
DTN Hybrid Networks
for Vehicular Communications

Justin P. Rohrer and Geoffrey G. Xie
Department of Computer Science

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Monterey, CA 93943–5285

{jprohrer|xie}@nps.edu

Abstract—We present an architecture for combining two
established network paradigms, IP and Disruption-Tolerant
Networking (DTN), into a unified packet gateway design that
leverages the advantages of both. Vehicular networking (VNET)
scenarios often involve brittle links between communicating nodes
due to their mobility. DTN solutions, by using a dynamic hop-
by-hop delivery model instead of the end-to-end IP model, are
able to sustain a large class of applications despite intermittent
links. As a defining characteristic, our design is application-
transparent in that it requires no changes to host applications
(or the underlying host protocol stacks) in order for them to
use DTN transport when IP is not feasible. In addition, we build
into the architecture an explicit disruption notification service for
keeping users informed as well preventing application time-outs
during an IP outage. Finally, given the wide range of behaviors
exhibited by applications that can benefit from DTN, our design
supports the notion of an application lattice to allow operators
to customize, on a per application/group/protocol basis, how the
switch between IP and DTN and the disruption notification are
performed. A preliminary evaluation based on a C++ proof-of-
concept implementation has illustrated several potential benefits
of the proposed architecture for VNET applications.

I. INTRODUCTION

As ubiquitous access to information is ever critical in the

information age, network deployments are rapidly expanding

into dynamic ad hoc environments that are not well supported

by the standard IP functionality. In particular, a variety of

applications have been conceptualized over vehicular networks

(VNETs) [1], [2], where both the connectivity between vehi-

cles and the access links to the IP backbone infrastructure can

be brittle. While IP would stop working upon the absence of an

end-to-end communication path, alternative solutions such as

disruption/delay tolerant networking (DTN) [2] are specifically

designed to work in VNET like challenging environments with

a hop by hop dynamic delivery strategy.

However, the entrenched application ecosystem is exclu-

sively IP-based. As such, a fundamental question is how to

integrate non-IP and IP networks into one infrastructure in an

application transparent fashion, which requires no changes to

applications and furthermore, minimizes the potential disrup-

tions to applications.

Distribution A - Approved for public release; distribution is unlimited.

The predominant approach to integrating non-IP networks

follows a vertical overlay model. In the case of DTN, it is

either IP-over-DTN or DTN-over-IP. This layered approach

is simple to design and implement, by requiring no ad-

ditional data translation module. However, it forces least-

common denominator semantics for transport of data across

network boundaries, and as such, may greatly hamper the

working of applications originally designed for an IP network.

Specifically, there is a prevailing perception that the DTN

technology is not plug-and-play and existing applications must

be retrofitted to use DTN. Consequently, while DTN has been

repeatedly demonstrated to be beneficial in many scenarios

involving challenged networks, its deployment is still very

limited even after more than a decade of refinement.

To further motivate the need of an application transparent

approach, we identify three common vehicular-network edge-

scenarios that would benefit from DTN technology. All three

scenarios require seamless, dynamic integration of IP or DTN

transport.

• Episodic connectivity: IP ceases functioning entirely

when it cannot find an end-to-end path, consequently

causing applications (e.g., Web and map download) to

time out. In contrast, DTN buffers data (called bundles)

at an intermediate node when a next hop is temporally

unavailable, and as such is able to sustain applications as

long as a sequence of one-hop forwarding can reach the

destination eventually.

• Degraded link-quality: TCP responds adversely to

dropped or corrupted packets, bringing the performance

of TCP-based applications to a standstill in severe cases.

By using DTN’s hop-by-hop error-correction capability

this loss in application performance can be significantly

reduced.

• Policy-driven prioritization: As vehicular networks

move toward providing differentiated quality-of-service

to prioritize certain traffic classes, it is possible for a

sustained burst of high-priority traffic to starve out a

lower priority flow, resulting in essentially the same effect

for that flow as an episodically-connected link. By the

time link capacity is again available the application will

2013 International Conference on Connected Vehicles and Expo (ICCVE)

U.S. Government work not protected by U.S. copyright DOI 10.1109/ICCVE.2013.25114

have timed out and will not be able to make use of

that available capacity. With DTN in the network, lower

priority traffic can be bundled and delivered as soon as

link capacity is again available, resulting in higher overall

application performance.

