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Abstract

Three-dimensional face recognition is illumination in-

variant, however the acquisition process itself is not. In ac-

tive 3D recognition, multiple images are captured while the

face is actively illuminated with different patterns. We pro-

pose a 3D face recognition paradigm that bypasses recon-

struction and exploits the plethora of information available

in multiple images of a person acquired while varying the

illumination. Illumination is varied by scanning a horizon-

tal and then a vertical white stripe on the computer screen

in front of the subject. Subtracting ambient light leaves im-

ages illuminated by the screen from different angles. The

contourlet coefficients of the images are calculated at differ-

ent scales and orientations and then projected to PCA sub-

space to remove redundancy. The subspace contourlet coef-

ficients of multiple images are stacked to form a global face

representation. Sliding windows are used during matching

to remove the disparity between the face locations with re-

spect to the screen. The proposed algorithm was tested un-

der varying ambient conditions and compared to a known

3D face recognition technique. Verification results on data

from the same subjects show the strength of our algorithm.

1. Introduction

Facial biometrics can be acquired with non-contact sen-

sors such as cameras and 3D scanners. Therefore, biomet-

ric devices based on face recognition are socially more ac-

ceptable [9] compared to fingerprints for example. On the

downside, face recognition is very challenging because of

nuisance factors like changing illumination, facial expres-

sions, ornamentation and pose. These factors combined

with the low distinctiveness of facial biometrics [9] makes

unconstrained face recognition extremely challenging.

Face recognition is a well studied area and various al-

gorithms exist in the literature. Zhao et al. [22] provide a

detailed survey of face recognition literature and highlight

three main categories namely holistic face recognition tech-

niques which match global features of the complete face

[17][2], feature-based techniques which match local fea-

tures of the face [19] and hybrid techniques which use both

holistic and local features. The last category resembles

the human perceptual system especially when recognition

is based on image sequences where a joint representation

in spatial and temporal space can be used for identification

[22]. A single image provides sufficient spatial informa-

tion but the temporal dimension defines trajectories of facial

features and body motion characteristics which may further

assist classification. Temporal information can also be ex-

ploited to obtain a 3D shape of the face using SfM tech-

niques. However, an underlying assumption is that the im-

ages must contain non-redundant information either due to

the relative motion of the camera and the face or the motion

of the facial features e.g. due to change in facial expres-

sion. This implies substantial acquisition times. If multiple

images of a face are acquired instantly (say at 25 frames

per second) from a single viewpoint, these images would be

mostly redundant and the temporal dimension will not have

much information.

We will come back to the image sequence based face

recognition but first let us talk about an interesting face

recognition alternative based on 3D face models. 3D face

recognition has gained considerable popularity due to its in-

variance to illumination because it matches the facial shape

as opposed to the reflected light. However, the acquisition

process of 3D faces is not illumination invariant. Changes

in illumination can have a great impact on the accuracy and

completeness of 3D shape data. Dark regions such as eye-

brows and specularities can cause missing data or spikes.

Moreover, 3D scanners have a very limited depth of field.

These problems are discussed in detail by Bowyer et al. [4]

in their recent survey of 3D face recognition algorithms.

They also highlight that the comparison of 2D and multi-

modal 2D-3D face recognition is usually biased as the lat-

ter involves more than one images. They suggest that two

gallery images must be matched with two probe images for

a correct comparison, overlooking the fact that active 3D

shape acquisition usually involves more than two images.



Figure 1. Illustration of the proposed face recognition paradigm. A camera acquires multiple images of a subject while a white stripe is

scanned on the screen to vary the illumination.

Passive techniques, such as stereo, cannot provide accu-

rate and dense 3D models therefore, we will focus on active

structured light based techniques. These techniques require

camera and projector calibration prior to acquisition. Cal-

ibration must be repeated every time the relative position

of the camera and projector is disturbed. After calibration,

a face is actively illuminated with different patterns and its

multiple images are acquired. These images are processed

to reconstruct the 3D model of the face and invariant fea-

tures are then extracted from the 3D face to perform classi-

fication.

