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Abstract

We find dense point-to-point correspondences between
two surfaces corresponding to different postures of the same
articulated object in a fully automatic way. The approach
requires no prior knowledge about the shapes being reg-
istered. Furthermore, the approach does not require any
user-specified parameters. We register possibly incomplete
triangular meshes. We model the deformations of an ob-
Jject as isometries and solve the correspondence problem by
aligning the intrinsic geometries of the manifolds in a suit-
able space. We apply the technique to segment the surface
into near-rigid components.

1. Introduction

We aim to find dense point-to-point correspondences be-
tween two articulated surfaces S(®) and S(). The corre-
spondence problem is defined as follows. Given a position
2 on S we aim to find the position z(*) on SV that
corresponds to the same intrinsic location on S(!) as does
(9 on S If the position z(!) is absent on S(Y) due to
incomplete data, no correspondence is found for z(?). We
assume that S(©) and S() are triangular manifolds.

Applications that require knowledge of dense point-to-
point correspondences between two articulated surfaces in-
clude mesh deformation [3], shape registration [23], object
recognition [16], and mesh parameterization [20, 27].

This type of precessing is often applied to real-world
data captured using 3D laser-range scanners or image-based
reconstruction. The reconstructed surfaces are often noisy
or incomplete due to occlusions. This makes the problem
of automatically computing the dense point-to-point corre-
spondences challenging.

Finding point-to-point correspondences is a difficult
problem because local regions on the surface are often not
distinctive. This results in searching a large set of candi-
date correspondences when computing the correspondence
for each object point. Previous methods for finding corre-
spondences for articulated surfaces often restrict the search
space using prior knowledge about the objects being reg-
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istered [1] or use probabilistic methods to solve the prob-
lem [2]. These approaches may produce inaccurate corre-
spondences. Two methods were proposed to find the corre-
spondences in a fully automatic way by minimizing a defor-
mation cost [15, 33]. These methods do not assume knowl-
edge of markers or template shapes. However, both meth-
ods rely heavily on non-intuitive user-specified parameters.

We propose a new method to solve the correspondence
problem in a fully automatic way that does not require any
user-specified parameters. We find candidate correspon-
dences using multi-dimensional scaling as in Jain et al. [17]
and Wuhrer et al. [31]. We then find the best alignment
by choosing the candidate that has the shortest deforma-
tion distance. The deformation distance is measured in a
shape space that represents near-isometric morphs of trian-
gular meshes [7].

2. Related Work

This section reviews previous work on finding corre-
spondences between two articulated surfaces. Allen et
al. [1] use a given template model of a human body and
a set of marker positions to solve the correspondence prob-
lem in an automatic way. The approach deforms the tem-
plate mesh to fit a range scan of a human using a smooth
deformation. This method requires prior knowledge about
the shape being registered and about marker positions.

Recently, a number of markerless registration algorithms
were developed [2, 9, 17, 31]. Anguelov et al. [2] solve
the registration problem using loopy belief propagation on
a Markov network. This approach maximizes a joint prob-
abilistic function over all possible correspondences. The
method ensures that close-by points on one surface map to
close-by points on the other surface and that geodesics are
preserved. This method fails when registering surfaces of a
human body due symmetric misalignments of the front and
the back of the body.

Jain et al. [17], Wuhrer et al. [31], and Bronstein et al. [9]
solve the non-rigid correspondence problem by matching
the intrinsic geometries of the surfaces. First, the ap-
proaches embed the intrinsic geometry of the surface into
a Euclidean space using multi-dimensional scaling (MDS).



Second, the approaches match the embeddings. These ap-
proaches register shapes with nearly symmetric canonical
forms erroneously. This paper presents an approach that
overcomes the drawback by aligning the shapes using a
more stable procedure. The alignment procedure can be
viewed as minimizing a deformation distance.

