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Abstract—Mobile communication has become a part of every-
day life and is considered to support reliability and safety in
traffic use cases such as conditionally automated driving. Never-
theless, prediction of Quality of Service parameters, particularly
throughput, is still a challenging task while on the move. Whereas
most approaches in this research field rely on historical data
measurements, mapped to the corresponding coordinates in the
area of interest, this paper proposes a throughput prediction
method that focuses on a location independent approach. In
order to compensate the missing positioning information, mainly
used for spatial clustering, our model uses low-level mobile
network parameters, improved by additional feature engineering
to retrieve abstracted location information, e. g., surrounding
building size and street type. Thus, the major advantage of
our method is the applicability to new regions without the
prerequisite of conducting an extensive measurement campaign
in advance. Therefore, we embed analysis results for underlying
temporal relations in the design of different deep neuronal
network types. Finally, model performances are evaluated and
compared to traditional models, such as the support vector or
random forest regression, which were harnessed in previous
investigations.

Index Terms—throughput prediction, deep learning, cellular
network

I. INTRODUCTION

Mobile networks are evolving with a high pace in the recent
years and every released cellular network generation provides
a higher amount of bandwidth as well as lower latency. This
technological change further enables novel services and finally
the needs and expectations of the end-user. For example, on
the one hand transport industry enhances their vehicles by
implementing safety features incorporating highly accurate
data from a centralized server. Whereas on the other hand,
passengers demand to use the network capability for their
private needs at the same time, i. e. media streaming. Since
overall bandwidth is a limited resource depending on the
cellular network coverage at the location, exceeding this
maximal capacity is a probable consequence. This effect
especially occurs at transportation hubs where the traffic is
very dense. This was shown in our previous analysis on a
motorway around Frankfurt am Main in Germany [1]. One
possible improvement for these situations is the prediction of
the available throughput during driving, utilized either to adjust
the bandwidth allocation based on messages’ priorities or to
preload data when the capacity is available.

In contrast to previous investigations, which contemplated
location reliant methods for prediction, this paper investigates
the performance of location independent time series based
deep learning models. This approach is chosen to overcome
preliminary measure campaigns at unmapped areas. Thereby,
we examine different Deep Neural Networks (DNNs), in-
cluding Feedforward Neural Networks (FFNs), with a spe-
cial focus on Long Short-Term Memory (LSTM) Recurrent
Neural Network (RNN) models. The latter are according to
recent research even more suitable for time-related regression
problems. These deep learning approaches are compared to
traditional machine learning methods such as Support Vector
Regression (SVR) or Random Forest Regressor (RFR) models
which proved to archieve good results in our recent work [2].

The rest of this paper is structured as follows. Section II
presents related work regarding throughput prediction in ve-
hicular context. Subsequently, Section III introduces two geo-
graphically distinct datasets utilized in this work and explains
the separation for training and valuation in detail. Since
dealing with time series data, Section IV provides an analysis
of the temporal characteristics of the selected features to
improve the design of the deep learning models. Section V
introduces the actual models and their topology. Thereafter,
error metrics are described and final results are gathered in
Section VI comprising an evaluation with regards to the two
considered test tracks. Finally, a conclusion of this work is
given in Section VII.

II. RELATED WORK

Recent algorithms in the research field of throughput pre-
diction in cellular networks are mainly categorized into geo-
graphical and time series based approaches. Especially for the
latter, the usage of Machine Learning (ML) became the focus
of attention in the recent years. Nevertheless, due to the wide
possibilities how to apply these models, the strategies between
the authors vary, and dominant ones will be introduced in the
next paragraphs.

As a first reference, Yue et al. [3] leveraged a Random Forest
(RF) based approach to predict the throughput of Long-Term
Evolution (LTE) connections. Thereby, their prediction model
utilized different low level LTE parameters, i. e. Reference Sig-
nal Receiving Power (RSRP) and Reference Signal Received

                                      
                                                                                                                                               



Dataset Date Datapoints Rounds Distance [km] σTPDL
[kB/s] µTPDL

[kB/s]

Amberg (training) 329 518 60 1626.68 1281.75 996.67

03.04.2018 (Tue.) 52 621 9 243.72 1412.28 1032.96
04.04.2018 (Wed.) 21 716 4 108.99 1505.17 927.84
05.04.2018 (Thu.) 122 710 23 626.47 1153.49 951.57
22.06.2018 (Fri.) 132 471 24 647.50 1296.98 1042.28