In this paper, we propose a novel 3D face recognition

paradigm, i.e. Shade Face, which bypasses the reconstruc-

tion part and exploits the plethora of information available

in multiple images of a person acquired while varying the

illumination. We argue that if person identification is the

objective, why waste CPU time in reconstructing a 3D face

model or impose constraints like the availability of a 3D

scanner. With the freedom to vary illumination, perhaps

more simple, efficient and yet accurate face recognition can

be performed that does not require expensive equipment or

cumbersome calibration procedures. Recall our discussion

about redundancy in instantly acquired multiple images. In

the proposed paradigm, the facial images are acquired in-

stantly but each time varying the illumination therefore,

they are non-redundant.

In our setup, illumination is varied by scanning a hor-

izontal and then a vertical white stripe (with black back-

ground) on the computer screen in front of the subject. Fig.

1 shows an illustration of our approach. Subtracting ambi-

ent light leaves images illuminated by the screen from dif-

ferent angles. The contourlet coefficients [7] of the images

are calculated at different scales and orientations and then

projected to PCA subspace to remove redundancy. The sub-

space contourlet coefficients of multiple images are stacked

to form a global face representation. Since a subject’s po-

sition can change with respect to the screen when he/she

is first enrolled and then recognized at later stage, sliding

windows are used during matching to remove the disparity

between the face locations. The proposed algorithm was

tested under varying ambient illuminations and compared

to a known 3D face recognition algorithm [14] using data

acquired from the same subjects. In the case of Shade Face

algorithm, multiple images were acquired using the tech-

nique illustrated in Fig. 1 whereas for 3D face recognition,

3D face data was acquired with a Minolta laser scanner.

Our results show that Shade Face outperforms the 3D face

recognition algorithm [14].

There are many applications for the proposed Shade Face

algorithm. It can be used for authenticated login to a com-

puter account without the need for additional hardware.

Many other places e.g. ATMs and immigration control,

where authentication is currently performed using cards

and/or PINs already have a screen and camera in place.

Shade Face can be deployed at such locations with no addi-

tional hardware.

1.1. Related Work

The closest work to ours in the existing literature is per-

haps the illumination invariant face recognition from NIR

(near infra-red) images [5]. In this technique, the face is

actively illuminated with NIR LEDs that are coaxial with

the NIR camera hence causing frontal illumination. Our

method is different from [5] because it actively illuminates

the face from different angles. Another difference is that we

operate in the visible frequency range using a commercial

camera and the computer screen for illumination. However,

our proposed technique is generic and can be applied to NIR

images as well.

Shape-illumination manifolds [1] have been used to rep-

resent a face under changing illumination conditions. This

technique finds the best match to a video sequence in terms

of pose and then re-illuminates them based on the mani-

fold. This approach is different from ours because it as-

sumes the presence of pose variations i.e. images are ac-

quired over a longer duration. Appearance manifolds under



Figure 2. Sample faces after preprocessing.

changing pose were also used by Lee and Kriegman [11] to

perform face recognition. In their setup, the subject is in-

structed to vary his/her facial pose so that the manifolds can

be learned. This not only requires more acquisition time but

is less friendly (imagine a user instructed by a computer to

change pose for logging in) compared to instantly acquiring

multiple images while varying the illumination.

Li et al. [20] extracted the shape and pose free facial tex-

ture patterns from multi-view face images and used KDA

for classification. Liu et al. [10] perform online learning for

multiple image based face recognition. Unlike other tech-

niques they do no use a pre-trained model. Tangelder and

Schouten [8] used a sparse representation of multiple still

images for face recognition. A common aspect of these and

other multiple image or video-based face recognition tech-

niques is that they rely on changes in pose or long term

changes to extract additional information which implicitly

means longer acquisition times. Moreover, they do not ac-

tively illuminate the face but rely on ambient illumination.