Bronstein et al. [8] also solve the correspondence prob-
lem by matching the intrinsic geometries of the surfaces.
However, instead of embedding the intrinsic geometry of a
shape S in Euclidean space, Bronstein et al. embed the in-
trinsic geometry of .S into a triangular surface () using gen-
eralized MDS. Generalized MDS aims to embed the points
on S into the surface (), such that the geodesic distance on
S is approximated well by the geodesic distance of the cor-
responding points on (). This method avoids the large em-
bedding errors caused by embedding into Euclidean space.
However, Bronstein et al. require a template mesh when the
aim is to register two incomplete surfaces.

Zeng et al. [32] embed the intrinsic geometry of a surface
with arbitrary topology in the plane using a conformal map-
ping. They then solve the registration problem by matching
two conformal mappings in the plane.

Recently Huang et al. [15] and Zhang et al. [33] inde-
pendently developed two similar approaches to solve the
non-rigid correspondence problem. Both approaches find
the correspondence by minimizing a deformation energy.
Huang et al. [15] propose a technique that solves the corre-
spondence problem iteratively by alternating between a cor-
respondence optimization and a deformation optimization.
The approach can be viewed as an extension of the Iterative
Closest Point algorithm (ICP) [5] that is often used to solve
the rigid correspondence problem. The method is shown to
perform well if the two meshes are initially well aligned. If
the alignment is poor, the method fails. The main drawback
of this method is that it relies heavily on non-intuitive user-
defined parameters. This makes the method impractical.
Zhang et al. [33] propose a technique that solves the cor-
respondence problem by finding a small set of features and
by choosing the best feature correspondence as the one that
minimizes a deformation energy. To improve the efficiency
of the algorithm, the tree of all matching features is pruned
if the features are too dissimilar. Nonetheless, the algorithm
is not as efficient as the algorithm of Huang et al. [15]. Once
the feature correspondences are computed, the full corre-
spondence is found by deforming the full mesh based on
the feature points. The main drawback of this method is the
computational inefficiency. Results are only demonstrated
for models with less than 4000 vertices. Furthermore, like
the method of Huang et al., the tree pruning relies heavily
on non-intuitive user-defined parameters. The authors leave
finding parameters automatically for future work.

In this work, we find the best alignment of the shapes in
a shape space representing the intrinsic geometry of a tri-

angular manifold. Shape spaces that represent the intrin-
sic geometry of shapes are used in morphing, where the
goal is to smoothly transform a source shape into a target
shape [30, 18, 7]. By finding the best alignment in shape
space, we minimize a deformation energy.

3. Overview of Approach

This section gives an overview of our algorithm. The ap-
proach starts by finding a set of candidate correspondences.
The correct correspondence is found as the candidate corre-
spondence that minimizes a deformation energy.

The candidate correspondences are found using multi-
dimensional scaling. This approach has previously been
used to solve the correspondence problem [17, 31]. How-
ever, the previous approaches have the drawback that near-
symmetric shapes are registered erroneously because the
wrong candidate correspondence is accepted as the correct
solution to the correspondence problem. For instance, the
back of a person may be registered to the front although
the back and front of a person are not entirely symmetric to
each other. Section 4 reviews how to efficiently find candi-
date correspondences.

To find the correct candidate correspondence, we evalu-
ate a deformation cost for each candidate correspondence.
The candidate correspondence with the smallest deforma-
tion cost is chosen as the final correspondence. To evaluate
the deformation cost, we compute a deformation distance
between S and SV in a shape space that was previously
used to morph between near-isometric objects [7]. Section 5
outlines how to compute the deformation cost for a given
candidate correspondence.

4. Finding Candidate Correspondences Via
Multi-Dimensional Scaling

This section describes how to find a set of candidate cor-
respondences.

