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Figure 1. High-detail 3D structure is incrementally generated by our automatic image-guided LiDAR hole-filling algorithm.

Abstract
Range scans produced by LiDAR (Light Detection and

Ranging) intrinsically suffer from “shadows” of missing
data cast on surfaces by occluding objects. In this paper, we
show how a single additional image of the scene from a dif-
ferent perspective can be used to automatically fill in high-
detail structure in these shadow regions. The technique
is inspired by inpainting algorithms from the computer vi-
sion literature, intelligently filling in missing information
by exploiting the observation that similar image regions of-
ten correspond to similar 3D geometry. We first create an
example database of image patch/3D geometry pairs from
the non-occluded parts of the LiDAR scan, describing each
uniform-scale region in 3D with a rotationally invariant im-
age descriptor. We then iteratively select the best location
on the current shadow boundary based on the amount of
known supporting geometry, filling in blocks of 3D geome-
try using the best match from the example database and a
local 3D registration. We demonstrate that our algorithm
can generate realistic, high-detail new geometry in several
synthetic and real-world examples.

1. Introduction
Time-of-flight LiDAR (Light Detection and Ranging)

scanners are capable of capturing highly accurate and de-
tailed geometry of real-world objects. As a result, LiDAR
is increasingly used in surveying, architecture, cultural re-
source management, archaeology, and other fields where
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accurate 3D models are useful. However, missing data in
the form of holes or “shadows” produced by occluding fore-
ground surfaces are a common artifact of the scanning pro-
cess.

In this paper, we show how a single additional image
of the scene from a different perspective can be used to
automatically fill in high-detail structure in these shadow
regions. We first create an example database of image
patch/3D geometry pairs from the non-occluded parts of the
LiDAR scan, describing each uniform-scale region in 3D
with a rotationally invariant image descriptor. We then iter-
atively select the best location on the current shadow bound-
ary based on the amount of known supporting geometry,
filling in blocks of 3D geometry using the best match from
the example database and a local 3D registration. Figure 1
illustrates an example of our LiDAR inpainting algorithm,
showing successive steps of high-detail hole filling.

The rest of the paper is organized as follows. In Section 2
we review related work on filling holes in range data, with
or without additional images. Section 3 defines the input
and output of the problem and describes data preprocessing
steps. Section 4 provides a taxonomy of holes that typically
arise in LiDAR data. Section 5 describes our overall in-
painting algorithm, including the generation of the example
database, the definition of the patch fill order, and the fill-
in algorithm itself. Section 6 presents experimental results
on both simulated and real datasets to demonstrate the tech-
nique. Section 7 concludes the paper with discussion and
ideas for future work.



2. Related Work
There has been a substantial amount of work on repair-

ing small to medium-sized holes in range data. For exam-
ple, Stavrou et al. [16] adapted 2D image repair algorithms
to 3D data by treating the depth map of returns from the
scanner as an image. Sharf et al. [15] proposed a hole-
filing algorithm inspired by example-based image comple-
tion methods. Using a volumetric descriptor, they searched
an example dataset for the closest match, and then warped
the resulting geometry into the hole by solving a partial dif-
ferential equation. Park et al. [13] extended the idea to work
with textured scans and solved the warping partial differen-
tial equation in 2D.

Xu et al. [17] used a single image to guide hole-filling in
range data, by estimating normal vectors for points inside
the hole based on training data from image patches. They
used the estimated normal vectors to integrate over the hole,
producing 3D surfaces that were more physically accurate
than methods based purely on geometry, but tended to be
smoother than the ground truth.

Techniques based on stereo [7, 6] and structure-from-
motion [5, 1, 3] use multiple images to estimate 3D geom-
etry. This geometry can be quite accurate, but is generally
much sparser and more irregular than is typically acquired
with a range scanner. Our interest in this paper is in learning
3D structure from a single image/scan pair.

Hoiem et al. [11] used a supervised learning approach to
classify image superpixels into different geometric types,
which were used to make realistic 3D “pop-ups” from a
single photograph. Saxena et al. [14] used a multi-scale
Markov Random Field over superpixels in a supervised
learning approach to generate 3D data from image patches.
Neither approach can generate fine 3D geometric detail,
which is our interest here.

