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Abstract

We introduce a dual, physically meaningful metric for
verifying whether a 3D model occupies a hypothesized lo-
cation in LiDAR scans of a real world scene. We propose
two complementary measures: consistency and confidence.
The consistency measure uses a free space model along
each scanner ray to determine whether the observations are
consistent with the hypothesized model location. The con-
fidence measure collects information from the model ver-
tices to determine how much of the model was visible. The
metrics do not require training data and are more easily
interpretable to a user than typical registration objective
function values. We demonstrate the behavior of the dual
measures in both synthetic and real world examples.

1. Introduction

Light Detection and Ranging (LiDAR) can be used to
gather three-dimensional information about a scene that is
impossible to obtain with standard optical imaging, such as
the position of an object occluded by foliage. While devices
for range scanning have recently become more widely avail-
able, substantial challenges remain for automatically ex-
tracting and understanding the information such scans con-
tain.

Many problems including object detection, object recog-
nition, and surface registration, share a common final step
of aligning a 3D model with a LiDAR scan. The model
is typically in the form of a triangulated mesh. In this pa-
per, we propose a verification procedure using two com-
plementary metrics that can be used on the outputs of any
such alignments. We take as input a triangulated mesh rep-
resentation of a 3D model, one or more LiDAR scans of a
scene, and an estimated transformation of the model into the
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scene. We wish to evaluate the hypothesis that the object is
present at the given position. The verification procedure is
independent of the method that produced the location hy-
pothesis, so it is objective and unbiased in deciding if the
position is indeed reasonable and correct. The advantage
of the dual metric is that we can answer two independent
questions simultaneously. We use a measure of consistency
to determine if the object is in a position that makes sense
physically. We use a measure of confidence to determine,
if indeed the object is at a reasonable position, how much
of it we have observed. The values produced by our consis-
tency and confidence measures are both between 0 and 1, so
they are easy to interpret for any data set. Together, the met-
rics enable a user to make a well-informed decision about
the likelihood of an object’s presence or the need for more
scans of the scene to answer the question more conclusively.

The last step of many object detection methods is Itera-
tive Closest Points (ICP) refinement [17]. For this reason, a
variation of the ICP cost function value is generally used as
the final “quality of match” value. To enable a model to be
matched to a partial scan, the ICP cost function is typically
modified to include only points whose nearest neighbor is
within some threshold [13]. This drives the cost function to
a very low value for a correct, partially overlapping match,
but for an incorrect match, the value is still, by definition,
fairly low. Furthermore, the ICP cost function value gen-
erally depends on the scale, sampling density, and parame-
terization of the problem, and is impossible to interpret as
an absolute measure of match quality. We show that our
metrics are much more discerning of the actual quality of a
match.

The rest of the paper is organized as follows. In Section 2
we review related work on object detection and verification
in range imagery. Sections 3 and 4 define the consistency
and confidence measures, respectively. Section 5 describes
the results of many experiments on both simulated and real
data to demonstrate several aspects of the measures. Section
6 concludes the paper with discussion and ideas for future
work.



2. Related Work

Registering a model to a LiDAR scan is a common prob-
lem in object detection, object recognition, automatic target
recognition, and 3D registration. Therefore, there is a sig-
nificant body of work in which it is required to verify an
object position as the last step of the algorithm.

Marino and Vasile [16] described a method to find mil-
itary vehicles in LiDAR scans of outdoor scenes. Their
final verification procedure, a “goodness of fit” test, used
a weighted spin image [6] correlation coefficient. Huber
et al. used a parts based approach [4] to classify objects
with heavy self-occlusion into one of several predetermined
classes. Chevalier et al. [2] located ground targets in large,
outdoor scenes, first removing many scene points using
a priori information (e.g., that the scene contains a large
ground plane and many tall, thin trees). In each of these
cases, our verification procedure could be used to provide
an analyst with a method-independent, easily-interpretable
physical check of the final detected object position.

