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Abstract

This paper proposes a framework to recognize and clas-
sify loosely constrained activities with minimal supervision.
The framework use basic trajectory information as input
and goes up to video interpretation. The work reduces the
gap between low-level information and semantic interpre-
tation, building an intermediate layer composed Primitive
Events. The proposed representation for primitive events
aims at capturing small meaningful motions over the scene
with the advantage of been learnt in an unsupervised man-
ner. We propose the modeling of an activity using Primitive
Events as the main descriptors. The activity model is built
in a semi-supervised way using only real tracking data. Fi-
nally we validate the descriptors by recognizing and label-
ing modeled activities in a home-care application dataset.

1. Introduction

The automatic recognition and classification of daily hu-
man activities is a topic that remains open. In the literature
the computational approaches assume usually prior knowl-
edge about the activities and the environment. This knowl-
edge is used explicitly to model the activities in a super-
vised manner. For example in video surveillance domain,
the technical and scientific progress requires nowadays hu-
man operators to handle large quantities of data. It becomes
almost an impossible task to continually monitor these data
sources manually. It is of crucial importance to build com-
puter systems capable of analyzing human behavior with a
minimal supervision.

Computer-based video applications need several processing
levels, from low-level tasks of image processing to higher
levels concerning semantic interpretation of the monitored
scene. At the moment the reduction of the gap between low-
level tasks up to video understanding is still a challenge.
This work addresses these problems by presenting a novel
framework that links the basic visual information (i.e.
tracked objects) to the recognizing and labeling activities
(e.g. Working in the kitchen) by constructing an intermedi-
ate layer in a completely unsupervised way.

The intermediate layer is composed of meaningful tran-
sitions (i.e small trajectories corresponding to primitive
events) between two regions of interest. To automatically

model these primitive events first the scene topology is
learnt in an unsupervised way. Thus the intermediate layer
tries to capture the intention of the individual to perform ba-
sic tasks, using only minimal information. Using visual in-
formation enables to reduce the complexity of systems that
usually use numerous sensors to enrich the observation data.
Given global annotated activities for one person (i.e. ac-
tivity Ground Truth), the meaningful patterns of primitive
events are extracted to characterize the activities of interest.
This activity ground truth bridges the gap between observa-
tion and semantic interpretation. The patterns of primitive
events are then used as generic activity descriptions in order
to recognize automatically the main activities for another
observed person.

These contributions are described in the third section. The
process to build the scene topology is presented in the fourth
section. The generation of primitive events and the model-
ing of activities are respectively described in the fifth and
sixth sections. The paper concludes with validation exper-
iments on home-care monitoring, and explains how typical
activity such as “Working in the kitchen” were automati-
cally recognized.

2. Related Work

The data-mining field can provide adequate solutions to
synthesize, analyze and extract information. Because of the
advance made in the field of object detection and tracking
[8] data-mining techniques can be applied on large video
data. These techniques consist in classifying multiple video
features (e.g. trajectories) in activity categories associated
with meaningful semantic keywords that will allow the re-
trieval of the video. Usually low level features (i.e., color,
texture, shape, and motion) are employed. Recently par-
ticular attention has been turned to the object trajectory in-
formation over time to understand high level activity. The
trajectory based methods to analyze activity can be divided
in two groups, supervised and unsupervised.

The typical supervised methods proposed such as [14, 15,
17] can build activity behavior models in a very accurate
way. The problem is that they require of big training data-
sets labeled manually.

The unsupervised methods generally include: Neural Net-
works based, approaches such as [6, 11, 18], they can rep-
resent complex nonlinear relations of trajectory space in a



low-dimensional structure, the networks can be trained se-
quentially and easily updated with new examples. but they
require big amount of training data and the complexity of
parametrization usually makes the networks become use-
less after long periods of time.

Clustering approaches such as Hierarchical Methods [7,13]
allow multi resolution activity modeling by changing the
number of clusters, but the clustering quality depends on
the decision of when to clusters should be merged or spit.
Adaptative Methods [2, 3, 9], the number of clusters adapts
to changes over time, making possible on-line modeling
without the constraint of maintaining a learning data-set.
In these methods is difficult to initialize a new cluster pre-
venting outlier inclusion. [1] [19] use dynamic programing
based approaches to classify activity, quite effective meth-
ods when time ordering constraints hold.