Amberg (evaluation) 21 565 4 110.16 946.64 948.88

03.04.2018 (Tue.) 4891 1 27.66 715.81 848.10
04.04.2018 (Wed.) 5678 1 27.57 786.84 852.23
05.04.2018 (Thu.) 4883 1 27.68 1357.16 1104.78
22.06.2018 (Fri.) 6113 1 27.25 799.88 1000.12

Aschaffenburg (evaluation) 49 804 9 165.32 901.61 865.34

04.06.2018 (Mon.) 22 865 3 58.38 610.95 674.17
05.06.2018 (Tue.) 12 464 3 56.73 969.94 848.00
06.06.2018 (Wed.) 14 475 3 50.21 1127.15 1207.34

Table I: Properties of a measurement campaign in Amberg and Aschaffenburg, separated in training and evaluation datasets.

Quality (RSRQ). Other investigations conducted by Ghasemi
kept the idea of a RF based model, but used the parameters
collected with the application OpenSignal1 to predict LTE
down- and uplinks [4]. The RF algorithm also attained decent
results in our previews work [2]. Thereby, it was compared
to the performance of other traditional ML methods such
as Linear Regression (LR) and archieved the same order of
accuracy as SVR models.

On the other side, there are models incorporating the
geographical coordinate of the measurement to anticipate the
throughput. One approach, presented by Tanni et al. in [5],
collected the data of public transportation bus drives and
applied a geostatistical technique called Kriging to interpolate
the throughput measurements. But also in the area of geo-
based models machine learning is gaining popularity, resulting
in hybrid approaches. In [6], Sliwa et al. built a multilayer
map consisting of RSRP, RSRQ, Signal-to-Noise-Ratio (SNR)
and Channel Quality Indicator (CQI). With this information,
they use an M5 Decision Tree model to optimize the overall
system performance and provide interference-free coexistence
with human data traffic that is using the same public cellular
network. Another technique was introduced by Wei et al.
[7]. They inserted the geological coordinate directly as input
for the LSTM RNN models. Accordingly, this procedure
constitutes a geo-based model without explicitly modeling a
map, but implicitly utilizes position information in the DNN
model. The introduced geo-based approaches result in two
disadvantages during model inference. Firstly, they require
an accurate estimate of the forthcoming position, which itself
refers to the problem of trajectory prediction mentioned in [8].
Secondly, this method still relies on the existence of historical
data to build its model, which is one major preliminary of
most geo-based models.

Hence, this paper focuses to design a location independent
time series based model to compensate these disadvantages.

1http://www.opensignal.com

Therefore, a modern Neural Networks (NN) model, the LSTM
RNN model is taken into consideration, since it is leveraged
in related throughput prediction problems [9], [10]. This paper
compares its performance and ability to reflect underlying
temporal correlations during driving and evaluates them with
respect to our former traditional ML models.

III. DATASETS

For the evaluation of the deep learning models’ location,
independent datasets at two locations are leveraged. The first
dataset comprises a new measurement campaign at a test
area used in [2], [11]. It is located in the vicinity of the
city of Amberg, Bavaria, in Germany. As described in the
previous work, this test round is selected, because of its
variety of traffic scenarios, such as urban, interurban, and
motorway roads. In comparison with the former Amberg
dataset [2], [11], the measurement setup is changed to enable
the Multiple-Input and Multiple-Output (MIMO) capability
of the used Qualcomm modems. Besides this modification,
the setup remained the same, including the TCPAnalyzer
tool chain for conducting the measurements with a sampling
frequency of 3.33Hz. Nevertheless, leveraging MIMO results
in higher throughput rates compared to the former dataset that
consequently increases the complexity for prediction models.

In addition, a track with the same road types is chosen for
the evaluation and includes a route between Dudenhofen and
Aschaffenburg, Hessen, in Germany as depicted in Figure 1.

Table I provides a detailed overview of the datasets and the
partitioning. Thereby, the overall throughput metrics for each
set, comprising the arithmetic mean and standard deviation,
are within the same order of magnitude for these test sets,
although they differentiate in the number of samples.

The reason for defining and acquiring two distinct datasets is
to apply the following gradual strategy. Whereas the Amberg
measurements are used for the training and a first location
dependent evaluation of the models, the data points acquired
in Aschaffenburg are exclusively harnessed to determine the

                                                                                                                                               



Figure 1: Test area between Aschaffenburg and Dudenhofen
in Hessen, Germany, including road type annotation.

model inference performance for unseen inputs at an unknown
place. This partitioning will serve as a basis to evaluate the
location independence in Section VI.