Huber’s visibility consistency [5] is a method of deter-
mining the quality of alignment between two surfaces de-
rived from range scans. A free space violation occurs if,
after alignment, points in one of the scans occur in the free
space of another scan’s perspective. This technique requires
preprocessing to extract surfaces from the range images,
and hand-labeled training data to estimate the probability
distributions of the distances between two surfaces along
each ray in the case of correct and incorrect alignments.
Mian et al. [9] introduced the related concept of “active sen-
sor space violation” as a means of determining the accuracy
of a model-to-scene registration. This technique requires
the scene and the model to have approximately equal sam-
pling densities and is based on the number of model points
that have a scene point within a specified distance threshold.
They also used the difference between the volume occupied
by the registered sets of points and the volume occupied by
the model itself to determine a “bounding dimension” con-
straint that provides a a coarse idea of whether the point sets
are approximately correctly aligned.

Patterson et al. [11] proposed a two-step method for find-
ing multiple similar objects in large data sets. First, possible
positions are identified using spin images. These positions
are then verified using Extended Gaussian Images [3]. The
verification procedure requires hand-labeling parts of the in-
put to provide exemplars of the objects of interest. Smith et
al. [15] proposed a verification function based on a learned
linear combination of several measures of registration ac-
curacy, including variation in the normals of corresponding
points, the stability of the covariance matrix of the estimated
transformation, and a novel boundary alignment check. We
emphasize that our method requires no training data.

3. The Consistency Measure

The first measure we propose is consistency, which is
based on the violation of free space. That is, for a LIDAR
ray to have reflected off of a scene point s, there must have
been no objects along the line segment from the scanner
origin to s.

We place the model in the scene at a hypothesized lo-
cation. For each detected point in the scene, s, if the ray
from the scanner through the point intersects the model, we
have a “comparable pair” with which we can reason about
free space. We compute this intersection efficiently by stor-
ing the model triangles in an octree and using standard ray-
triangle intersection techniques [14]. The number of com-
parable pairs is denoted /N.. We know the direction of each
scene point, s, from the scanner, and denote its distance
from the scanner as d,. The distance from the scanner to
the model intersection, m, is denoted d,,. By considering
the difference d,,, — ds, we can decide the consistency of
the pair. If d,,, — ds; > 0, the scene point is in front of the
model point. This point could have been produced by either
an occluding object or the object in the correct position, so
we label it consistent. If d,, — ds < 0, the scene point
is behind the model point, which indicates that the LiDAR
ray has passed through the object. This is a contradiction
to the model being located at the hypothesized position, so
we label the point inconsistent. To allow for noise in the
acquisition process as well as slight error in the alignment,
we introduce a mismatch allowance, a. We modify the con-
ditions accordingly as given in (1) and Figure 1.
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Figure 1: Diagram of consistency function

It is important to note the fundamental asymmetry in the
consistency function. Model surfaces at equal distances in
front of and behind a scene point would have very different
consistency values, since the former is physically contradic-
tory but the latter could have been produced by occlusion.



Figure 2 illustrates the idea with three examples of compa-
rable pairs. In ray A, the scene point is significantly behind
the model surface, so this point is inconsistent. In ray B,
the scene point is only slightly behind the model surface, so
this point is consistent. In ray C, the scene point is in front
of the model, so this point is also consistent.

® Scene point
== Model surface
O Model intersection
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Figure 2: Consistency example for 3 rays.

We assign each comparable pair a binary value of 1 (con-
sistent) or O (inconsistent) according to (1), and define the
consistency of the model at the hypothesized location as the
average consistency over all comparable pairs:

N,
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We note that this reduces the problem of verifying a 3D hy-
pothesis to a combination of many 1D problems. We nor-
malize by the number of comparable pairs to prevent the
consistency value from being a function of the sampling
density or the size of the object. A user can reasonably
interpret this value between 0 and 1 without any other in-
formation.

If multiple registered scans of the scene are available,
the consistencies of each scan should be combined into a
total consistency score. It is assumed that the scene does
not change between scans. Since the consistency of each
scan is independent, the total consistency after observing K
scans is
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4. The Confidence Measure

If a model position is completely consistent, we can only
declare the model could be at the hypothesized location, not
that it is at that location. For example, any object model is
consistent with being entirely behind a scanned wall. Our
second measure, confidence, indicates the reliability of an
estimate based on what proportion of the model has been
captured by the scan(s).