4.1. Finding Dense Correspondences

We model the deformations of a shape as isometries and
solve the correspondence problem by matching the intrinsic
geometries of two shapes. To match the intrinsic geome-
tries, we map the intrinsic geometries of the surfaces into
a low-dimensional Euclidean space via multi-dimensional
scaling. Elad and Kimmel [13] introduced the embedding
of the intrinsic geometry of a surface into a low-dimensional
Euclidean space and denoted it the canonical form of a sur-
face. If shapes are deformed isometrically, then canonical
forms are posture-invariant shapes that represent the intrin-
sic geometry of a manifold. Note that in this application,
multi-dimensional scaling is used to embed the intrinsic ge-
ometry of a shape in Euclidean space without reducing the
dimensionality of the data.



To find the candidate correspondences, we employ a
coarse-to-fine strategy. We compute sample sets P(") con-
taining n/(") vertices from S(") for r = 0, 1 using Voronoi
sampling. We compute the geodesic distance 51(3) between
every pair of samples p; and p; using fast marching [19].
To account for incomplete models, we compute confidence
values
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where m; ; is the number of edges on the geodesic path
computed by the fast marching technique from p; to p; and
where mZ  is the number of edges tracing a hole of S(") on
the geodesic path from p; to p;. We use J; ; as dissimilar-
ities and w; ; as weights to embed the samples P of the
manifold S(") into R¥ via least-squares multi-dimensional
scaling (MDS) [6, p.146-155]. In the following, k = 3.

To solve the correspondence problem, we compute the
rigid correspondence between the canonical forms. The
canonical forms X (") are invariant with respect to rotation,
translation, and reflection [11]. Hence, we need to consider
multiple alignments of X (*) and X(*). We follow the com-
mon approach to align both X (?) and X () by the eigenvec-
tors of their respective data covariance matrices [17, 31].
For each possible sign alignment of the eigenvectors, we
compute an optimal rigid correspondence using the Hun-
garian method [26]. The Hungarian method solves the fol-
lowing problem: given a sign alignment, find an assignment
1)

function a(7) that assigns exactly one point Xi( ) to every

10)
point X', such that Ey = Z:’:: a(x, Xég)) is mini-
mized, where d denotes the Euclidean distance in R*. This
results in 2* different rigid candidate correspondences.

4.2. Eliminating Erroneous Matchings

To eliminate erroneous matchings that assign a point
X&Z) to a point Xi(o), we wish to only accept correspon-
dences that form a graph G(©) on S(©) that is approximately
isometric to a graph G(Y) on S™). We can find these corre-
spondences using a kernel extraction method as proposed by
Leordeanu and Hebert [22] and used by Huang et al. [15].
The approach proceeds as follows. We first compute a con-
sistency matrix C' with entries
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Note that 0 < ¢;; < 1. The matrix C' measures if two
pairs of correspondences are consistent. They are consistent
if and only if 51(70]-) and 5((11(2)@(]') are almost identical. In
case of consistency, c; ; is close to 1. To allow for small

non-isometric deformations, we do not use C to extract the

valid correspondences, but define a matrix M to find the
kernel [15]. The entries of M are
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0 otherwise,

where c¢g is a threshold. The threshold ¢y describes how
much non-isometric deformation is acceptable. Unlike
Huang et al. [15], we do not set the threshold empirically.
Instead, to compute ¢y in a fully automatic manner, we ana-
lyzed the distribution of the entries of the matrix C' over all
2" candidate correspondences. We found that the distribu-
tion resembles part of a Gaussian distribution. The distri-
bution for one of the Alien models discussed in Section 6 is
shown in Figure 1. The figure shows a histogram of the val-
ues ¢; ;. We use the 2¥ matrices C' (one matrix per candidate
correspondence) to learn the underlying normal distribution
(i, 0?) via maximum likelihood estimation. We then set co
to ;1 — 3 x 0. This way, 99.7% of the correspondences are
expected to be accepted.