IP Infrastructure
Realm

Heterogeneous
Wireless
Realm

IP Association
DTN Association

Fig. 1: IP-cum-DTN scenario

In this paper, we present a new approach to integrating IP

and DTN, which we term “IP-cum-DTN” (where cum is a

Latin term for with and along side). IP-cum-DTN combines

the two paradigms in a unified architecture that leverages the

advantages of both. Specifically, we introduce an additional

architectural component to splice IP and DTN functionalities

into a single logical network layer. Our architecture can be

implemented as a gateway that intelligently selects between

native IP and DTN network options, based on application

characteristics. Essentially, the gateway provides a service to

applications, which we term the Application-aware Dynamic
Network Selection (ADNS) service. ADNS intercepts live

packets in the IP buffer immediately upon network disruption

events and selectively bundles some of these packets for trans-

port with DTN according to preconfigured application-specific

policy. The delay tolerance of applications is profiled a priori.
A formal policy lattice model is introduced to capture the

result and precisely define, for each application, the required

DTN forwarding mechanism, if any, the gateway should use

upon a network disruption event.

Our design targets a broad range of networking scenarios

where link connectivity is increasingly heterogenous at the

edge and realms of disparate technologies [3] coexist to ad-

dress scenario-specific requirements. We observe that while IP

realms are circumscribed by a hard edge where infrastructure

coverage ends, DTN realms have no such defined border,

extending as-needed even to space [4]. Therefore, we seek

to blur this distinction between IP and DTN networks, by

enabling connectivity for applications that were originally

designed for IP beyond the confine of IP realms, as illustrated

in Figure 1.

We have conducted a preliminary evaluation of our design

on a small scale VNET that is being fielded by the United

States Marine Corps. The results confirm that IP-cum-DTN is

able to provide DTN support in an application-transparent

manner. Wireless nodes of this network must venture into

geographic areas that do not have infrastructure coverage, de-

pending on satellite and terrestrial wireless links which may be

disrupted due to any number of adverse conditions, and where

the ability to access information can be crucial to life-or-death

situations. While satellite links were the expected solution to

most of these cases, the astronomical cost-to-bandwidth ratio

has limited deployment and capacity is exceedingly limited.

This is leading to greater use of short-range terrestrial wireless

solutions which are frequently subject to either complete

disconnection, or worse have faint and sporadic connectivity

that is sufficient for applications to initiate connections, but

inadequate for any meaningful communications. It is precisely

these conditions that DTN networks are intended to mitigate,

with the barrier of adoption consisting primarily in their

inability to support legacy IP applications.

II. BACKGROUND AND RELATED WORK

Bundling Protocols. The IETF delay-tolerant networking

research group (DTNRG) has standardized two main DTN

protocols, the Bundle Protocol [5] and the Licklider Trans-

mission Protocol (LTP) [6]. The Bundle Protocol supports

an overlay store-and-forward network that sends packages

of application data – called bundles – over a wide range

of underlying network types using a sequence of gateways

that serve as nodes in the overlay network. This represents

the mainstream approach within the DTNRG group. Example

implementations include the SPINDLE 3 (BBN) [7], which

we have been experimenting with on our testbed and several

others recently compared by Pöttner et. al. in [8]. LTP is a

point-to-point protocol that deals with individual long delay

links by freezing timers that would otherwise expire before

an acknowledgement was received. LTP does not handle

congestion or routing issues [9].

Non-IP DTN Protocols. An alternative to using native IP or

application-layer overlays, is to translate data into a custom

protocol stack. A recent approach using this method is the

ANTP suite [10], [11], which is composed of the AeroTP

transport layer [12], [13], the AeroNP network layer [14], and

the AeroRP routing layer [15]. While we do not expect to

make use of these non-IP protocols, this work is relevant

to the project because of the many parallels between the

telemetry scenario and our use cases, as well as the fact

that a method of realm-splicing between the ANTP suite and

traditional IP protocols was developed in the form of the

AeroGW gateway [16].