The confidence measure is based on the idea that a cer-
tain amount of information, I;, is associated with every
model point. This information should be related to how lo-
cally distinctive the point on the model is. For example, a
point on the side panel of a car should have low informa-
tion, since it looks similar to any planar surface, while the
uniquely-shaped front bumper should carry more informa-
tion. We require that the information from all the points in
the model sums to 1.

Generally, a 3D model is constructed by an artist who
uses a higher density of vertices to model more complex re-
gions; this is the case for all the models in this paper. Thus,
we can simply assign each point an equal amount of infor-
mation, [; = ﬁ where NV, is the number of points in
the model. If the model vertices are distributed uniformly
(e.g., using an algorithm like [10]), the information content
at each point could be related to the quality of a planar fit,
with more locally complex regions containing more infor-
mation. Linsen [7] proposed a more complicated method to
determine the information content of a point based on point
density, planarity, change in normals, and the uniformity of
the change in normals.

Before any scans are acquired, we set the observed infor-
mation O; for each model point to 0. As scans are added,
this value will increase to a potential maximum of I;, the in-
formation content of the point. Each scanned scene point af-
fects model points surrounding it at the hypothesis location.
If a scene point is nearly coincident with a model point, it
“uses up” that model point’s information- i.e., the model
point has been completely “seen”. We define the incremen-
tal update rule for the influence of the jth scene point on the
ith model point using a Gaussian function:

—d?;

Here, d;; is the distance between the two points. o deter-
mines the radius of the sphere inside which model points are
affected. One could reasonably choose o to be a function of
either the model bounding box volume m, or the median
model vertex spacing. For the experiments in this paper, we
set 0 = 0.01m,,.

Since the Gaussian function is negligibly small for
|d;;| > 30, we find all points within 3o of the scene point
using a KD-tree [1] and compute the update for only those



points. Figure 3 illustrates an example of the information
observation process, showing the influence of one scene
point on three model points.
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Figure 3: Confidence Example

The confidence that a model exists at a given location
after all of the information has been collected is

N’In
Confidence = Z 0O; %)
i=1

where NV, is the number of model points.

We note that unlike the consistency measure, the con-
fidence measures are not independent from scan to scan,
because any overlap in scans will “see” some of the same
model points. Therefore, the computation of the confidence
over K multiple scans is computed as if all scene points
came from a single scan. The confidence equation does not
change; the only difference is that the observed information
is iteratively accrued from all the points in all K scans.

5. Experimental Results

In this section, we report the results of several experi-
ments that demonstrate the properties of our dual metric.
All real LiDAR scans were acquired with a Leica HDS 3000
scanner with sample spacing approximately 3 mm on the
object surface.

5.1. Cat Sculpture — Varying Position

We obtained a high precision triangulated model of a real
cat sculpture using a hand-held scanner. The dimensions of
the bounding box of the model are 30x25x12cm. We then
LiDAR-scanned the physical sculpture in an unoccluded
scene. We used spin images followed by ICP to automat-
ically estimate the position of the cat sculpture in the unoc-
cluded scan (Figure 4a). We computed the baseline confi-
dence and consistency values for this real world registration.
The confidence value is 0.544 because we only acquired one
scan covering about half the model. The consistency value
is 0.792, due to slight misalignment in the registration pro-
cess as well as scanner noise. Throughout the experiments

with the cat sculpture, we use a mismatch allowance of 2cm
for the consistency calculations, and ¢ = 0.5cm for the
confidence calculations.

We then placed the model behind the correct position,
i.e., in the “shadow” of the LiDAR scan (Figure 4b). Ta-
ble 1 shows that the consistency value in this position is
very high, since almost all of the scan points do not contra-
dict the hypothesized location. We then placed the model
in front of the correct position (Figure 4c). The consistency
is extremely low in this position, since the model is in front
of the observed scene points, clearly a contradiction to the
hypothesis. In both the in front and behind positions, the
confidence measure is extremely low because there are al-
most no scene points near the model.