Finally, we project the vertices S \ P(") to the embed-
ding space. The approach finds the correspondence of the
projected vertices by evaluating an approximating thin-plate
spline (TPS) mapping the embedding X (*) to X (M) [12].

A coarse-to-fine strategy is implemented by performing
the least-squares MDS and the Hungarian assignment on a
sample set P(") of vertices computed using Voronoi sam-
pling [14]. To find dense correspondences, all vertices of
S \ P() are projected to the embedding space and regis-
tered using the TPS mapping and a nearest neighbor search
using a kd-tree. We only accept correspondences that are
consistent with the sample correspondences according to
the learned parameter cg.

The running time of computing all 2¥ candidate corre-
spondences is

O(n'nlogn +n?t + 28 ((n' + k) + n(tk + V/n))),

where n = maz(n(9,nM), n' = maz(n'©,n/M), k is
the dimension of the embedding space, and ¢ is the maxi-
mum number of iterations used to compute the embedding
of the points. The reason is that initially, the algorithm com-
putes the set P(") via Voronoi sampling in O(n'nlogn)
time and the canonical forms of P(") in O(n/?t) time. Next,
for each of the 2* possible alignments, the algorithm com-
putes the Hungarian matching and the TPS mapping in
O((n’+k)?) time. Finally, the algorithm computes all near-
est neighbors in O(n(tk++/n)) time using a kd-tree. Since
k = 3 and since on average n’ and ¢ are much smaller than
n, the average running time of the algorithm is O(n+/n).

The following section outlines how we choose the best
candidate correspondence.
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Figure 1. The distribution of the entries of the matrix C over all 2 candidate correspondences for one of the Alien models. The left side
shows the distribution. The right side shows the Gaussian obtained by mirroring the values along x = 1.

5. Choosing a Candidate Correspondence

Recall that we assume that S(®) and S™) are near-
isometric. Hence, we wish to accept the correspondence
that deforms S(©) to S() in the most isometric way. Given
a candidate correspondence, we know two sets of ordered
vertex coordinates: a set of vertex coordinates V (?) on S(©)
and a set of vertex coordinates V(1) on S™). Note that V(")
is a subset of the vertices of S(") because some vertices have
no correspondence. To choose the correspondence that de-
forms the shape in the most isometric way, we need to com-
pute a common mesh structure M such that embedding M
into R? with V(©) as vertices approximates S(®) and such
that embedding M into R® with V(! as vertices approxi-
mates S, Once M is known, we need to evaluate a cost
function such that minimizing the cost function over all can-
didate alignments yields the correspondence that deforms
5 to S in the most isometric way.

5.1. Computing a Common Mesh M

Recall that we know the underlying mesh structures
MO of SO and MM of SM). Note that M(®) and M)
do not have the same topology. Furthermore, M(?) and
M@ may be incomplete or even disconnected.

We compute two mesh structures M’(") starting from
M ("), The goal for M’(") is to only contain vertices that are
in the set V(™). We compute M'(") from M (") using half-
edge collapses. We collapse all the half-edges until only
vertices in V(") remain. We always collapse the half-edge
that results in the least change in volume. Lindstrom and
Turk [24] explain how to find this half-edge. This results in
two mesh structures on V("): M%) and M’(V). Both M"(©)
and M’ have the property that embedding them into R?
with V(9 as vertices approximates S(°) and that embedding
them into R3 with V(1) as vertices approximates S(1).

5.2. Evaluating a Cost Function

Recall that M denotes a mesh structure such that embed-
ding M into R? with V(9) as vertices approximates S(°) and
such that embedding M into R?® with V(1) as vertices ap-
proximates S™). Given M, V(©) and V(1) we can evaluate
how isometric the two deformed shapes are by computing
the energy
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where F is the edge set of M and ’UZ(T) is the 4-th vertex in

the ordered set V(") for r = 0, 1. The energy F(M) mea-
sures how isometric the shapes are because a deformation
of a shape represented by a triangular mesh is isometric if
and only if all triangle edge lengths are preserved during the
deformation [18].