Hidden Markov Model based approaches such as [12, 16]
captures spatio-temporal relations in trajectory paths, allow-
ing high level analysis of an activity, is very suitable for de-
tecting abnormalities. These methods need of prior knowl-
edge and the adaptability in time is poor.

Recently Morris and Trivedi [5], learn topology scene de-
scriptors (POI) and modeled the activities between POIs
with HMMs encoding trajectory points, the approach is
suitable to detect abnormal activities and has good perfor-
mance when used in structured scenes. The method re-
quires of time order constraints and the topology is based
in the entry and exit scene zones. Hamid et al. [4] merges
the scene topology and censorial information, modeling se-
quences of events (n-grams) to discover and classify activ-
ity. The method requires manual specification of the scene.
Most of the methods described above can be used in struc-
tured scenarios (i.e. highway, or a person a laboratory), and
cannot really infer activity semantics. To solve this prob-
lems we propose a method capable of recognizing loosely
constraint activities in non structured scenes, and we go up
to semantic interpretation with minimal human knowledge.

3. Overview

The proposed approach aims first at learning the main
everyday activities of a person observed by video cameras
given a coarse labeling of these activities. Second the goal
is to recognize automatically these activities while observ-
ing another person. The approach is composed of 5 steps.
First, people are detected and tracked in the scene and their
trajectories are stored in a database, using a classical re-
gion based tracking algorithm. Second, the topology of the
scene is learnt using the regions (called Slow Regions, SRs)
where the person usually stands and stops. This topology is
a set of logical regions (e.g. “sink region” corresponds to
the zone where people wash the dishes) which are usually
present during typical everyday activities.

Third, the transitions between these Slow Regions are com-

puted by cutting the observed person trajectory. These tran-
sitions correspond to short unit of motion and can be seen as
basic elements constituting more complex activities. These
transitions are called Primitive Events (PEs) and are learnt
thanks to the SRs.

Fourth, a coarse activity ground truth is manually performed
on a reference video corresponding to the first monitored
person. Thanks to this ground truth, the associated Primi-
tive Event histograms are globally labeled.

Fifth, using these labeled Primitive Event histograms the
activities of the second monitored person can be automati-
cally recognized.

4. Scene Topology

The scene topology is a set of SRs learnt through clus-
tering of meaningful slow points. Other features than slow
points could have been selected such as changes of direc-
tion, acceleration, changes of shape, but slow points are the
most salient features to characterize regions of interest.

4.1. Trajectory Slow points

We use the speed of the object as the measure of veloc-
ity. The speed of a trajectory point p; is estimated by the
object spatial distance walked in a fixed window of points,
centered at p;. This way we relax the noise of the trajec-
tory due to the tracker. We use a speed threshold Hsrow
to compute the trajectory slow points.
Let T be a trajectory, where T' =< p1, ..., pp >:
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Figure 1. (a) Real-Data Trajectories (DT'rest). (b) Extracted
SSLPs differentiated by color

4.2. Trajectory strings of slow points
After the computation of trajectory slow points, two sit-
uations can appear: isolated slow points or groups of slow



points along the trajectory. Isolated points are usually not
meaningful enough to represent logical regions correspond-
ing to an activity (i.e. where an individual interacts with the
environment). Thus we perform a secondary calculation by
keeping only “strings of slow points” (SSLP). We restrict
the string size allowing sequences of at least Qg7 4y points
(i.e. the individual maintains the slow motion for 4 seconds
or more).

Let S be a sequence < p;_qy, ..., Pitw >, Of a trajectory T,
then:

S e SSLP if ||S|| > Qsray A Picw---Pitw € SLOW
3)
In the figure 1(a) a real-data trajectory data-set of a mon-
itored person living in the experimental apartment, and in
1(b) the subsequence of strings of slow points obtained, dif-
ferentiated by color. Finally we estimate “scene slow point”
(SSL) as the average of points within a sequence. This is
motivated by our interest of having a single point represent-
ing that the individual stayed in a zone for a certain time.