= = %
(a) Correct position (b) Model behind cor-(c) Model in front of
rect position correct position

Figure 4: Cat sculpture in varying positions.

Position ‘ Confidence ‘ Consistency
Aligned correctly (a) 0.544 0.792
Model behind scene (b) 0.003 0.995
Model in front of scene (c¢) 0.000 0.151

Table 1: Consistency and confidence values for varying
model positions in Figure 4.

5.2. Cat Sculpture — Varying Occlusion

To demonstrate the effect of occlusion on our metrics,
we scanned the cat sculpture behind several different types
of material. We used spin images and ICP to register the
model of the cat sculpture in the scan with no occlusion,
and used this position to compute the confidence and con-
sistency metrics in five situations.

The first row of Figure 5 shows digital images of the cat
sculpture under the varying occlusion conditions. The sec-
ond row shows the LiDAR scans of the occluding object as
well as the cat sculpture to illustrate the scan points that fell
on the sculpture. Table 2 summarizes the consistency and
confidence measures for the five cases. Figure 5a shows the
scene with no occlusion and is provided as a baseline ref-
erence. The consistency is very high, and the confidence is
0.476, a typical value after observing the object from only
one viewpoint. In Figure 5b, we scanned the scene through
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Figure 5: Cat sculpture scans with varying occlusions. (a) No occlusion, (b) Light, sporadic occlusion (net), (c) Heavy,
sporadic occlusion (lace), (d) Heavy, sporadic occlusion (tablecloth), (e) Heavy, contiguous occlusion (monitor)

a net to imitate a scaled down camouflage net. The con-
fidence of the model decreases by about half, which agrees
with our intuition that we only see about half as many points
on the sculpture as we did in the unoccluded scan. How-
ever, the consistency is still very high. In Figure 5c, we
scanned the scene through a piece of lace fabric to imitate
extremely dense foliage. Again, the consistency value is
still very high, but the confidence has decreased even fur-
ther, as even fewer points on the sculpture have now been
seen. In Figure 5d, we occluded the cat sculpture with a
tablecloth. The results are similar to the lace fabric. Fi-
nally, in Figure Se, we occluded the cat with a monitor. The
consistency value is still high, but the confidence value is
similar to that of the “net” case of Figure 5b.

Occlusion Confidence | Consistency
None 0.476 0.879
Light, sporadic (net) 0.257 0.952
Heavy, sporadic (lace) 0.195 0.958
Heavy, sporadic (tablecloth) 0.083 0.985
Contiguous (monitor) 0.256 0.963

Table 2: Experimental values of consistency/confidence for
different types of occlusion, cat sculpture.

5.3. Synthetic Cars — Multiple LiDAR Scans

In the next experiment, we demonstrate how additional
LiDAR scans of a scene help improve our knowledge, as

well as how the consistency and confidence metrics can
be used to disambiguate similar objects. We considered a
database of five synthetic automobile models, each with its
center of mass at the origin. The models are all at life-size
scale. We simulated sequentially LiDAR scanning each car
from four different perspectives (front, driver side, rear, pas-
senger side). The synthetic scans were created using custom
software that we wrote to simulate the output from the Le-
ica scanner that we use for real-world scans. The input is
a scene consisting of triangulated meshes, a forward direc-
tion, spherical angle bounds, and spherical angle spacing.
The output is a point cloud of the visible surfaces in the
scene.

In Figure 6, the i*" row represents that we are hypothe-
sizing the 7" model exists. The j!* column represents that
we are comparing a hypothesis to synthetic LiDAR scans of
the j** model. For example, in cell i = 2,5 = 4, we are
hypothesizing the existence of the sedan2 model and com-
paring it to LiDAR scans of the SUV.

Each square cell in Figure 6 contains an independent
coordinate system with confidence on the horizontal axis
and consistency on the vertical axis. The k** point from
the left in each square represents the value of the confi-
dence/consistency after seeing the first k£ scans.

