × h
8 × w

8 up 1 b × 16 × h
4 × w

4

up 1+G conv0: b × 32 × h
4 × w

4 conv0: (3 × 3, 1, 1) b × 2 × h
4 × w

4

conv0: b × 2 × h
4 × w

4 up 2 b × 2 × h × w

Appendix G. Limitations

Although our method achieves a comparable stability
score, we use only a simple Gaussian sliding window filter
to smooth the camera trajectory in the coarse stage, leav-
ing room for further improvement. In addition, our render-
ing strategy could generate artifacts in human-dense scenar-

ios due to the nonrigid transformation of the human body,
breaking our assumption of local spatial coherence.

	. Introduction
	. Related Work
	. Video Stabilization
	. Large FOV Video

	. Stabilization via Iterative Optimization
	. Probabilistic Stabilization Network
	. Probabilistic Flow Field
	. Coarse-scale Stabilizer
	. Fine-scale Stabilizer

	. Video Outpainting Network
	. Flow Outpainting Network
	. Image Margin Outpainting

	. Experiments
	. Synthetic Datasets for Supervised Learning
	. Quantitative Evaluation
	. Ablation Study
	. Runtime Comparison
	. Fixed-point Experiment

	. Conclusion
	. Algorithm Details
	. Synthetic Dataset for Training
	. Implementation Details
	. Qualitative Evaluation
	. More Experimental Results
	. Network Architectures
	. Limitations