The energy E(M) is a deformation distance in the shape
space S that captures the intrinsic geometry of the deformed
mesh [7]. Kilian et al. [18] note that we can find the true
point-to-point correspondences between two deformed tri-
angular meshes over a set of possible candidate correspon-
dence alignments by computing the distance in S for each
alignment. The correct alignment is found as the alignment
with minimum distance. This observation holds because
the correct correspondence is the shortest geodesic path in
shape space S. Note that the shape space used by Kilian et
al. simply encodes the extrinsic geometry of the deformed
shapes. We use a different shape space introduced by Bose
et al. [7] because this shape space encodes the intrinsic ge-
ometry of the deformed mesh. It is therefore more suitable
to measure the deformation distance.

To obtain a symmetric deformation energy, we evaluate
the energy twice and choose the cost as the maximum of the
two results. That is, the deformation cost for a candidate
correspondence is computed as

Ep = max(E(M'®), E(M'™)).



6. Results

This section presents experiments using the algorithm
presented in this paper. The experiments were conducted
using an implementation in C++ on an Intel Pentium D with
3.5 GB of RAM. OpenMP was used to improve the effi-
ciency of the algorithms. To minimize the energy when
computing the canonical form, a quasi-Newton method
is used. The quasi-Newton method used is the limited-
memory Broyden-Fletcher-Goldfarb-Shanno scheme [25].
For implementation details of this approach, see Wuhrer et
al. [31].

We first show some results of the correspondence algo-
rithm. We then show how the computed correspondence
can be used to find near-rigid components.

6.1. Correspondence Results

The first experiment evaluates the quality of our ap-
proach. We compute the correspondences between four
poses of an alien model. Each of the poses contains 6858
vertices. The models were obtained by animating a model
from the Princeton Shape Benchmark [28] using the ap-
proach by Baran and Popovi¢ [4]. The experiment is shown
in Figure 2. We found the correspondences between posture
(a) and postures (b),(c), and (d) in this experiment. Vertices
on the arms, legs, and torso are assigned a color in posture
(a). The corresponding points in postures (b),(c), and (d)
are then displayed using the same color. Note that some
vertices do not obtain a color in postures (b),(c), and (d) be-
cause no correspondence was found for those vertices. We
can see that a visually pleasing correspondence is found for
all postures. Our implementation takes about 35 minutes to
find each of the correspondences.

We compare the correspondences found by our algo-
rithm to the ground truth by computing the geodesic dis-
tances between the correspondence found by the algorithm
and the true correspondence for each vertex. We measure
the error in correspondence as the number of edges along
the shortest path between the correspondence found by the
algorithm and the true correspondence. Since the algorithm
rejects erroneous matchings automatically, some points do
not obtain a correspondence. We do not assign an error
to rejected correspondences. When registering posture (a)
and posture (b), 5764 correspondences are rejected as erro-
neous. When registering posture (a) and posture (c), 4710
correspondences are rejected as erroneous. When register-
ing posture (a) and posture (d), 4930 correspondences are
rejected as erroneous. A histogram of the error encountered
is shown in Figure 3. The histogram shows three differ-
ent data sets: the set of errors when corresponding posture
(a) to posture (b) is shown in light grey, the set of errors
when corresponding posture (a) to posture (c) is shown in
dark grey, and the set of errors when corresponding posture

(a) to posture (d) is shown in white. Nearly all of the corre-
spondences found by our algorithm between posture (a) and
postures (c) and (d) are accurate within a distance of two
edge lengths. This shows that the presented approach yields
correspondences of high quality. In case of corresponding
postures (a) and (b), the best candidate correspondence is
found. That is, no front-to-back mismatching occurs. The
large correspondence error is a result of non-isometric mod-
els.