Throughout this paper, for experiments with automobiles
we use a mismatch allowance of 10cm for the consistency
calculations, and o = 0.3cm for the confidence calcula-
tions.
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Figure 6: Confidence/Consistency evaluation between all
combinations of five automobile models. Rows: models,
columns: LiDAR scans. Each dot (left to right) represents
an additional scan taken from the front, driver side, rear, and
passenger side viewpoints, respectively.

Some noteworthy observations are:

e The consistency is always 1 for squares on the main
diagonal. This indicates that each model’s consistency
with itself is 1.

e The confidence increases or remains constant with
each additional scan.

e Since it is smaller, the sedan2 model is consistent with
the scan of sedanl (cell (2,1)), but the sedanl model is
not consistent with the scan of sedan2 (cell (1,2)).

e Three of the models are smaller than the van. There-
fore, they are each consistent with the scans of the van
(cells (1,5), (2,5) and (4,5)). However, the truck is
longer than the van, so the truck model is inconsistent
with the scan of the van (cell (3,5)).

e In cell (3,1), we can see that the front of the truck is
inconsistent with sedanl, but the sharp increase with
the second scan indicates that their sides are similar.

5.4. Real Parking Lot Scans

Typical coarse registration algorithms produce several
initializations that are refined by an ICP method. Some
of these initializations produce high average point-to-point
distances and can quickly be discarded. However, several
positions often need to be manually discarded by the user.
Such positions have a low average distance, but are physi-
cally very incorrect. Since a typical ICP cost function value

depends on the scale, sampling density, and parameteriza-
tion of the problem, it is very difficult to compare the quality
of matches across multiple search objects and scales. Our
metrics, however, are independent of object size and there-
fore can easily be directly compared. In this example, we
demonstrate how our metrics are much easier to interpret
than the ICP cost function values.

Position | ICP Cost Function | Confidence | Consistency

Correct 0.057 0.579 0.589
Incorrect 0.094 0.252 0.077

Table 3: Measures for Audi positions in parking lot scan.

We acquired a LiDAR scan of two cars in a parking lot.
Two hypothetical outputs of a coarse registration algorithm
between an Audi A4 model and the scene are shown in Fig-
ures 7a and 7b. One is correct, and the other is incorrect
(it lies halfway between the two cars in the scan). Table 3
reports the ICP cost function value, consistency, and confi-
dence for the two positions. We employed a standard ICP
cost function, shown in (6).

N
. 1 - .
ICP Cost Function = i ; |RZ; +t — 5| (6)

Here, z; is a scene point and y; is the nearest model point
to x;. Scene points for which the nearest model point is
more than 0.2 meters away were not included in the ICP
cost function, a common technique described in [13]. It is
important to note that regardless of which variant of the ICP
cost function is used the value is always in meters, in con-
trast to our metrics which both take unitless values between
0 and 1. Also, as the complexity of the selected ICP func-
tion increases (e.g., by weighting each point’s contribution
differently), the ability to intuitively interpret the value de-
creases.

Both positions have comparable average point-to-point
distances (the ICP cost function value), which are both be-
low 10 cm. For our new measures, the correct position has
a high confidence value (given only one viewpoint) as ex-
pected, and the consistency is reasonable, though slightly
lower than ideal. This is largely due to the transparent
windshield in the real scene, which causes discrepancies in
model fitting (see [8]). However, in the other position, the
extremely low consistency value alone is grounds to declare
this position incorrect. The confidence is non-zero because
the each side of the model aligns with the adjacent side of
one vehicle in the scene.
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Figure 7: Parking lot demonstration. (a) Model registered to
correct position in scene. (b) Model registered to incorrect
position in scene. (c) Model points at correct position col-
ored by confidence (unseen: red, seen: green). (d) Model
points at incorrect position colored by confidence (unseen:
red, seen: green). (e) Scene points at correct position col-
ored by consistency (inconsistent: red, consistent: green)
(e) Scene points at incorrect position colored by consistency
(inconsistent: red, consistent: green). This figure is best
viewed in color.

In Figures 7c and 7d, we show the observed information
of the car model vertices in both positions. In the correct
position, the front and driver side points are green (seen)
and the rest are red (unseen). In the incorrect position (be-
tween the two cars), points on both sides of the model are
seen, but the rest of the points are unseen.