Finally, Hessner and Basri [9] used a large database of
image/depth pairs to estimate convincing depth informa-
tion for images of people, hands, and fish. Our approach
is related, but learns 3D structure in much larger-scale real-
world architectural scans.

Our overall technique is inspired by recent work on
exemplar-based image inpainting [4] and image analogies
[10]. Criminisi et al. [4] presented an algorithm for auto-
matically filling in a desired target area (e.g. a region to
be replaced in a digital photograph) with patches from a
source region so that the resulting image seems unmanip-
ulated. We adopt a similar idea of filling in LiDAR holes
in a prioritized order depending on the amount of known
geometry near a given pixel on the hole boundary. Hertz-
mann et al. [10] automatically created image analogy filters
by transferring a learned relationship between a (original
image, filtered image) pair to a new original image. Our al-
gorithm uses a similar idea: we create a database of (image
patch, 3D geometry) pairs from the non-hole regions of a

scan to estimate the 3D geometry that corresponds to a new
image patch.

3. Input, Output, and Preprocessing
Our algorithm begins with a LiDAR scan S (Figure

2(a)), an image of the same scene from a different perspec-
tive I (Figure 2(b)), and a camera model P that specifies the
position, orientation, and internal parameters of the cam-
era that produced I in the coordinate system of S. In all
the real-world experiments reported here, we used a Leica
HDS3000 range scanner to obtain the scan S, which con-
sists of a set of 3D points acquired using a 2D angular grid
of rays from the scanner’s origin.

The camera model P could be found by manually select-
ing correspondences between S and I and applying a resec-
tioning algorithm [8], or automatically using a direct 2D-3D
registration algorithm. For this paper, we used the direct al-
gorithm proposed by Yang et al. [18], which is based on al-
ternating between estimating the camera model from SIFT
correspondences [12] and growing the region over which
the estimated model is reliable. Figure 2(c) shows the result
of applying this algorithm to the scan/image pair in Figures
2(a) and 2(b), re-rendering the LiDAR scan from the esti-
mated perspective of the camera that acquired the image.

We run two preprocessing steps on the scan S. First, we
robustly estimate the normal at each scan point by fitting a
local tangent plane, visiting relatively flat and noise-free re-
gions first, since they are likely to produce stable estimates.
We also create a simple quadrilateral mesh on S based on
the 2D grid of ray directions cast by the scanner, and iden-
tify each edge in the grid as a surface edge or a boundary
discontinuity based on the depth difference between adja-
cent faces.

4. Types of Holes
Three main types of holes generally exist in LiDAR

scans, as illustrated in Figure 3.

1. Occlusions (Figure 3 light gray lines). Since the clos-
est surface to the scanner along each ray is what pro-
duces the depth measurement, further scene points
along this ray on more distant surfaces appear as
“shadows”. This is the most common type of hole.

2. No Returns (Figure 3 thick line). The laser pulse may
never return to the sensor for several reasons. For ex-
ample, there may be no surface to reflect off of (i.e.,
sky), the closest surface may be beyond the scanner’s
range, or the surface material may be unconducive to
scanning (e.g., windows and specular surfaces).

3. Out of View (Figure 3 medium gray lines). Scans with
a finite angular extent have boundaries outside which
no geometry is acquired.
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Figure 2. (a) A LiDAR scan S of an example environment. (b)
An image I of the same environment from a different perspective.
(c) A re-rendering of the LiDAR scan from the estimated perspec-
tive of the camera that acquired the image in Figure 2(b). (d) The
inpainting mask M . Black corresponds to the source region and
white to the target region to be inpainted.

Figure 3. Types of holes: occlusions (light gray), no returns
(thick), and out of view (medium gray). Ray A is an example of a
false intersection. The solid black line is the scanned geometry.

For inpainting, we require a binary mask M that speci-
fies which image pixels correspond to LiDAR holes. Gener-
ally, these can be automatically identified by analyzing the
no-geometry regions in the LiDAR scan re-rendered using
the estimated camera model (i.e., black regions in Figure
2(c)). Reasoning about which hole type corresponds to each
pixel is straightforward based on the view frustum of the
camera model and the boundary discontinuity information
generated at the preprocessing step; however, this classifi-
cation is not strictly necessary for the inpainting algorithm
proposed in the next section.