Connection Splicing. End-to-end (transport) connections must

be spliced at realm boundaries. In unreliable networks, TCP

performs poorly due to the high number of end-to-end retrans-

missions incurred and the congestion avoidance mechanism

that is triggered by packet loss. Several TCP splicing methods

have been proposed in the literature and similar concepts can

be leveraged in an IP-cum-DTNgateway. (i) Split-TCP divides

long paths into several shorter ones, inserting proxies to inter-

face between the segments. The proxies buffer, acknowledge,

and retransmit packets and are able to improve performance by

115

breaking up the end-to-end semantics of TCP [17]. (ii) Mobile

TCP (M-TCP) makes use of a gateway that connects multiple

cells to the fixed network to split the TCP connection. The

standard TCP is used on the wired side while M-TCP is used

between the mobile host and the gateway. If disconnected,

the gateway advertises a receiver window of 0 to the fixed

peer, putting it into persist mode. When reconnected, the

gateway advertises the normal size window to the sender,

allowing the connection to resume with no back-off [18]. (iii)
Freeze-TCP is designed to improve TCP performance between

mobile devices without splitting the connection or requiring

changes to the TCP code on the fixed node. When the mobile

device is the receiver, it uses signal-strength information from

the device’s radio to predict a disconnection or handoff and

advertises a zero window size just before this happens. This

forces the TCP sender in the zero-window-probing mode. To

resume, the mobile receiver sends 3 ACKs for the last packet

received to initiate fast-retransmit [19].

III. IP-cum-DTN ARCHITECTURE

In this section we describe the design of the IP-cum-

DTN architecture. The architecture supports the creation of

novel network-level functionalities to mitigate unnecessary

negative impacts on legacy applications while enabling the

performance advantages of DTN networks. The details of one

such functionality will be presented in Sections IV.

To motivate our design, we first contrast a layered model of

our architecture to those of alternative architectures proposed

in the literature. After presenting the design details of the IP-

cum-DTN architecture, we conclude the section by describing

some of our preliminary prototyping work.

IP IP IP IP

DTN DTN

Host

Host

Host

Host

DTN/IP
Network

DTN
APP.

DTN

DTN
APP.

DTN

DTN Realm

IP Realm

(a) DTN-over-IP layer architecture

Net. Net. Net. Net.

DTN

DTN

Host

Host

Host

Host

DTN
Network

IP APP.

DTN

IP APP.

DTN

IP IP

DTN Realm

IP Realm

(b) IP-over-DTN layer architecture

HostHost

Gateway
Router

Gateway
Router

IP Realm

IP IP

D
T
N

DTN
Network

IP-
cum-
DTN

APP. APP.

DTN Realm IP Realm

IP Realm

I
P

IP Realm

IP
Network

D
T
N

IP-
cum-
DTN

I
P

(c) IP-cum-DTN layer architecture

Fig. 2: Alternative DTN/IP architectures

A. Alternative Architectures

Along with the maturity of both IP and DTN networks

comes existing architectural designs for integrating the two,

which fall into either an IP-over-everything (Figure 2b) or

a DTN-over-everything (Figure 2a) model. Neither of these

has been successful in enabling widespread adoption of DTN

technology. We assert as an alternative, concurrent IP and

DTN realms (Figure 2c) with intelligent selection at adjacent

borders.

In the DTN-over-IP case shown in Figure 2a (or DTN-over

another protocol), the full benefits of the DTN protocol are

available, however since DTN is an application-layer overlay

it is only compatible with applications written specifically to

work with it. Other disadvantages to this approach include the

overhead incurred by the bundling protocol end-to-end, and

that the DTN routing does not interact with IP routing so the

overlay network formed is likely to be far from optimal in the

sense of shortest-path routing.

The IP-over-DTN case shown in Figure 2b builds on the

DTN-over-IP scenario by encapsulating IP packets in DTN

bundles, enabling conventional IP-based applications to benefit

from DTN. Apart from the obvious layer violations involved

in this approach it incurs significant overhead of the 52-byte

DTN-header and in many cases a second 20-byte IP-header

since DTN is most commonly run on top of IP networks.

This is in addition to the drawbacks, as explained above, of

incurring the overhead end-to-end when only a small subset of

hops may experience disruptions, and of sub-optimal routing

topologies. It also requires a DTN agent to run on every

endpoint, even if some only send and receive IP traffic.

In contrast, the IP-cum-DTN architecture, as shown in

Figure 2c, does not overlay protocols; instead, it relies on a

third module in the gateway to splice the two realms into a

single end-to-end layer, with context-appropriate capabilities.

IP is used at the edge to support IP-based applications, and

if coherent end-to-end paths through the network exist the

gateway will keep the packets in the IP-realm end-to-end

thus avoiding the overhead of the DTN bundling protocol and

utilizing the IP-optimized established network infrastructure.