In contrast, we actively illuminate the face from different

angles to instantly acquire non-redundant multiple images

for robust face recognition.

Wavelets provide a time-frequency representation of sig-

nals. Gabor wavelets have been well studied for face

recognition and many variants exist in the literature e.g.

[19][21][12]. A recent survey of wavelets based face recog-

nition is given in [16]. Wavelets are good at analyzing

point (or zero dimensional) discontinuities and are there-

fore, suitable for analyzing one dimensional signals. Since

images are inherently two dimensional, to capture one di-

mensional discontinuities (such as curves), contourlets [7]

have been proposed. The contourlet transform performs

multi-resolution andmulti-directional decomposition of im-

ages allowing for different number of directions at each

scale [7]. Contourlet [7] is a relatively new transform and

has not been fully explored for face recognition.

1.2. Contributions of this Work

The contributions of this paper can be summarized as

follows. (1) A novel 3D face recognition paradigm which

bypasses the 3D reconstruction part. (2) The use of com-

puter screen to illuminate the face from different angles.

(3) A multiple image-based face recognition algorithm us-

ing the discrete contourlet transform [7]. (4) Comparison

of the proposed Shade Face algorithm with a known 3D

face recognition algorithm [14]. (5) Provision of a novel

database (which will be made publicly available) compris-

ing multiple images of faces under varying illumination and

their corresponding 3D face models acquired with the Mi-

nolta 3D scanner. This database is the first of its kind and

can be used for comparing multiple image-based and 3D

face-based recognition algorithms. It also provides ground

truth 3D face data to evaluate the performance of 3D face

reconstruction algorithms from single and multiple images.

2. Proposed Algorithm

The proposed algorithm i.e.Shade Face, requires a com-

puter screen and a fixed exposure camera. Many computer

screens now come with inbuilt webcams therefore, no ad-

ditional hardware is required by our algorithm. For a good

signal to noise ratio, the subject must not be far from the

screen. The output of the camera is displayed on the screen

so that the subject can approximately center his/her face in

the camera’s fov. Image capture is automatically initiated

using face detection [18] when the face is correctly posi-

tioned (or manually with the press of a button). The screen

goes black and a white stripe scans from the top of the

screen to the bottom (vertical scan). The thickness of the

stripe and scanning speed (i.e. step) are chosen as a fraction

of the screen size. This is followed by a horizontal scan with

a stripe of equal thickness and step size. In our experiments,

the stripe was 200 pixels thick and 17 images were captured

during vertical scan and 30 during horizontal scan (given

the aspect ratio of the screen). A final image is captured in

ambient light while the screen is turned off (or black) and

subtracted from all other images. All images are converted

to gray scale, normalized with respect to scale based on the

eye corners and the face region is cropped. Note that the

eye corner detection can be accurately performed on the ba-

sis of all 47 images given that they are captured instantly

i.e. no subject movement. See Fig. 2 for sample images.

Let vi represent the preprocessed vertically scanned im-

ages (where i = 1 . . . 17) and hj represent the horizontally

scanned ones (where j = 1 . . . 30). Contourlet coefficients
[7] of the images are then calculated at different scales and

orientations. Let vsk
i represent the vector of contourlet co-

efficients of image vi at scale s and orientation k. The

contourlet transform is 33% redundant [7] and the images

have even greater redundancy because they belong to the

same subject or the same class i.e. human faces. To remove

redundancy, the contourlet coefficients of all training im-

ages (belonging to different subjects) calculated at the same

scale and orientation are projected separately to the PCA

subspaces.



Figure 3. Contourlet coefficients of a face.

