
 

 
 

Fig.1. Cellular Automata model of traffic phases, [4] 
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Abstract— In this article we use real traffic data to confirm 

that vehicle velocities follow Gaussian distribution in steady state 

traffic regimes (free-flow, and congestion). We also show that in 

the transition between free-flow and congestion, the velocity 

distribution is better modeled by generalized extreme value 

distribution (GEV). We study the effect of the different models 

on estimating the probability distribution of connectivity 

duration between vehicles in vehicular ad-hoc networks. 
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I. INTRODUCTION 

In vehicular ad-hoc networks (VANETs), the connection 
duration between any two vehicles depends on their relative 
velocity. It is widely accepted that velocity distribution of 
vehicles in highways follows normal distribution [1]. Krbalek 
[2] has theorized that it was possible to model steady-states of 
vehicle traffic in terms of the thermal-equilibrium properties of 
a Dyson’s gas exposed to a heat reservoir, where the particles 
interact by a  short-ranged power-law. Vehicle velocities in this 
model satisfy a Gaussian (normal) distribution.  

According to Kerner’s traffic theory [3], the stationary state 
of highway traffic can be either free-flowing or congested. 
Traffic congestion is divided into two phases; synchronized 
flow and wide moving jams. The transition between free-flow 
and congestion is characterized by the co-existence of the two 
phases [4]-[7]. As Fig. 1. shows, the transition from free-flow 
to traffic jam starts with the introduction of small (clustered)  
jams in the road, with vehicles travelling freely in between 
such jams. Afterwards, the jams widens up until they merge 
into one large traffic jam. 

In this article we use empirical vehicle data, taken from 
measurement in the Berkeley Highway Laboratory (BHL) 
project [8], to confirm that vehicle velocities follow Gaussian 
distribution in steady state traffic regimes (free-flow, and wide 
moving jam). We also show that in the transition between free-
flow and congestion, velocity distribution is better modeled by 
the generalized extreme value distribution (GEV).  

The rest of the article is organized as follows; in section II 
we discuss the distribution of vehicles velocities. In section III 
we study how the different distributions affect connection 

duration in VANETs, and we provide our results. The paper is 
concluded in section IV. 

II. VELOCITY DISTRIBUTION 

A. Traffic Data 

The vehicles data used in this paper are obtained from 
Berkeley Highway Laboratory project. The data are collected 
using dual loop sensor stations installed on the five lane 
interstate I-80 road in California. Each station is a pair of 
inductive loop detectors, one upstream and one downstream in 
the same lane. The two sensors are six feet across, and their 
centers are twenty feet apart. The project provides individual 
raw vehicle data. Each vehicle stream data file record indicates 
a matched pair of upstream and downstream transitions from a 
specific lane at a specific station. The arrival instants are 
accurate within 1/60 of a second. This enables one to calculate 
each vehicle speed and the spacing between successive 
vehicles passing in the same lane [9]. 

We compute the velocity of each vehicle in the road for a 
period of one day (24 hours). Fig. 2 shows the mean velocity in 
every hour of the 24-hour period. Different time periods are 
selected to represent different traffic regimes, with each time 
period lasting for one hour. We empirically find the cumulative 



 
Fig.2. Mean hourly velocity in 24 hour period 
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Fig.3. Empirical and Gaussian CDF plots of traffic velocities; (a) 2:00 

pm, (b) 3:00 pm, (c) 4:00 pm. 

density functions (CDF) of each, and fit it to a Gaussian CDF, 
to confirm Krbalek’s theory. Fig. 3 shows the empirical and 
Gaussian resulting CDFs. The figure shows that the velocity 
distribution closely resembles Gaussian distribution, except in 
the transition between free-flow and congestion (3:00pm, as 
well as 5:00pm, not shown). Empirical CDF for the other 
steady state periods that was not shown here also resembles 
Gaussian distribution.  

B. Gaussian Distribution 

Krbalek et al [2], [10], [11] use one-dimensional 
thermodynamical particle gas to predict microscopic structure 
in traffic flows and consequently compare to the relevant 
traffic data distributions. Justification for the approach is 
provided in [2] and [12] where it is proved that equilibrium 
solution of certain family of the particle gases (exposed to a 
heat reservoir) is a good approximation for steady-state 
solution of driven many-particle system. The thermodynamic 

approach leads to the assertion that velocity of particles is 
Gaussian distributed according to the following probability 
density function 
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C. Alternative Distributions 

The generalized extreme value distribution was shown [13] 
to model vehicles headway distribution in transition phase. 
Also the lognormal distribution successfully modeled traffic 
headway distributions in the same phase [14]. We applied both 
distributions to our data, and we found that they also provide 
better fits for velocity distribution in the transition regime (see 
Fig 3.b). Both distributions were fitted to the empirical data 
with root mean square error (RMSE) values that are 
considerably lower that of the corresponding normal 
distribution. For both steady state traffic regimes (free-flow, 
and jam), neither the GEV nor the lognormal distribution 
provided a good fit compared to Gaussian distribution. Since 

the focus of this article is to study the impact of velocity 
distribution on VANETs connectivity (as discussed in the next 
section), which requires studying the distribution of relative 
velocity between vehicles. We limit our discussion in this 
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Fig.4. Plots of relative vehicles velocities distribution; (a) Empirical and 

Gaussian, (b) Empirical and Logistic. 

article to GEV distribution, and will keep the study of 
lognormal distribution to future work. Studying the distribution 
of the difference between two lognormal random variables is a 
rather complex process [15]. 