However if the path is disrupted, the gateway will dynamically

select the DTN-realm, translating the traffic as necessary. Since

this occurs within the network at the boundary of the affected

realm, the additional overhead of the bundling protocol is only

incurred locally instead of penalizing every link on the end-

to-end path, while still providing the benefits of DTN where

needed. It also synchronizes the DTN and IP routing protocols,

instead of ignoring IP routing as occurs in the DTN overlay

scenarios. Additionally, because this gateway is adjacent to the

disrupted region, it is in an ideal position to host a Disruption

Notification Service.

B. System Architecture

Due to the maturity of both the DTN and IP microcosms

our goal is to leave both as intact as possible, and introduce a

lightweight translation-layer and decision plane as a software

module that is external to both existing components, but

116

IP Network Layer

IP-cum-
DTN

DTN
Agent

int0 intN...

Software

Hardware

Fig. 3: IP-cum-DTN gateway

architectural components

Gateway Decision Plane

Packet
Reader

Bundle
Writer

Bundle
Reader

Socket
Interface

DTN
Agent

Packet
Writer

External Software Components

IP-cum-DTN Software Components

Fig. 4: IP-cum-DTN software

components

triggered when IP packets arrive for which the IP next-hop is

unavailable. The decision plane may incorporate a two-phase

approach in which the triggering mechanism and a coarse-

grained binary decision (to use DTN or not) is performed in the

kernel space. The remaining packets are dispatched to different

handling modules (likely in the user space) according to addi-

tional preconfigured application-specific policy; the details of

defining this policy will be discussed in Section IV-A. Figure 3

shows the relationships between the IP-cum-DTN software

module, the DTN Agent (also running in user-space), and the

IP layer (typically embedded in the system kernel). It should

be noted that while this figure is representative, there are also

cases where the DTN agent uses non-IP network protocols

to send bundles via the physical interfaces (int0...intN in the

figure).

This module will also be responsible for splicing the DTN

and IP control-planes together. We will provide both a static

and a dynamic mechanism for this. The user will be able to

statically configure IP networks to be associated with each

DTN node, and the splicing agent will be able to learn IP

networks to which it is connected from dynamic routing

protocols. In the latter case these IP network prefixes will be

periodically disseminated to neighboring DTN nodes so that

a DTN-EID to IP-prefix mapping may be maintained. These

mechanisms will allow each bundle created from translated IP

packets to be addressed for delivery to the correct DTN host.

A potential IP-cum-DTN packet-pipeline consists of the

following steps (corresponding to Fig. 4): IP packet received

by kernel; packet passed to packet reader; packet reader
queries decision plane; decision plane determines suitability

for DTN forwarding and initiates any needed response via

packet writer; if approved packet reader queues the packet

for bundle writer; bundle writer queries the decision plane for

next-hop DTN EID (Endpoint Identifier) and aggregates with

packets to same EID; bundle writer generates bundle header

and passes to DTN agent. The reverse process includes fewer

steps because we do not egress filter and IP semantics are

preserved. Again referring to Figure 4 the potential steps in-

clude: DTN bundle received by DTN Agent; bundle requested

by bundle reader; bundle payload decomposed into IP packets,

which are passed to the packet writer; packets passed to the

kernel for conventional IP routing and forwarding.

IV. APPLICATION-AWARE DYNAMIC NETWORK

SELECTION

Applications exhibit a wide spectrum of tolerance to net-

work delays. The IP-cum-DTN gateway should leverage this

information to customize their DTN forwarding behavior. For

example, a real-time interactive application such as VoIP does

not benefit from DTN and its packets should be dropped
(or re-routed to a new IP destination) when an IP path for

the original destination is not available. Additionally, some

delay-tolerant applications (e.g., chat) are TCP based. Their

performance may suffer because of TCP connection timeout

events. The gateway should prevent such events by injecting

special signaling packets into the TCP connections.

In order to manage complexity, we use a systematic frame-

work to enable customization of packet handling according

to pre-configured application-specific policy, which can even

be customized on a per gateway basis. Instead of a tree

structure commonly used for firewall design, we have chosen

a lattice structure for policy representation because the latter

facilitates greater reuse of nodes at each layer. The application

profile lattice (Figure 5) is created a priori by profiling the set

of applications expected to be deployed in the IP-cum-DTN

network. Each lattice node indicates a specific set of actions

to be taken, and each link indicates a conjoining operation

between the actions at each level of the lattice. The path

through the lattice is determined by fields in the packet header,

predominantly the IP Protocol ID field and the TCP/UDP port

number, however application-specific fields may be used as

well. The lattice must meet meet some basic criteria:

• Completeness: It must be complete, i.e. there must be

a defined path through the lattice for all possible input

packets.