In Figures 7e and 7f, we see that in the correct position
most of the points are consistent. The inconsistencies stem
from the model not being a perfect match (i.e., the model
is a 2000 Audi A4 and the scene is a 2009 Audi A4) as
well as slight misalignment. In the incorrect position, al-
most all of the points are inconsistent because the scanner
“saw through” the model to the back wall. This is a typical
example of how the consistency and confidence measures
play a useful dual role for understanding if a hypothesized
position makes physical sense.

Figure 8 illustrates a second LiDAR scan of three auto-

mobiles in a parking lot. We computed the consistency and
confidence measures for an Audi A4 car model positioned
at every 20 cm in the horizontal and vertical directions, as-
suming the model is major-axis-aligned with the parking
space lines and located on the ground plane.

]
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(a) 3D view

i

(b) Top view

Figure 8: Parking lot scene with three cars.

Figure 9a shows a “heat map” of consistency values over
the scene. We see that positions in the LiDAR shadow of the
automobiles have high consistency. Figure 9b shows a heat
map of the confidence values over the scene. There are sev-
eral false positives. These can occur when significant parts
of the model align with the scene, due to symmetries and
the fact that any two near-planar objects tend to look alike.
In Figure 9c, we thresholded the consistency map with a
value of 0.75 and the confidence map with a value of 0.3
and boolean ANDed the resulting images. The position of
all three automobiles are clearly verified with no false pos-
itives. However, we believe that considering both measures
together leads to better-informed decisions than combining
them into a single scalar value.

() (b) ©

Figure 9: Consistency/confidence heat maps. (a) Consis-
tency heat map (b) Confidence heat map (c) Dual thresh-
olded with consistency > 0.75 and confidence > 0.3.

6. Discussion and Conclusions

We presented a dual metric for deciding whether a 3D
object exists at a hypothesized location in a LiDAR scan. A
set of such locations produced by any registration method
can be verified using these measures, which together are
able to provide physically meaningful values for a user to



interpret. The experiments demonstrated the feasibility and
accuracy of this method.

The consistency calculation is currently somewhat slow
e.g., an average of 8 seconds for each position in Figure 8 on
a Pentium 4, 3GHz computer with 2GB of RAM. This is pri-
marily due to using a very high resolution model (=500,000
triangles). Standard mesh decimation techniques from com-
puter graphics tend to fail to maintain the overall structure
of the mesh when it is not topologically equivalent to a
sphere, which is typical of models that were not designed
with resolution variablility in mind. For this reason we
chose to use the high resolution mesh throughout the ex-
periments. We also plan to speed up the consistency calcu-
lation by employing a coarse-to-fine strategy. For example,
we could evaluate the consistency using a uniformly down-
sampled set of the scene points. If the downsampled scene
points are inconsistent with the model hypothesis, the prob-
ability that the entire set is also inconsistent is extremely
high and further computation can be avoided. We could also
use a depth buffer comparison rather than a ray-wise com-
parison to tremendously speed up this computation. How-
ever, there are several difficulties with this approach. The
scan is a point cloud, not a triangulated mesh, so a point
rendering system such as [12] must be employed. The res-
olution of the rendering window must be chosen such that
there are similar numbers of corresponding pixels as there
are scene points (and thus rays).

Currently, our dual metrics return similar values for a
given amount of occlusion without considering the contigu-
ity of the occlusion. For example, in Figure 5, the “net”
occlusion produces almost identical values to the “monitor”
occlusion. A possible solution is to remove the indepen-
dence assumption on the collection of 1D problems along
each ray, e.g., by using a first order Markov random field.
This approach would favor neighborhoods of scene points
that had similar consistencies.

Our consistency calculations assume that multiple reg-
istered scans come from a perfectly static scene. Relaxing
this assumption would open up new research questions. For
example, we could determine that an object was present and
still for one scan, and then was either moved or occluded
before the next scan was acquired.

Finally, we note that an accurate 3D model is frequently
not available for the objects we might want to locate in the
scene. This calls for a non-model based approach, in which
the consistency and confidence for a scan are determined
with respect to several example pictures or scans of a model.
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