IV. TIME CHARACTERISTICS OF THE USED DATA FEATURES

In our previous work [2], we intensively examined the
correlation between throughput and other network parameters
as part the feature selection process prior to the model training.
Since LSTM RNN models further involve temporal relations,
which were not explicitly explored, we extend this analysis.
The objective for this detailed investigation is to determine the
optimal memory length of the LSTM RNN, also referred to as
lag. Setting the input memory length has crucial effects on the
training and model inference. Expanding the input time series
for prediction causes that less data can be used for training, and
more time elapses before the first prediction can be computed.

Thereby, the widely used autocorrelation function is utilized
to elaborate the correlations in sequential data. Based on the
downsampled time series, in which each data point aggregates
the measurements over a sliding window of 15 s, these auto-
correlation values are calculated. Afterwards, the number of
relevant consecutive lags is determined by solely considering
the number of values within a confidence interval of 95%. This
procedure is applied for every selected feature in all training
set rounds. All lag results are summarized in the box plot
depicted in Figure 2. The box plot shows that the median
of autocorrelation values for all features is covered in a lag
of four, corresponding to an overall measurement interval of
one minute. Especially for important features such as RSRP,
RSRQ, Reference Signal Strength Indicator (RSSI), Round-
Trip Time (RTT), and the throughput, this determined lag,
indicated by the dashed line, is not exceeded by any value.
A detailed description of all features can be found in [2].
Accordingly, this memory length is used to prepare the training
dataset for the LSTM RNN models.

V. DEEP LEARNING PREDICTION METHODS

In the following section, models used for training location
independent prediction are introduced. Thereby, our investi-
gations are focused on two types of DNN. On the one hand,
DNNs with multiple fully connected hidden forward layers,
also referred to as FFNs, are considered. On the other hand,
LSTM RNNs, which are a more resilient sub-type of RNNs

Figure 2: Autocorrelation function values of the training
dataset for each selected feature, whereby a dashed line
indicates the lags used to prepare the data for RNNs.

against the vanishing gradient problem, are harnessed. They
differ from usual DNNs by consisting of neurons with internal
states that are capable of keeping track of relations in the
input sequence by using an additional feedback connection.
Thus, they are convenient for optimizing time series regression
problems.

Similar to previous approaches, all models are trained to
perform a next step prediction. Because the time series are
preprocessed to aggregate measurements in slices, the antic-
ipated result is 15 s in the future. Furthermore, the models
are trained to predict the difference from the current value,
instead of forecasting the upcoming absolute throughput. This
operation must be reversed to obtain the absolute values, which
is necessary for the interpretation in the evaluation.

For the FFNs, a topology optimization is carried out. This
comprises to examine the effects on the performance of differ-
ent amounts of hidden layers in combination with a varying
number of neurons per layer. As a result, a model comprising
six wide hidden layers outperforms all other variation and is
used for the detailed evaluation. A schema of the model is
shown in Figure 3a.

As an additional preparation for the LSTM RNN models,
batches are built from the training datasets, each consisting
of ten samples. Similar to the FFN training, various widths
and depths of the network structure are tested, starting from
a plain Vanilla RNN. In addition, the usage of bidirectional
layers is evaluated. The performance result indicates that a
unidirectional LSTM RNN model with two stacked layers,
depicted in Figure 3b, provides the best outcome.

Regardless of the DNN type, model training is implemented

                                                                                                                                               



Figure 3: Selected DNN models used in the evaluation.

to utilize 90% of the input data for training and 10% for
validation, whereby the latter is used to monitor the training
progress of single epochs. As an optimizer, Adam is set with
its default Keras parameters and Mean Squared Error (MSE)
is used as a loss function. With this setup, a training of 250
epochs is performed. Consequently, all DNNs are trained with
regard to this error function and thus it is our main error metric
for the location independent evaluation.

VI. COMPARISON OF AI PREDICTION METHODS

As mentioned in Section III, the evaluation of the different
prediction models is conducted on unseen data of the Amberg
track as well as with the whole data of the Aschaffenburg mea-
surements. Although the models are optimized with regards to
the MSE loss function, for the purpose of error calculation,
several following functions are leveraged. In these formulas,
Ri is defined as the i-th measured value, whereas R̂i is the
i-th forecast:

• Mean Absolute Error (MAE) calculates the mean of the
absolute difference between real and predicted values.