• Exactness: It cannot be ambiguous, i.e. the entry criteria

for all nodes at a given level must be orthogonal.

• Conflict-free: It also must have a defined conflict-

resolution policy, e.g. lower-level (more refined) actions

supersede higher-level (more coarse-grained) actions.

As part of this work we will generate lattices for a general

set of applications commonly used in mobile environments.

All IP Traffic

UDPTCP ICMP

Bulk Xfer Transaction Streaming

HTTPMQTTFTP SSH SMTP XMPP SNMP NTPTFTPRTSP

Other

Other

Fig. 5: Application-profile lattice

A. Application Profiling

As shown in Figure 5 we categorize applications by profiling

their network activity according the standard categories: bulk

transfer, transactional (interactive), and streaming. We then

subdivide these categories based on the transport layer used

(e.g. TCP, UDP, SCTP), and finally by individual application,

117

thus forming a lattice where the root is IP and individual

applications are the leaves. Our hope is to constrain the

complexity of the solution by reusing as much packet-handling

code as possible. For example if a method works on multiple

TCP-based bulk-transfer applications it can be implemented

at the protocol layer of the lattice and ideally only a subset

of the applications will need any unique handling beyond that

layer.

B. Modular Handling Methods

The software framework will be modular, with each node

in the lattice indicating actions, which are handled by a

plugin for that category, protocol, application, etc. Addition-

ally there will be a catch-all module for handling packets

not associated with a profiled application. This is possible

by supporting mechanisms at varying granularity within the

application lattice. Node actions can range from the very

simple to sophisticated, perhapse applying only to a single

application-layer message type, or an entire transport-layer

protocol. An example simple action is drop, most likely called

for in cases where delay makes delivery of a particular type

of traffic no longer worthwhile. Nearly as simple is the buffer
action, which invokes the IP-to-DTN translation component

of the architecture and bundles the traffic for DTN handling.

More complex actions are called for when a particular protocol

or application needs special treatment to avoid timing out too

quickly. Part of this handling will involve initiating ENDN

messages (described further in Section IV-D), however it will

take time for the benefits of this explicit signaling to be

incorporated into applications. On the other hand significant

work has been accomplished in the area of making various

protocols tolerant of delay, and we will build on this body

of existing research to create advanced actions. For example,

the Freeze-TCP [19] method allows us to “pause” a TCP flow

and can be incorporated into the lattice either as a protocol-

layer action to be applied to all TCP traffic, or as part of an

application-specific response, applying only to a subset of TCP

traffic.

As IP packets arrive at the gateway they will be routed

to the appropriate module based on standard port numbers

and application headers, as well as deployment-specific port

numbers specified in the configuration file. The configuration

file(s) will be structured, with sections for each module, and

including plugin-specific configuration files which may be

added ad-hoc.

All IP Traffic

UDPTCP ICMP Other

Bulk Xfer Transaction Streaming

HTTPMQTTFTP SSH SMTP XMPP SNMP NTPTFTP RTSP

Fig. 6: Alternate application-profile lattice

All IP Traffic

UDPTCP Other

Bulk Xfer Transaction

FTP Telnet SNMP

Fig. 7: Simple example application-profile lattice

C. Examples

Many alternative lattices can be envisioned and we will

look at some of these as well. For example greater efficiencies

might be obtained by switching the middle layers as shown in

Figure 6. A controlled-access network (e.g. sensor/telemetry,

military, or deep space) might have a very narrow lattice as

shown in Figure 7, where the only applications allowed on

the network are FTP, Telnet, and SNMP. All IP traffic is

categorized into TCP, UDP, or Other. When a packet that is

part of an FTP flow arrives, it will match the TCP node where

the action to occur is setting the custody-transfer DTN bundle

flag. The FTP packet is then routed to the Bulk Transfer node

where the bulk priority flag is set for the DTN bundle. Lastly

the FTP packet is routed to the FTP node, which first checks

the available DTN buffer size. If the size is below a threshold

an FTP server emulator is initiated that acknowledges the

packets so that the file will continue to be transferred to the

DTN buffer. If the buffer is getting full, the the FTP node

initiates the Freeze-TCP algorithm [19] so that the transfer

will not time out and can be resumed when buffer space is

available or an end-to-end path is re-established.