Let Ask = [vsk
ig hsk

jg ] (where i = 1 . . . 17, j = 1 . . . 30
and g = 1 . . .G) represent the matrix of contourlet coeffi-

cients of all 47 images of G subjects in the training data at

the same scale s and same orientation k. Each column con-

tains the contourlet coefficients of one image. The mean of

the matrix is given by

µsk =
1

47G

47G
∑

n=1

A
sk
n , (1)

and the covariance matrix by

C
sk =

1

47G

47G
∑

n=1

(Ask
n − µsk)(Ask

n − µsk)T . (2)

The eigenvectors of C
sk are calculated by Singular Value

Decomposition

U
sk

S
sk(Vsk)T = C

sk , (3)

where the matrix U
sk contains the eigenvectors sorted ac-

cording to the decreasing order of eigenvalues in the diag-

onal matrix S
sk. Let λn (where n = 1 . . .N ) represent the

eigenvalues (in decreasing order) then we find L such that

∑L

n=1
λn

∑N

n=1
λn

≈ 0.95 , (4)

U
sk
L = U

sk
n where n = 1 . . . L . (5)

Where U
sk
L contains the first L eigenvectors of C

sk. The

subspace contourlet coefficients are given by

A
sk
λ = (Usk

L )T
A

sk . (6)

Where A
sk
λ = [vsk

λi hsk
λj ]. Note that U

sk
L and µsk repre-

sent the subspace for contourlet coefficients at scale s and

1 2 3 4 30292827. . . . . . . . 

1 2 3 4 30292827. . . . . . . . 

Subspace contourlet coefficients

Subspace contourlet coefficients

correlation

Horizontally scanned images of a gallery face

Horizontally scanned images of a probe face

Figure 4. Illustration of sliding window.

orientation k. Similar subspaces are calculated for different

scales and orientations using the training data. In our ex-

periments, we considered two scales and seven orientations

along with the low pass sub-band image (see Fig. 3).

The subspace contourlet coefficients of vertical and hor-

izontal scan images are stacked separately to form two

global representations of each identity. For example, the

global features of an identity g in the gallery are given by

T
v
g =

[

v11

λi v12

λi . . . v21

λi v22

λi . . .
]T

, and (7)

T
h
g =

[

h11

λj h12

λj . . . h21

λj h24

λj . . .
]T

. (8)

Where each column of T corresponds to an image and row

corresponds to a specific subspace contourlet coefficient.

Recall that i = 1 . . . 17 and j = 1 . . . 30.
During recognition, similar global features P

h
λ and P

v
λ

are calculated for the images of a probe face. Note that the

subject’s position with respect to the screen is not strictly

controlled therefore, there may be a shift (vertical and hor-

izontal) in the position when the subject is first enrolled

and later being recognized. Consequently, images vi and

hj (for the same values of i and j) may correspond to dif-

ferent lighting conditions of the face images. To overcome

this disparity, a sliding window is used while matching the

probe to each gallery face. This strategy is similar to match-

ing IrisCodes [6] except that our features are not circular

like the IrisCodes and therefore, sliding the window by x

images (or columns) will result in the exclusion of x feature

columns on different sides of the gallery and probe features.

Fig. 4 illustrates the sliding window based feature match-

ing technique for horizontal features. Vertical scan features

are also matched using the same sliding window approach.

Matching is performed using correlation coefficient

γ =
n

∑

TP −
∑

T
∑

P
√

n
∑

(T)2 − (
∑

T)2
√

n
∑

(P)2 − (
∑

P)2
, (9)



Figure 5. The mean and standard deviation of correlation between

different identities decrease as more subspace contourlet coeffi-

cients are added in the global representation. Saturation is reached

at about 400 coefficients.

where γ is the correlation coefficient and n is the number of

remaining subspace contourlet coefficients inside the slid-

ing window. Given the limited fov of the camera, the win-

dow needs to be slided over only a limited number of im-

ages (say ±3) while matching with each gallery identity.