MAE =
1

n

n∑
i=0

|Ri − R̂i| (1)

• Mean Relative Error (MRE) computes the relative error
with regards to the minimum of the real and predicted
values. Thus, a larger absolute error for higher values
is less impactful than the same absolute difference for
overall smaller values.

MRE =
1

n

n∑
i=0

 Ri − R̂i

min(Ri, R̂i)

 s. t. Ri, R̂i > 0 (2)

• Mean Squared Error (MSE) applies the square of the
absolute error and accordingly punishes outliers harsher
than MAE.

MSE =
1

n

n∑
i=0

R̂i −Ri

2

(3)

• Mean Squared Relative Error (MSRE) is a common er-
ror, which is highly sensitive even to single outliers. Since
it is widespread in the area of throughput prediction, we
complement our evaluation to enable comparisons with
future model approaches.

MSRE =
1

n

n∑
i=0

Ri − R̂i

Ri

2

s. t. Ri > 0 (4)

As denoted in Equation 2 and 4, some error functions do not
take all values into account to avoid a possible zero division.

The results of the evaluation for Amberg using all error
functions are summarized in Table II. In addition to the deep
learning and traditional ML methods, also the metrics for the
Persistence Algorithm (PA) are shown. This model is often
employed as a baseline for time series regression and uses the
current value to determine the prediction for the next step,
thus expressed by R̂i+1 = Ri.

Table II: Error results for the valuation rounds of the Amberg
dataset.

Model MAE [kB/s] MRE MSE MSRE

PA 352.10 0.68 385269.67 3.42
SVR 323.34 0.72 319091.62 7.62
RFR 323.53 0.70 263377.85 6.60
FFN 320.51 0.87 262531.51 21.53
LSTM RNN 305.98 0.76 250693.95 13.76

The evaluation of the data in Amberg shows that all deep
learning models are feasible for a prediction and provide a
better outcome compared to the PA in terms of MSE. The
FFN performs better than the SVR and RFR as well and is
solely outperformed by the LSTM RNN.

Furthermore, the DNN methods, trained on the Amberg
training dataset, are tested against measurements from the
different track in Aschaffenburg to prove that these methods
work location independently, without the requirement to feed
additional data into the model. Despite these errors metrics,
depicted in Table III, are slightly higher for this distinct course,
the order of magnitude for error remains the same. Only the
difference in the MSRE indicates that these results might
contain more and/or severe outlier. The evaluation reveals that
with regards to MSE, the LSTM RNN models performs better
than the FFN does.

Table III: The Error results for the valuation round of the
Aschaffenburg dataset.

Model MAE [kB/s] MRE MSE MSRE

FFN 368.72 0.86 278730.90 5,66
LSTM RNN 386.19 1.36 269187.09 25,91

Concluding the evaluation, Figure 4 presents a measured
throughput plot in Amberg. Moreover, the predicted sequence
of the LSTM RNN is additonally plotted into the figure for

                                                                                                                                               



Figure 4: Evaluation of downlink throughput for a round in Amberg including an enlarged segment. Gaps in the sequence
are due to filtering mechanisms, i. e., TCP slow-start phase removal. The enlarged plot demonstrates that the LSTM RNN
prediction outperforms the Persistence Algorithm, since it reacts more accurate to abrupt changes.

comparison. The enlarged segment, recorded on the motorway,
emphasizes the major advantage of DNN over the modest PA
models, which is the fast adaption to the dynamic environ-
ment. As far as our measurements show, this characteristic is
mandatory for an accurate throughput prediction in cellular
networks during driving.

VII. CONCLUSION

Mobile network throughput prediction in moving vehicles
is an important aspect, when it comes down to optimize
the communication in vehicle to network use cases. In this
paper, we presented different DNN approaches which allow
to apply a decent prediction of the throughput as well as
to apply it in an area where no mobile network datasets are
previously collected. Our analysis of the time dependency of
the feature shows that previous values effect the prediction,
which supports the recommendation of various authors to
consider LSTM RNN models. Nevertheless, it turns out that
the performance still depends on the underlying error and loss
functions that are leveraged to optimize the DNNs. In the given
scenario, which uses the MSE as main criterion, the LSTM
RNN outperforms all other used algorithms. Consequently, this
method is also worth considering, if another error or similar
scenarios such as prediction of latency. As this parameter is,
depending on the application, at least as important for the
quality of the communication, we aim to investigate it in our
further work. An investigation of the independence of the
providers could also be a further starting point to improve
the results shown here.
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