When a Telnet packet arrives it will again be routed to the

TCP node where the same action applies, however it will then

be routed to the Transaction node where the expedited priority

flag is set for the DTN bundle. Finally it is routed to the

Telnet where the ENDN notification service (Section IV-D) is

initiated using the appropriate delay code. An SNMP packet

is routed to the UDP node first, where no action is indicated.

It is then routed to the Transaction node with the same action

as before. Lastly it reaches the SNMP leaf where no action

is taken. In practice this leaf would be eliminated since no

application-specific handling is required.

Any packets belonging to protocols other then TCP or UDP

are routed to the Other node, where they are dropped, and

an ENDN response sent with the Explicit Loss Notification

message code as discussed in Section IV-D). Packets that are

TCP or UDP, but do not belong to one of the three permitted

applications are handled likewise.

D. Network Disruption Notification

Clearly there are limits to the length of delays that can

be handled transparently in the network, and that is depen-

dent on the application category being handled. Eventually

application-level timeout will occur, or the user will get tired

of waiting without seeing any apparent activity. Therefore

we submit that an explicit notification mechanism is required

118

for delay-tolerance to be seamless in heterogeneous-delay

environments.

There are several viable approaches to implement such a

service, possibly leveraging ECN bits (for TCP traffic), the

path-MTU discovery mechanism, a new HTTP code, or an

ICMP/ICMPv6 extension. We leave further exploration of this

topic to future work, but our intuition is that this service should

be able to deliver a rich set of information back to the source

application or user about the type and expected severity of the

loss or delay.

V. PRELIMINARY EVALUATION

We have built several Linux-based IP-cum-DTN gateway

prototypes, and used them to establish a testbed for DTN

experimentation, designed to be suitable both for lab exper-

imentation as well as vehicular deployment for field experi-

mentation.

The DTN gateway prototype hardware is based on the AMD

Brazos platform, chosen for its high I/O-bandwidth capability,

low cooling requirements, and high performance vs. cost

efficiency. System storage and DTN buffering are provided

using high-speed synchronous flash, accessed via a 6.0 Gbit/s

serial ATA interconnect. In addition to the onboard gigabit

ethernet interface, we provide four additional routable gigabit

interfaces and eight gigabytes of DRAM. The entire system is

enclosed in a steel chassis 8.7” wide, 12.9” deep, and 3.8” tall,

as shown in Figure 8. Power consumption is approximately

35 W under typical load, which is low enough that active

cooling fans are not required under most circumstances. The

power supply requires a 12v power source, which may be

either a laptop-type power brick, or a standard automotive

auxiliary power source. The resulting device is relatively small,

consumes little power, and requires little cooling, making it

suitable for mobile platforms.

Fig. 8: NPS DTN gateway hardware

We base our software development on the Linux soft-

ware routers derived from the Debian distribution [20]. For

IP routing we utilize the Quagga [21] routing implementa-

tion to support major dynamic routing standards including

OSPFv2 [22], OSPFv3 [23], RIPv2 [24], RIPng [25], and

BGPv4 [26]. Of these OSPFv3, RIPng, and BGPv4 include

support for IPv6. This platform provides high-speed, stable IP

packet forwarding through the network as long as coherent

end-to-end paths exist. We are evaluating the ION DTN

agent developed by JPL, SPINDLE3 (BBN), and the DTN2

(Community) DTN agent for stability and suitability for our

purposes. The bundling agents provide a plug-in interface for

routing modules, allowing us to experiment with state-of-the-

art DTN routing protocols.

We have been successful in implementing the software

architecture shown in Figure 4 on our testbed implementation

using a socket instance of the TUN interface as the triggering

mechanism. This is a virtualized interface provided by the

Linux operating system, instances of which can be created on

demand. Using this method we have been able to intercept

packets from various applications including Ping and Chat,

encapsulate them in DTN bundles, forward them over the DTN

network, un-bundle and deliver them to their IP destination.

Using the ioctl system calls we are able to programmatically

manipulate the IP routing table to intelligently determine what

packets are intercepted for bundling.

In our preliminary testing we found the system to be

capable of simultaneously routing two flows of 800 Mb/s

each, effectively saturating the unidirectional capacity of 4 of

the 1 Gb/s interfaces. This represents a routed traffic load of

over 120,000 pkts/s. We used OSPF for route discovery and

enabled the DTN bundling agent during these tests. While

under this traffic load we observed that the average system

load remained below 2%, and system memory usage remained

below 150 MBytes out of the available 8192 MBytes. We will

be continuing to increase the number of clients and DTN nodes

in our testing environment, resulting in both additional routes

and traffic flows, but these preliminary performance results

indicate an ability for networks of our DTN gateways to scale

well.