SSL, = Avg{SSLP,} “)

4.3. Clustering slow points

SSLs points should characterize the region of interest
where the individual interacts with static scene objects such
as equipment. However SSLs points are not necessarily
meaningful. For example the region where a person stops
randomly could be an important region that does not repre-
sent necessarily any interaction with the environment. To
refine the scene regions we perform K-means clustering
over the set of SSLs. Here, the selected number of clus-
ters represents the abstraction level of the scene representa-
tion. For instance in the figure 2 (a), 6 clusters are extracted,
representing interactions with: two sections of the kitchen
(shelf and sink), two sections of the table (chairs), the arm-
chair and the exit-hall. Clusters are not always linked with
static scene objects, some clusters can be temporarily rep-
resenting an activity that needs to be considered. For exam-
ple this is the case when the person moves the chair, uses
the chair and moves it back to the original position. For
clustering we have tested different types of distance: Eu-
clidean, City-Block, correlation, Kendall’s tau, Spearman’s
rank correlation. The euclidean distance has shown to ag-
glomerate better the SSLPs into meaningful regions.

4.4. Scene Model

The scene topology is modeled by a set of Slow Regions
(SRs).
Formally a SR is a triplet of 3 variables.

SR; =< SR_Spatial, SR_Time, SR_Frequency >
4)
where:
SR_Spatial is the average of the SSLs in a cluster corre-
sponding to the central point of the cluster.

Figure 2. Top View of the apartment kitchen and living room. (a) 6
clusters of SSL points differentiated by color (euclidean-distance),
(b) SR_Spatial points numbered from 0 to 5

SR_Spatial = Avg({SSL:}) ¥V SSL; € Cluster;
SR_Time is a Gaussian function describing the time spend
by the person at the SSLs € Cluster; (extracted from the
SSLPs).

SR_Frequency is a Gaussian function that describes the
time spent outside the Cluster (i.e. the zone) while revisit-
ing it.

The set of these SRs represents the scene topology. Dif-
ferent granularity of the SRs have been experimented and
correspond to different activity abstraction levels. In the
following experiments a 8 SRs topology has been used to
better represent activities in the kitchen and the table. For
notational simplicity a SR is associated to a natural number
in the rest of the paper.

S. Primitive Events

For computing Primitive Events we cut a trajectory in to
significant segments. The trajectory segments in conjunc-
tion with the scene topology information correspond to ba-
sic units of motion linked usually with a primitive activity
(i.e a person that is in movement stops to do something).

5.1. Cutting trajectories

A trajectory cut is defined as the trajectory segment from
the last point of a SSLP; to the last point of the next
SSLP;y, ordered by time of appearance in the trajectory.
It is worth nothing that a trajectory cut can pass through
a SR without ending there. This is because, an individ-
ual crossing a SR without stopping does not necessarily
mean that the individual acts or interacts in that region.
In particular for our scene in the way from the kitchen
to the sofa a person can cross several SRs. An exam-
ple can be found in the figure 3. Formally given a trajec-
tory T =< ..., 81, s Sny D1y ooy Py Q1 -+ Qny - > Where
s; € SSLP, and q; € SSLP, 1, then a trajectory cut T'C'
is:

TC =< SnsPly oy Pmyqly -5 Qn > (6)



Figure 3. Example of 2 sets of trajectory cuts

5.2. Primitive Event Extraction

The fusion of trajectory cuts and scene Topology infor-
mation is used to build Primitive Events (PE). A PE is rep-
resented as a sixplet.

PFE =< SSR,ESR,TI,Q,SF, EF > )

Given a trajectory cut T'C' =< py, ..., p, > then:
SSR “Start Slow Region” is the label of the nearest SR
(Slow Region) of the scene topology to pg

SSR = SRz if dist(pg, SRl) < dist(po, SRJ) V.] 75 7
®)
ESR “End Slow Region” is the label of the nearest SR of
the scene topology to p,,.