Note that unlike in the previous approach by Wuhrer et
al. [31], no symmetry alignment problems occur. However,
our approach accepts fewer correspondences.
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Figure 3. Histogram of errors.

Second, we evaluated the proposed approach using the
four models with large non-rigid deformation shown in Fig-
ure 4. Each row shows the correspondences between the
leftmost model in the row with each of the other models in
the same row. The correspondences are visualized as fol-
lows. For the experiments shown in the first and third rows,
we manually segmented the leftmost models. Each point
that belongs to a segment is assigned a color in the leftmost
model. For the remaining experiments, each point that has a
corresponding point in another posture is assigned a unique
color in the leftmost models. The corresponding points in
the other postures are then displayed using the same color.

The cat and horse models were created and used by Sum-
ner et al. [29]. The cat models contain 7207 vertices. The
horse models contain 8431 vertices. In both cases, we use
2000 samples to compute the canonical forms. The gorilla
and centaur models were created by Bronstein et al. [9].
The gorilla models contain between 2028 and 2046 vertices.
The centaur models contain 3400 vertices. In both cases, we
use 1000 samples to compute the canonical forms.

The experiments show that the proposed approach is
suitable to compute pairwise correspondences between



3
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models with large deformation. Our implementation com-
putes each of the correspondences in less than 10 minutes.

Third, we evaluated the performance of the proposed ap-
proach for models with incomplete underlying meshes. We
visualize the correspondence using the same approach as in
the previous experiments. The models shown in Figure 5
contain many small holes. The models are from the McGill
3D shape benchmark [34] and contain 21338 and 25658
vertices. We use 2050 samples to compute the canonical
forms. Note that the correct correspondence is found. No
symmetric alignment problems occur. This shows that the
proposed approach is suitable for incomplete models with
small holes. Our implementation computes the correspon-
dences in about 80 minutes.

(b)

Figure 5. Correspondence for incomplete models of a bear.

The proposed approach has limitations. One limitation
we encountered in our experiments is due to the assump-
tion that models deform approximately isometrically. If the
models deform non-isometrically, the incorrect correspon-
dence is found. An example of this limitation is shown in
Figure 6. The models were created by Bronstein et al. [9].
Poses (e) and (f) are registered correctly. However, the re-
maining poses register incorrectly. Note that none of the
incorrect poses is simply a symmetric misalignment. In-
stead, parts of the object are registered correctly and other
parts of the object are registered incorrectly. For instance, in
pose (b) the arms are registered correctly while the legs are
registered incorrectly. Note that in those cases, none of the
8 candidate correspondences we compute is correct. This
problem does not arise because we choose the incorrect can-
didate correspondence, but because none of the candidate
correspondences is correct. This problem occurs although
the embedding error is small when computing the canonical

(©) (d)

Figure 2. Correspondence for models of alien in postures (a) to (d) with known ground truth.

forms. This shows that the models are not isometric.

6.2. Application to Finding Near-Rigid Components

An application of the correspondence problem is the
problem of segmenting a mesh into near-rigid components
based on a set of deformed input meshes. This section ap-
plies the proposed algorithm to the problem of segmenting
a mesh into near-rigid components. To compute the seg-
mentation, we first need to find a complete corresponding
mesh. Note that the proposed algorithm only computes
point-to-point correspondences for a subset of the vertices
because erroneous correspondences are rejected using the
kernel technique described above.