Recently the NPS DTN gateways were tested in the US Ma-

rine Core Network On The Move (NOTM) vehicular network

environment and shown to provide reliable delivery under

disrupted connectivity conditions. NOTM is a multihop mobile

wireless environment with multiple short and mid-range radio

technologies back-hauled by satellite links to only a few of

the nodes. In this environment the DTN gateways were able

to handle TCP and UDP traffic in a generic fashion, as well as

provide enhanced support for specific applications, including

the elimination of error-massages due to timeouts and user-

visible notification of delayed message delivery. This was all

handled in the gateway routers, without any change to the

application or end host configuration.

One example of an application demonstrated on NOTM

and benefitting from IP-cum-DTN is SIP (Session Initiation

Protocol) Chat. Typically implementations of this protocol

use UDP to transport bot data and control messages, and use

short-duration timers to trigger retransmissions when data is

unacknowledged. The typical exchange consists of a single

UDP packet containing a message request header followed

by the contents of the chat message. The response is a “202

Accepted” message within a few seconds. This reply does not
imply receipt by the end user, only by an intermediary (often

the receiver-side chat application) that will deliver the message

to the end user. When the underlying network is disrupted the

response does not come back and after a few retries the user

is notified of the failure to deliver the message. When used in

conjunction with the DTN gateway, the gateway generates the

119

“202 Accepted” message on seeing a chat message request

and sends an additional chat message request back to the

sender with a notification that their chat message was being

delayed, but had not been lost. The 202 code prevents the

multiple retransmission attempts by the sender’s client, as well

as the subsequent error message. The gateway then forwards

the message when connectivity is reestablished, requiring no

user intervention or application reconfiguration.

The benefits of incorporating IP-cum-DTN into NOTM

include reduced overhead due to TCP end-to-end retransmis-

sions, reduced loss of UDP traffic, and the prevention of

timeouts by providing expected responses for buffered traffic.

VI. FUTURE WORK

We intend to further modularize our software architecture to

reflect the lattice construct shown in Figure 5. In our current

prototype each application is supported by a unique plugin.

Our goal for the future is to create a fine-grained set of

composable plugins so that a new application can be supported

by writing a structured configuration file that identifies a set

of these plugins and arranges them in a pipeline configuration.

We are also interested in leveraging geolocation information

for cross-layer usage. For example dynamically subscribing

vehicular nodes to location-specific DTN multicast groups, to

enable caching of application-specific data. Map, weather, and

public safety alert data come to mind Additionally we intend

to prototype a version of the ENDN service discussed in this

work.

ACKNOWLEDGEMENTS

The authors would like to thank the US Marine Corps for

their support. This work was funded in part by the Marine

Corps Systems Command, Program Manager (PM) MAGTF

Command, Control, and Communications (MC3).

REFERENCES

[1] Y. Toor, P. Muhlethaler, A. Laouiti, A. Fortelle, and E. Mines, “Vehicle
ad hoc networks: Applications and related technical issues,” IEEE
Comm. Surveys and Tutorials, vol. 10, no. 3, pp. 74–88, 2008.

[2] P. Pereira, A. Casaca, J. Rodrigues, V. Soares, J. Triay, and C. Cervello-
Pastor, “From delay-tolerant networks to vehicular delay-tolerant net-
works,” IEEE Comm. Surveys and Tutorials, vol. 14, no. 4, pp. 1166–
1180, 2011.

[3] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P.
Rohrer, M. Schöller, and P. Smith, “Resilience and survivability in com-
munication networks: Strategies, principles, and survey of disciplines,”
Computer Networks: Special Issue on Resilient and Survivable Networks
(COMNET), vol. 54, pp. 1245–1265, June 2010.

[4] D. Brown, K. Trinidad, and R. Borja, “NASA successfully tests first
deep space internet.” http://www.nasa.gov/home/hqnews/2008/nov/HQ
08-298 Deep space internet.html.

[5] K. Scott and S. Burleigh, “Bundle Protocol Specification.” RFC 5050
(Experimental), Nov. 2007.

[6] M. Ramadas, S. Burleigh, and S. Farrell, “Licklider transmission
protocol–specification,” Internet draft, Experimental draft-irtf-dtnrg-ltp,
IETF, January 2008.