ESR = SR; if dist(pn, SR;) < dist(pn, SR;) Vj #i
)
I M “Imprecision” represents the distance of PE to a perfect
motion between SRs.

IM = dist(pg, SSR) + dist(pn, ESR) (10)

T “Time” is the duration of the trajectory cut (normalized
by the video Frame Rate).

I7C

" Frame_Rate

an

SF and EF represents the starting and ending frames of
TC.

Sk = Tcsta'rtframe

EF = Tcendframe

In this work we do not consider a PE when its imprecision
has a too high value.

The primitives events are classified by type depending on
their SSR and ESR. Thus for notational simplicity we
label them as (SSR — ESR) (i.e (3-4) stands for a PE be-
tween SRs with ID 3 and 4).

In the figure 4 an example of 3 extracted primitive events
is displayed. These primitive events are used as basic ele-
ments to build more complex activities.

Trajectory cut
WA

Tt=5 seconds

Slow Region Tt= 3 seconds

(b)

Figure 4. (a) Graphical flow of trajectory cuts A,B and C over the
time. (b) graphical representation of the obtained PE's displayed
on a time line. From B and C we obtain the same PE label but
they are differentiated by the other features (1", SF', EF, IM).

6. Activity Modeling

Instead of manually specifying the possible activities for
a scene, which in some cases can become difficult, a model
for each activity is automatically learnt through the observa-
tion of the subsequence of PEs occurring in a time window.
The duration and the label of the activity are specified by
the user by building a set of coarse Activity Ground Truth
covering the whole video length for one monitored person
as illustrated in figure 5 (b).
In figure 5 (a) a graphical representation of the sequence of
automatically detected Primitive Events is displayed for the
whole length of datasetl (DT.s¢). Graphically we differ-
entiate each PE type by color. White segments appear due
to one of these three reasons: The tracker has lost the per-
son, The person is not in scene, The PE is filtered because
of a poor precision measurement.

6.1. Ground truth

We define the activities of an individual in a video se-
quence, by building an activity ground truth. We built two
ground-truth (GTres; and GTreqrrn), from 2 datasets' of
2 individuals (DT7es; and DTfeqrp) -figure 6-. We use
GTLeqrn for learning the activity models of D77 ¢4, and
GTr.s for validation of the DT, detected activities.

6.2. The Model
The features we use to model an activity are the PE's
contained in the time window when the activity occurs (fig

Thttp://www-sop.inria.fr/pulsar/personnel/Francois.Bremond/
topicsText/gerhomeProject.html
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Figure 5. (a) Graphical representation of PE sequence of D77 in the time-line, the color is the PE type and the with the spend time.
(b) The overlapping of GTres: activities, and the PE sequence of DT'res:

Figure 6. Snapshots of DTres: and DTLeqrn videos (4 and 3
hours length respectively).

7). The window is obtained by aligning the detected PEs
with the ground truth activities.

Concerning this point modeling the temporal relations by
HMMs and n-grams have already been proposed in the liter-
ature, but the targeted activities (i.e. homecare monitoring)
are loosely constraint and does not have strong structural
temporal patterns requiring a specific temporal processing.
We have also evaluated the probability of a PE to belong to
an activity using Bayesian rule. The results have suggested
that more datasets are required to provide a reliable proba-
bilistic description of the activities.

Thus we have found that a simple histogram containing the
instances of the PEs during the activity, captures sufficiently

the characteristic PEs to describe and differentiate the ac-
tivities. Also when two different activities share a similar
spatial location, the key feature to differentiate both is the
activity length duration. This motivates us to encode the
time accumulation of the PEs in a second histogram.

More formally, a first histogram (/1) contains the number
of instances for each PE type appearing in the window. The
second one (H?2) represents the accumulation of the time
spend during the primitive events.

Hla_py = [[Wll(a-p)
Hl= {HI(A_B)} V(A—B) e W

Where W is the set of all PEs appearing in the window
from region SR A towards SR B.

H2(A—B) = AUg((A - B)T) V(A— B) eWw
H2={H2<A,B)} V(A—B) e W

In the case that an Activity is repeated at different time in
the video, we average the histograms extracted from each
instance.