The non-hole regions of the image will be used to form
the source data for generating the example dataset of (im-
age patch, 3D geometry) pairs. However, fully automatic
generation of the source region from M is challenging due
to false intersections. That is, an optical ray in the image
may intersect a surface close to the camera that did not pro-
duce a LiDAR return, while the LiDAR scanner acquired
3D geometry from a surface further along the optical ray
(e.g., the ray labelled A in Figure 2(c)). While these pixels
are not LiDAR holes, they cannot be used for the inpaint-
ing source region since the image texture and 3D geometry
are inconsistent. While we explored several approaches to
automatically detect such regions (e.g., using image change
detection algorithms), we currently defer to the user to edit
the mask M to ensure that false intersections are not in-
cluded in the source region. Figure 2(d) illustrates the mask
M for the scan/image pair in Figures 2(a)-2(c). We denote
pixels where M=0 to be the source region (i.e., trusted im-
age/geometry locations) and pixels where M=1 to be the
target region to be filled by inpainting.



(a) (b) (c) (d)

Figure 4. (a) 3D point and surrounding area, (b) fitted planar patch with image samples and gradient, (c) head-on view of patch oriented
with dominant gradient direction up (top: high-resolution image used to estimate gradient, middle: corresponding 3D geometry, bottom:
13×13 descriptor), (d) the mirrored patch that is also added to the database.

5. The Inpainting Algorithm

5.1. Generating the Example Database

Our first step is to generate an example database D of
image patches and their corresponding 3D geometry. In this
paper, we use the source region defined by the mask M for a
given image to generate this database, although information
from other scan/image pairs (or multiple such pairs) could
also be used. Since a fixed-size image region does not cor-
respond to a fixed-size region in 3D space, we generate the
database using fixed-sized regions in 3D space, determined
by a user-defined radius r, and estimate rotation and scale-
invariant image patch descriptors corresponding to a given
3D region.

We iterate over each pixel i in I that is considered to
be trustworthy geometry in M (i.e., M(i) = 0). From the
camera model P , we know the corresponding intersection
with the 3D scan S; denote this location S(i) (Figure 4(a)).
We next fit a 3D planar patch Π to the set of LiDAR returns
within a sphere of radius r centered at S(i), as illustrated in
Figure 4(b). We impose a uniform grid on Π and estimate a
color at each grid point by projecting the planar patch into
the image using P and applying bilinear interpolation. We
reject patches that contain less than 90% trustworthy geom-
etry (i.e., more than 90% of the patch must be outside a hole
region).

We now treat this colored planar patch as a small image
to be added to the example database. The descriptor we
use is simply a w2-length vector of pixel intensities corre-
sponding to a subsampled w × w grid on Π (Figure 4(c)).
The subsampled grid is oriented so that the x-axis is aligned
with the dominant gradient of the patch, estimated using
the algorithm proposed by Lowe [12]. If multiple dominant
gradients are detected (e.g., for a strong corner), we gener-
ate multiple patch orientations and corresponding descrip-

tors. We also add a “mirror” of each patch to the database
by reflecting it across its y-axis (Figure 4(d)), to make it
easier to find symmetries in the matching phase (see Sec-
tion 5.3). Finally, we create a query kd-tree K from the
descriptors of all accepted patches, to ease the search prob-
lem in the matching phase. Throughout this paper, we used
the descriptor dimension w2 = 169, which we found to
produce good descriptive power while keeping the kd-tree
search fast.

5.2. Fill Order

The next step is to determine the fill order of pixels in
the target region. For image inpainting, Criminisi et al. [4]
demonstrated that the order of filling in image patches has
a significant effect on the quality of the final result. Their
approach defined the fill order based on a priority score that
was the product of (1) a confidence term that measured the
amount of known image texture surrounding a given pixel
on the fill boundary and (2) a data term that was related to
the dot product between the normal vector to the fill region
boundary and the local image gradient. In our case, we only
use a confidence term since the auxiliary image provides
good visual evidence about how to fill the LiDAR hole (un-
like image inpainting, where no side information about the
hole interior is available).