This results in a 7 × G matrix of correlations where each

row corresponds to a sliding window position and a column

contains the correlations of the corresponding gallery iden-

tity with the probe. The window (i.e. row) that contains the

maximum correlation γ for a gallery face is selected as a

row vector of similarity scores of the probe with the gallery

identities. Note that this is in contrast with the IrisCodes

matching [6] where a different tilt is selected to give a min-

imum Hamming distance between two IrisCodes. Our ap-

proach is not biased towards higher correlations between

unrelated faces because we chose the same sliding window

(row) position for all matches.

Sliding window is used to match the vertical and hori-

zontal scan features separately resulting in two vectors Γv

and Γh of correlation coefficients. These correlations are

combined using a weighted sum rule where the weights are

calculated as the difference between the top two correlation

coefficients i.e. if the best match is close to the next best

match, it gets a lower weight. The combined correlation

between the probe and gallery identities is calculated as

Γ = ωvΓv + ωhΓh , (10)

where ωv and ωh are the weights of the vertical and hori-

zontal correlation scores. In identification applications, the

gallery identity with the maximum combined correlation is

declared as the identity of the probe. In authentication, a

threshold is used to decide whether the probe should be al-

lowed access or not.

Figure 6. Sample 3D faces (left) acquired with the Minolta laser

scanner in our lab. The 3D faces are normalized (middle) along

with their texture (right) according to [14].

3. Results and Comparison with 3D Face

Recognition

The proposed Shade Face approach is completely differ-

ent and no standard database exists for testing it. Therefore,

we generated our own data of multiple face images and their

corresponding 3D face models for comparison. The multi-

ple images were acquired with a 640 × 480 camera with

fixed exposure while the face was illuminated by a 22” TFT

screen with 280 cd/m2 brightness and 700:1 contrast ratio.

The 3D face models were acquired with the Minolta Vivid

3D scanner. A total of ten subjects participated in our ex-

periments. Each subject was imaged three or more times by

Shade Face on different days and under different ambient

lighting. This resulted in a total of 1551 images. Out of

these, 470 images (one set of vertical and horizontal scan

images per subject) were used in training data and to form

the gallery while the remaining 1081 images (in sets of 47

images) were used for testing the algorithm i.e. probe iden-

tities. The Shade Face algorithm was used to calculate the

correlation between the probe and gallery identities. All

correlation scores were normalized on the scale of zero to

one using the min-max rule. Normalization was necessary

for comparison with the 3D face recognition algorithm dis-

cussed later.

In our first experiment, we studied the effect of the num-

ber of subspace contourlet coefficients on the mean and

standard deviation of the correlation between different iden-

tities which should be ideally very small. Only 470 test



(a) (b) (c)

Figure 7. (a) Shade Face algorithm performance. (b) R3D face recognition algorithm [14] performance. (c) MMHa multimodal 2D-3D

face recognition algorithm [14] performance.

images were used in this experiment. Fig. 5 shows the re-

lationship between the number of subspace contourlet coef-

ficients and the mean and standard deviation of correlation

between different identities. The subspace contourlet coeffi-

cients were added starting from the smallest scale. Since the

mean correlation saturates at about 400 coefficients which

corresponds to two scales and seven orientations, we chose

this many coefficients for our next experiment.

In the second experiment, we used all the 1081 test im-

ages corresponding to 23 imaging sessions of 10 probe iden-

tities and matched them with the 10 identities in the gallery.

It is important to emphasize that a single set of vertical and

horizontal images were used for the recognition of a probe

identity. The matching process resulted in 23 genuine cor-

relation scores when a probe was matched with the cor-

rect gallery identity and 207 impostor scores when different

identities were matched. Fig. 7-a shows the impostor and

genuine distributions for our Shade Face algorithm. Due

to score normalization, all genuine matches have a correla-

tion of 1 but the distribution of the impostor scores gives us

important information about how well the Shade Face al-

gorithm performed. The mean correlation of the impostor

distribution is 0.13 indicating that the proposed global fea-

tures are highly distinctive. The mean impostor correlation

(on a normalized scale) can be used as a benchmark to com-

pare two algorithms when both give a 100% identification

and verification accuracy.