To compute two complete meshes in correspondence
from one of the reduced meshes M’'(") for r = 0, 1, we use
the mean-value geometry encoding introduced by Kraevoy
and Sheffer [21]. With the mean-value encoding, we can
find a deformation of M (") that interpolates the points with
known correspondence in M (("+1) mod 2) ‘T compute this
deformation, an energy needs to be minimized. We mini-
mize this energy using numerical derivatives as in Kraevoy
and Sheffer. We make the deformed mesh as isometric as
possible to M (") by minimizing the isometric energy intro-
duced by Kilian et al. [18]. We slightly modify the energy to
ensure that the deformed mesh interpolates the points with

known correspondence in M ((7+1) mod 2),

Once the correspondence is known, the near-rigid com-
ponents are found using a clustering technique in the shape
space encoding the intrinsic geometries of the meshes. The
clustering algorithm proceeds in two steps. First, clusters
are computed in the dual domain of the mesh. Two trian-
gles are in the same cluster if they move almost rigidly to
each other. Second, small clusters are merged to the closest
adjacent cluster to avoid over segmentation of the model.
The closest adjacent cluster is the one that moves the most
rigid with respect to the current cluster.

Figure 7 shows the near-rigid segmentation obtained for
the models shown in the top row of Figure 4. Note that the
overall skeletal structure is captured. However, the face of
the cat is over-segmented due to incorrect correspondences.



Figure 6. Correspondence for models of a dancer that does not deform isometrically.

Figure 7. Near-rigid segmentation of the cat model.

7. Conclusion

This section summarizes the contribution of this work
by comparing our algorithm to the recent related work by
Zhang et al. [33] and Huang et al. [15]. Furthermore, we
summarize limitations of our algorithm.

We find the correct correspondence by minimizing a de-
formation cost. This is similar to the recent approaches by

Zhang et al. and Huang et al. Like the algorithms by Zhang
et al. and Huang et al., our algorithm works well for iso-
metric surfaces. No prior knowledge about the objects be-
ing registered is required. The algorithm by Huang et al.
outperforms our algorithm in terms of running time. The
running time of Zhang et al.’s algorithm is comparable to
the running time of our algorithm.

The main advantage of this work compared to the work
by Zhang et al. and Huang et al. is the presentation of a pa-
rameter free method that solves the correspondence prob-
lem. This is an important contribution because the large
number of non-intuitive user-specified parameters required
by the algorithms by Zhang et al. and Huang et al. renders
their algorithms impractical.

Finally, we summarize some limitations of our approach
that should be addressed in the future:



Surfaces that are not isometric cannot be registered re-
liably using this algorithm, as discussed in Section 6.

Surfaces with large holes cannot be registered reliably
using this algorithm, since large holes alter the global
shape of the canonical embedding of the sample points.

Surfaces that cannot be represented well in Euclidean
spaces cannot be registered reliably using this algo-
rithm. Although the gorilla models have large embed-
ding error, we never encountered this problem in our
experiments. This problem is intrinsic to approaches
that use canonical forms in R¥ and can be avoided by
computing canonical forms on template shapes [9].

Surfaces with many significant outliers cannot be reg-
istered reliably using this algorithm, because MDS is
not robust with respect to outliers [11].

References

(1]

(2]

(3]

[4]
(5]
(6]
(7]

(8]

(9]

(10]
(11]
(12]
(13]

(14]

B. Allen, B. Curless, and Z. Popovi¢. The space of hu-
man body shapes: reconstruction and parameterization from
range scans. ACM TOG, 22(3):587-594, 2003.

D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, H.-C. Pang,
and J. Davis. The correlated correspondence algorithm for
unsupervised registration of nonrigid surfaces. In Neural Inf.
Proc. Systems, 2004.

D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,
and J. Davis. Scape: shape completion and animation of
people. ACM TOG, 24(3):408-416, 2005.

I. Baran and J. Popovi¢. Automatic rigging and animation of
3d characters. ACM TOG, 26(3), 2007.

P. Besl and N. McKay. A method for registration of 3-d
shapes. IEEE TPAMI, 14(2):239-256, 1992.

I. Borg and P. Groenen. Modern Multidimensional Scaling
Theory and Applications. Springer, 1997.

P. Bose, J. O’Rourke, C. Shu, and S. Wuhrer. Isometric mor-
phing of triangular meshes. CCCG, pages 55-58, 2008.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. General-
ized multidimensional scaling: a framework for isometry-
invariant partial surface matching. PNAS, 103(5):1168—
1172, 2006.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Calculus
of non-rigid surfaces for geometry and texture manipulation.
IEEE TVCG, 13(5):902-913, 2007.