Let b be a pixel on the boundary of the target region in
M . As in Section 5.1, we fit a 3D planar patch Πb around
the 3D structure corresponding to pixel b, and backproject
the values of M onto this plane to estimate the fraction of
the patch that is part of the source region. If the patch is
quantized with a grid of u × u bins, the confidence term is
thus

C(b) =
1
u2

∑
q∈Πb

M̂(q). (1)



where M̂(q) is the backprojected mask value corresponding
to pixel q. Figure 5 illustrates the fill order for a real ex-
ample, demonstrating that target regions that protrude into
source regions will be filled in first.

Figure 5. Fill-in order, expressed on a scale from red (low priority)
to green (high priority).

5.3. The Fill-in Algorithm

Finally, we specify how 3D geometry from the source
region is copied into the target region using the example
database. We iteratively choose the highest-priority bound-
ary pixel b based on (1) and perform the following steps
inspired by image analogies [10]. The overall process is
illustrated in Figure 6.

We compute the image patch Ib corresponding to b using
the method described previously. That is, Ib is computed
from a square patch Πb in 3D, colored with pixel values
from I , and oriented in the direction of the dominant gradi-
ent. In 3D, this corresponds to a set of points Sb which we
determine using the estimated camera model P . We know
that there are regions of the image near b that have no corre-
sponding 3D geometry in Sb, since by definition the pixel b
is adjacent to a LiDAR hole in the re-rendered image of S.

We next compare Ib to the example database of image
patches. We use the optimized kd-tree K from Section 5.1
to find the top 10 matches, which is fast since the patches
in the database are coarsely sampled. Then we compute the
normalized cross-correlation between the image patch and
the planar patch around each of the 10 candidates at a higher
resolution (in this paper, we used 61×61 patches). Finally,
we choose the patch with the largest correlation as the best
match. One example of this process is illustrated in Figure
7.

We copy the corresponding geometry Sdb
into the hole

region of Sb, after 3D alignment of the two regions. To align
Sdb

to Sb, we robustly compute an initial transformation
(rotation plus translation) T̂b by aligning the planar patch
Πdb

to Πb. We determine the final transformation Tb by
running the Iterative Closest Point algorithm [2] on Sdb

and
Sb, using T̂b as the initialization. We then mark the newly
filled pixels in M as no longer part of the target, and update
the confidence term C for all the new pixels by setting their
values to 1.

(a) (b) (c) (d) (e)
Figure 6. The overall fill-in algorithm. (a) A patch is selected on the current target boundary in the mask. (b) The corresponding image
patch is identified. (c) The corresponding partial 3D structure is identified. (d) The best match to the image patch is found in the example
database. (e) The structure from the best match is registered to the hole boundary and copied into place.

Query 1 2 3 4 5 6 7 8 9 10

Dist 58.5 58.8 59.1 59.4 59.5 59.7 59.8 61 61.4 62.1
Corr 0.749 0.795 0.784 0.741 0.753 0.785 0.795 0.733 0.738 0.736

Figure 7. The query patch (Ib) and its top 10 results. Underneath each result is its kd-tree descriptor distance (Dist) and its normalized
cross-correlation (Corr). The bold number indicates the selected patch (Ddb ). The result patches that are very similar to each other were
sampled from neighboring pixels.



6. Experiments
We tested our algorithm on synthetic and real-world ex-

amples, with both artificially introduced and natural holes.
All experiments were run on an 8-core 2.66GHz Xeon com-
puter. For experiments where we have ground truth (Section
6.1 and Section 6.2), we provide two quantitative measure-
ments of the quality of the result. First, we compute the
mean Euclidean distance of from each filled in point pf to
the closest ground truth point pg , i.e., ‖pf−pg‖. The second
measure is the mean of the ratio

‖pf − Pc‖
‖pg − Pc‖

(2)

where Pc is the location of the camera in the coordinate sys-
tem of S. This measure is useful since it explicitly takes
into account the distance of from the sensors to the ac-
quired/generated points.

6.1. 3D Letters

Figure 8 illustrates an inpainting test using a synthetic
model of raised letters on a plane with the phrase “TEST
FOR 3DIM”. We removed the word “FOR” from the model
to generate a hole (Figure 8(a)). Using Figure 8(b) as the
input image and Figure 8(a) as the scan, we automatically
generated new geometry to fill in the artificial hole in Fig-
ure 8(c). The scan was 4.3 × 4.3m and the fill radius was
r = 0.20m. The mean distance of from the camera to the
missing points was 12.5m.