GEV distribution is a family of probability distributions 
that combines the Gumbel, Fréchet and Weibull distributions. 
It is considered to be the only possible limit distribution of 
properly normalized maxima of a sequence of independent and 
identically distributed (i.i.d.) random variables. The 
corresponding probability density function is given by 
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for kx /  in the case k > 0, and for kx /   in 

the case k < 0. The density is zero outside of the relevant 
range. 

TABLE I. Summary of 3:00 pm velocity distribution fitting 

Velocity, 3:00 

pm 
GEV Gaussian 

Model 

parameters 

μ  = 71.1 ±  0.1 km/hr  

k = −0.125 ± 0.003 

σ = 12.5 ±  0.1 km/hr     
 

μ = 76.9 ± 0.1 km/hr 

 

σ = 13.8 ±  0.1 km/hr 

RMSE 0.016 0.022 

 

Table I summarizes the results of fitting the 3:00 pm 
velocity data to both Gaussian and GEV distributions. The root 
mean square error between empirical and fitted curve is much 
less in the case of GEV distribution. 

GEV distribution has three parameters; μ for location, σ for 
scale, and k for shape. The fitting results show that k is close to 
zero, which mean that the distribution is almost a Gumbel 
(GEV-type-I) distribution. 

We have also compared the empirical velocity distribution 
in the transitional region with the lognormal distribution. The 
best-fit results were practically identical with the 
corresponding fits to the GEV distribution. 

In the next section we show the impact of this on 
connectivity analysis of VANETs. 

III. VEHICULAR AD-HOC NETWORKS 

VANETs are special types of mobile ad-hoc networks. In 
VANETs, vehicles are equipped with transmitters and 
receivers to enable message dissemination, and information 
exchange between them. VANETs have highly dynamic 
topology because of the high mobility of vehicles. 

A. Relative velocity 

In VANETs, connectivity duration between two vehicles is 
a function of the communication range and the relative velocity 
between them. Estimating the connectivity duration depends on 
the distribution of relative velocity. Connectivity duration 
using the Gaussian distribution model of velocities has been 
studied (in [1]). 

In this section we use our findings to study connectivity 
duration using GEV distribution. 

We have shown earlier that velocity distribution follows a 
Gumbel distribution in the transition between free-flow and 
congested traffic. From statistics, it is known that if two 
random variables follow a Gumbel distribution [16], then the 
distribution of their difference follows a logistic distribution. 
The logistic distribution has the following probability density 
function; 








 






























 







2
sech

4

1

1

)( 2

2

v

e

e
vf

v

v

 (3) 

and cumulative distribution function; 



TABLE II. Summary of relative velocity fittings 

Relative velocity, 3:00 

pm 
Logistic Gaussian 

Mean 0.00 ± 0.01 0.00 ± 0.02 

Standard deviation 7.95 ± 0.01 13.42 ± 0.04 

RMSE 0.004 0.009 
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Fig.5. PDF (a) and CDF (b) of Connection duration using Gaussian 

distribution (blue, dashed) and Logistic distribution (red, solid). 
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Fig. 4. shows the result of fitting the empirical velocity 
difference between consecutive vehicles to both Gaussian and 
Logistic distributions. The figures (as well as the fitting data, 
summarized in table II) show that indeed the relative velocity 
distribution is better modeled using Logistic distribution.  

We use these results to estimate the probability distribution 
of the connectivity duration.  

B. Connectivity Duration 

The connectivity duration between two vehicles in a 
VANET is a function of their relative velocity (the absolute 
difference between their velocities). 

 ||/2 vRtc   (5) 

where tc is the connectivity duration, R is the communication 
range, and Δv is the relative velocity between two vehicles. 

This equation has two solutions; v = ctR /2   

The random variable tc is a function of the random variable 
Δv. The distribution of tc can be easily found using the 
distribution of Δv [17]. If the distribution probability density 
function (PDF) of the velocity difference is known to be 

)(vfv , (and assuming that the lane separation between 

vehicles is much less than the headway) then, the distribution 
PDF of connectivity duration ‘tc’ can be found to be [1]; 
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where, u(x) is the Heaviside unit step function. 

In case the PDF is an even function, (6) is reduced to; 
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Both suggested velocity difference PDF functions 
(Gaussian and logistic distributions) are even functions, 
therefore, (7) holds for our work.  

Fig. 5. shows the PDF for connectivity duration for both 
distributions (Blue for Gaussian, and red for Logistic), 
R=100m. From the figure, it is shown that, for the same 
transmission range, the probability of having two vehicles 
communicating for certain duration is higher when estimated 
using Logistic distribution. E.g. for transmission range of 
100m, using the logistic distribution estimates that 
approximately 52.8% of the vehicles will be connected for a 
duration of more than 80 seconds, while using the Gaussian 
distribution estimates that only 47.8% of the vehicles will be 
connected for more than 80 seconds. 



IV. CONCLUSIONS 

In this article we used real traffic data to confirm that 
vehicle velocities follow Gaussian distribution in steady state 
traffic regimes (free-flow, and congestion). We also showed 
that in the transition between free-flow and congestion velocity 
distribution is better modeled by Generalized extreme value 
distribution. We showed that this results in different estimation 
of connection duration between two vehicles in a VANET. 

We limited the work presented here to vehicles travelling 
down the same direction. In future work we will consider 
vehicles travelling in opposite directions of the highway. 
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