K. L. Clarkson. A randomized algorithm for closest-point
queries. SIAM Journal on Comput., 17(4):830-847, 1988.
T. Cox and M. Cox. Multidimensional Scaling, Second Edi-
tion. Chapman & Hall CRC, 2001.

I. Dryden and K. Mardia. Statistical Shape Analysis. Wiley,
2002.

A. Elad and R. Kimmel. On bending invariant signatures for
surfaces. IEEE TPAMI, 25(10):1285-1295, 2003.

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi. The far-
thest point strategy for progressive image sampling. /EEE
TIP, 6(9):1305-1315, 1997.

[15]

[16]

(17]

(18]
[19]

(20]

(21]

(22]

(23]
[24]

[25]

(26]

(27]
(28]
(29]

(30]

(31]

(32]

(33]

(34]

Q. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-
rigid registration under isometric deformations. CGF, 27(5),
2008.

V. Jain and H. Zhang. A spectral approach to shape-based re-
trieval of articulated 3d models. CAD, 39(5):398-407, 2007.
V. Jain, H. Zhang, and O. van Kaick. Non-rigid spectral
correspondence of triangle meshes. 1JSM, 13(1):101-124,
2007.

M. Kilian, N. J. Mitra, and H. Pottmann. Geometric model-
ing in shape space. ACM TOG, 26(3), 2007.

R. Kimmel and J. Sethian. Computing geodesic paths on
manifolds. PNAS, 95:8431-8435, 1998.

V. Kraevoy, A. Sheffer, and C. Gotsman. Matchmaker: Con-
structing constrained texture maps. ACM TOG, 22(3):326—
333, 2003.

V. Kraevoy, A. Sheffer, and C. Gotsman. Mean-value geom-
etry encoding. IJSM, 12(1):29-46, 2006.

M. Leordeanu and M. Hebert. A spectral technique for corre-
spondence problems using pairwise constraints. [EEE ICCV,
2005.

X. Li and I. Guskov. Multi-scale features for approximate
alignment of point-based surfaces. In SGP, 2005.

P. Lindstrom and G. Turk. Fast and memory efficient polyg-
onal simplification. In /IEEE Vis., pages 279-286, 1998.

D. C. Liu and J. Nocedal. On the limited memory method for
large scale optimization. Math. Programming, 45:503-528,
1989.

J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the Soc. of Industrial and Applied
Math., 5(1):32-38, 1957.

J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-
surface mapping. ACM TOG, 23(3):870-877, 2004.

P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser.
princeton shape benchmark. SMI, 2004.

R. W. Sumner and J. Popovi¢. Deformation transfer for tri-
angle meshes. ACM TOG, 23(3):399-405, 2004.

Y. M. Sun, W. Wang, and F. Chin. Interpolating polyhedral
models using intrinsic shape parameters. The Journal of Vis.
and Computer Animation, 8(2):81-96, 1997.

S. Wuhrer, C. Shu, Z. B. Azouz, and P. Bose. Posture in-
variant correspondence of incomplete triangular manifolds.
IJSM, 13(2):139-157, 2007.

W. Zeng, Y. Zeng, Y. Wang, X. Yin, Xianfeng Gu, D. Sama-
ras, 3D Non-rigid Surface Matching and Registration Based
on Holomorphic Differentials. ECCV, 2008.

H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick,
and A. Tagliasacchi. Deformation-driven shape correspon-
dence. CGF, 27(5), 2008.

J. Zhangand,K. Siddiqi, D. Macrini, A. Shokoufandeh, and
S. Dickinson. Retrieving articulated 3-d models using medial
surfaces and their graph spectra. EMMCVPR, 2005.

The