Our algorithm generated a convincing 3D “FOR” even
though none of the letters existed in the rest of the 3D scan.
The result has a median distance from the ground truth of
0.33cm and a median ratio of 1.00. The rotationally invari-
ant patch description and the addition of mirrored patches
into the database are critical to the algorithm’s success, as
illustrated in Figure 9. The third and fifth columns are par-
ticularly interesting, showing patches that straddle two char-
acters and have excellent matches to mirrored parts of en-
tirely different character pairs.

(a) The manually introduced hole (b) The image (c) Word filled

Figure 8. Letters experiment. (a) Scan of letters with middle “FOR” removed to create a hole. (b) Corresponding image. (c) Inpainted
geometry.

Figure 9. The first row shows several target locations around the hole boundary. The second row shows the corresponding automatically
estimated image correspondences based on which the inpainted 3D geometry was generated. The third row shows the oriented descriptor
for each query (left) and best matching patch (right). We can see the effect of rotationally invariant patch descriptors (columns 1 and 4)
and mirroring (columns 3 and 5).



(a) Cropped view of the small win-
dow

(b) Hole (c) Generated geometry (d) Original geometry

Figure 10. (a) Cropped view of the repetitive small windows. (b) One of the five windows is manually removed from the LiDAR scan. (c)
Using the visual evidence from the image, new 3D structure is generated. (d) The original 3D structure for comparison.

(a) Example Image (b) Hole (c) Generated geometry

Figure 11. (a) Source image. (b) LiDAR scan. (c) Using the visual evidence from the image, new 3D structure is generated.

6.2. Small Window

We acquired a real scan of a large building with five sim-
ilar windows near its roof (Figure 10(a)). We manually re-
moved one of these small windows, so that no geometric
evidence of the window remained (Figure 10(b)), and cre-
ated the example database with with samples from the other
small windows. For this experiment we set r = 0.35m.
The mean distance from the camera to the scene points was
72.4m. The filling algorithm took 52 iterations to complete
and about 15min wall clock time; several snapshops of the
iterations were shown in Figure 1. The final result is ren-
dered in Figure 10(c), which compares favorably with the
original 3D geometry (Figure 10(d)) for the window. The
median distance from the ground truth is 7.1cm, and the
median ratio is 1.00.

6.3. Large-scale LiDAR shadows

Finally, we ran our algorithm on several natural holes
formed from occlusion in a real-world LiDAR scan, using
the large church-like building in Figure 2. We note that
not all of the holes have enough supporting evidence in the
patch/geometry database to be filled. Figure 11 illustrates a
result showing large swaths of filled-in texture. A closer
view of one window is illustrated in Figure 12, showing
convincing high-detail 3D geometry.

7. Conclusions and Future Work
We presented an algorithm for automatically filling in

convincing high-detail 3D structure in missing-data regions

(a) Original Model

(b) Filled Model

Figure 12. Detailed view of Figure 11 around the large window.

of a LiDAR scan using a single additional image of the
scene from a different perspective. The approach can mit-
igate the “shadows” characteristic of range scanning, im-
proving the utility of LiDAR scans for planning and situ-
ational awareness. Another application is the construction
of realistic architectural models; our algorithm works best
when repetitive structure is present, and this is quite often
the case with architecture. We note that while the generated



geometry is quite plausible, it should not be treated with the
same level of confidence as the real geometry.

The algorithm proposed here is only a first step to com-
pletely solving the problem. We believe that a “data term”
that uses partial 3D geometry to influence the fill order
and database matching is critical to improve the perceptual
and actual quality of the results. We also plan to design a
method to determine when the inpainting is no longer reli-
able or accurate, to prevent aggregating errors (e.g., when
extrapolating beyond the scan boundary). In this case, the
hole type (occlusion, no return, out of view) should also
play a role in the fill priority and fill-in algorithms. We
are also investigating how to adaptively change the 3D in-
painting radius based on estimated 3D structure (e.g., large,
flat regions could be filled in more aggressively than small,
complex regions). We also should consider how the descrip-
tor dimension should vary with different scenes.

Finally, while the focus of this paper was on inpainting
for a given target region, we also plan to automatically gen-
erate the entire source and target regions, correctly detecting
and discarding false intersections and reducing the amount
of user input required to define these regions.
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