In the third experiment, we compare Shade Face to an

existing 3D and multimodal 2D-3D face recognition algo-

rithm [14]. This algorithm was chosen because of its high

identification and verification performance (over 99%) on

the largest available 3D face database i.e. FRGC [15]. We

used our own implementations of the R3D and MMHa vari-

ants of the algorithm [14]. The R3D algorithm performs

region based 3D face recognition. It detects the nose tip,

crops the 3D face using a sphere, uniformly resamples it

and corrects its pose using PCA. The last two steps are iter-

ated until pose converges. Texture is mapped on the 3D face

during the normalization procedure to get a cropped and

pose corrected 2D image of the subject as well. The eyes-

forehead and nose regions are then segmented and matched

separately using a modified ICP algorithm [3]. The match

scores are normalized on a scale of zero to one and com-

bined using the sum rule.

Each subject was scanned twice on different days using

the Minolta laser scanner. Fig. 6 shows sample scans of

two subjects and their corresponding 3D and 2D faces after

normalization. For each subject, the first scan was kept in

the gallery and the second was treated as a probe and the

R3D algorithm was used to match them resulting in 90 im-

postor scores and 10 genuine scores. For comparison to the

Shade Face algorithm, the similarity scores were normal-

ized on the scale of zero to one using positive polarity (as

opposed to negative polarity in [14]). Fig. 7-b shows the

impostor and genuine distributions of the R3D algorithm.

Note that the mean impostor score is worst than the Shade

Face algorithm.

The MMHa is a mulimodal 2D-3D face recognition al-

gorithm and combines the similarity scores of the R3D al-

gorithm with SIFT [13] and SFR (Spherical Face Repre-

sentation) based face recognition [14]. A sum rule is used

for combining the normalized similarity scores. We gave

equal weights to all matching scores and normalized the fi-

nal scores again on the scale of zero to one for comparison

with the previous results. Fig. 7-c shows the performance

on the MMHa algorithm. As expected, MMHa outperforms

R3D by achieving lower mean impostor similarity of 0.21

however, its performance still does not match that of the

proposed Shade Face algorithm.

4. Discussion

The proposed Shade Face algorithm is inspired by 3D

scanning technology but uses common computer hardware

in an ingenious way. This paper presents a proof of concept

rather than being exhaustive in multiple image representa-



tion and testing or critical in setting the best hardware con-

figuration. While, the proposed global features and com-

parative analysis are sufficient to show the potential of the

Shade Face algorithm, there are many improvements that

can be done. For example, local features can be added

to the global features to perform hybrid face recognition.

The hardware setting can be improved by synchronizing the

camera trigger with refresh rate of the screen. Faster cam-

eras and screens can further improve the results by avoiding

the slightest subject movement. Nevertheless, Shade Face

is robust as with the existing unoptimized setup, it outper-

formed a known 3D face recognition algorithm.

5. Conclusion

We presented a novel 3D face recognition paradigm

which bypasses the 3D reconstruction part. The proposed

approach extracts global features from multiple images of a

face acquired while actively varying the illumination. We

also introduced the use of the computer screen to illumi-

nate the face from different angles. Many computer screens

comewith inbuilt cameras therefore, alleviating the need for

any additional hardware for our algorithm. We proposed a

multiple image-based face recognition algorithm using the

discrete contourlet transform [7]. To the best of our knowl-

edge, the contourlet transform has not been used before for

face recognition. We compared the proposed algorithm to

a known 3D face recognition algorithm [14]. Verification

results on images and 3D face models of the same persons

show the superiority of our algorithm. We also presented

a novel database comprising multiple facial images under

varying illumination and their corresponding 3D face mod-

els acquired with the Minolta 3D scanner. We plan to grow

this database and make it publicly available for researchers

to compare multiple image-based and 3D face recognition

algorithms. The 3D face data can be used as ground truth

to evaluate the performance of 3D face reconstruction algo-

rithms from single and multiple images.
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