[7] R. Krishnan, P. Basu, J. M. Mikkelson, C. Small, R. Ramanathan, D. W.
Brown, J. R. Burgess, A. L. Caro, M. Condell, N. C. Goffee, R. R.
Hain, R. E. Hansen, C. E. Jones, V. Kawadia, D. P. Mankins, B. I.
Schwartz, W. T. Strayer, J. W. Ward, D. P. Wiggins, and S. H. Polit,
“The SPINDLE disruption-tolerant networking system,” in Proceedings
of the IEEE Military Communications Conference (MILCOM), (Orlando,
FL, USA), pp. 1–7, October 29–31 2007.

[8] W.-B. Pöttner, J. Morgenroth, S. Schildt, and L. Wolf, “Performance
comparison of DTN bundle protocol implementations,” in Proceedings
of the 6th Proceedings of the 6th ACM workshop on Challenged
networks (CHANTS), pp. 61–64, September 23 2011.

[9] S. Farrell, V. Cahill, D. Geraghty, I. Humphreys, and P. McDonald,
“When TCP breaks: Delay- and disruption- tolerant networking,” IEEE
Internet Computing, vol. 10, no. 4, pp. 72–78, July-Aug. 2006.

[10] J. P. Rohrer, A. Jabbar, E. Perrins, and J. P. G. Sterbenz, “Cross-layer
architectural framework for highly-mobile multihop airborne telemetry
networks,” in Proceedings of the IEEE Military Communications Con-
ference (MILCOM), (San Diego, CA, USA), pp. 1–9, November 2008.

[11] J. P. Rohrer, A. Jabbar, E. K. Çetinkaya, E. Perrins, and J. P. Sterbenz,
“Highly-dynamic cross-layered aeronautical network architecture,” IEEE
Transactions on Aerospace and Electronic Systems (TAES), vol. 47,
pp. 2742–2765, October 2011.

[12] J. P. Rohrer, E. Perrins, and J. P. G. Sterbenz, “End-to-end disruption-
tolerant transport protocol issues and design for airborne telemetry
networks,” in Proceedings of the International Telemetering Conference,
(San Diego, CA), October 27–30 2008.

[13] J. P. Rohrer and J. P. G. Sterbenz, “Performance and disruption tolerance
of transport protocols for airborne telemetry networks,” in Proceedings
of the International Telemetering Conference (ITC), (Las Vegas, NV),
October 2009.

[14] A. Jabbar, E. Perrins, and J. P. G. Sterbenz, “A cross-layered protocol
architecture for highly-dynamic multihop airborne telemetry networks,”
in Proceedings of the International Telemetering Conference (ITC), (San
Diego, CA), October 27–30 2008.

[15] A. Jabbar and J. P. G. Sterbenz, “AeroRP: A geolocation assisted aero-
nautical routing protocol for highly dynamic telemetry environments,”
in Proceedings of the International Telemetering Conference (ITC), (Las
Vegas, NV), October 2009.

[16] E. K. Çetinkaya and J. P. G. Sterbenz, “Aeronautical gateways: Sup-
porting TCP/IP-based devices and applications over modern telemetry
networks,” in Proceedings of the International Telemetering Conference,
(Las Vegas, NV), October 26–29 2009.

[17] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and S. Tripathi, “Split
TCP for mobile ad hoc networks,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM), (Taipei, Tai-
wan), pp. 138–142, November 2002.

[18] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 27,
pp. 19–43, Oct. 1997.

[19] T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: a true
end-to-end TCP enhancement mechanism for mobile environments,”
Proceedings of the 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), vol. 3, pp. 1537–1545
vol.3, March 26–30 2000.

[20] “Debian linux distribution.” http://www.debian.org/, June 2012.
[21] “Quagga routing suite.” http://www.quagga.net/, December 2009.
[22] J. Moy, “OSPF Version 2.” RFC 2328 (Standard), Apr. 1998. Updated

by RFC 5709.
[23] R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “OSPF for IPv6.” RFC

5340 (Proposed Standard), July 2008.
[24] G. Malkin, “RIP Version 2.” RFC 2453 (Standard), Nov. 1998. Updated

by RFC 4822.
[25] G. Malkin and R. Minnear, “RIPng for IPv6.” RFC 2080 (Proposed

Standard), Jan. 1997.
[26] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-

4).” RFC 4271 (Draft Standard), Jan. 2006.

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