6.3. Activity Recognition

The activity recognition is performed in 2 steps. First,
the PEs of DT, are calculated, the labels of the obtained
PEs are changed to maintain similarity with D77 ¢4y, activ-
ity models. The labels are changed, finding the alignment
between DTres and DT cqrn topologies.
Second, similar histograms to the activity model are
searched in the re-labeled PE sequence of DTr.;.
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Figure 7. Activity model learning

6.4. Topology Alignment

To locate an Activity spatially, it is important to label the
Slow Regions of DT7.s; with the ones of the DT cqrp, .
We use a relational graph matching algorithm [10], capa-
ble of computing pair matching between graphs of different
number of nodes.

The method captures the local structural information (K-
plet) by computing the K nearest neighbors for each SR,
by inferring all possible configurations and by keeping the
one maximizing the matching between the two graphs.

The matching between K-plets of DT cqrn and DTpesy
SRs is performed using a dynamic programming based al-
gorithm.

The consolidation of the local matches is done using Cou-
pled Breadth First Search (CBFS) algorithm [10]. (CBFS)
propagates the local (k-plets) matches simultaneously in
both datasets.

We feed the algorithm with the SRs of DTrp.s and
DTrearn. The matched SR pairs are used to re-label the
D7Tr.s: PEs sequence (i.e if the SR #4 of DT} ¢4y, 1S Simi-
lar to SR #1 of DT, a primitive event (1 —4) of DT
is transformed to (4 — 4)).

6.5. Activity Search

We slide iteratively a temporal window W over the com-
puted sequence of PEs of the testing video (DT7es¢). Since
the duration of the learnt activity is strict, we vary the size
of W at each iteration. From the subsequence of PE's con-
tained in W we extract two histograms H1* and H2* (in
a similar manner than H1 and H2 are learnt for the ac-
tivity modeling). We compute a similarity measurement
(dist_W) between the model and the extracted histograms.

dist W = disty, + distyo. % k (12)
[Hla—p) — H1{4_pll

distpi. =Y § Hlje_p xt (13)
Hlg_r) *xq

||H2(A—B) - HQ?A_B)”
distus. =y  H2o_p) xm (14)
HQ(E—F) * S

V(A—B)e HI*NH1

Y(C—-D)e HI* AN(C—-D) ¢ H1

VY(E-F)e HIN(E—-F)¢ H1*

Where H1 and H 2 stands for the activity model histograms,
H1* and H2* are the histograms extracted from a time
window W placed in the new dataset, H 12‘ A—B) is the his-
togram value for the primitive event (A — B), k is a utility
factor (i.e. £ = 0 means that the duration of the PEs is not
important to recognize an activity).

t,q, m, s are penalty factors (i.e. setting s,q = 0, implies
that the PEs of the model that do not appear in the test his-
tograms are not considered for the similarity measure, al-
lowing outlier PEs in the activity recognition).

The topology alignment procedure allows to set different
topology granularity for D175 and DT ¢4y, thus we can
set a higher granularity to D714 topology to filter out non
shared logical regions.

The similarity measure used in the activity search algorithm
could be extended to take into account the proximity of the
recognized PEs in the global distribution.

7. Experiments

For experimentation we selected three of the shared ac-
tivities between DTr.s; and DT7r.q.-n. The activities are:
“Working in the kitchen”,“Working at the Table” and “Eat-

. t1)

ing”.

7.1. Learning Experiments

The parameters used are Hspow = 120cm/s,
QsTay = 4sec. The number of clusters used for learning
the DT cqrn’s scene topology is 8 (the resulting SRs -Slow
Regions- are displayed in figure 10 (a) ). We compute the
PE sequence of D77 cqrpn, and we extract the activity mod-
els of the 3 selected activities. In Table I the most relevant
PEs of the “Working in the kitchen” activity histogram are
displayed, showing high interaction between regions 1-3-5,
corresponding to the kitchen area (figure 10).

3-1 11333 | 15|11 |51]55] 35
7 6 6 6 4 4 2 2
149 | 153 | 165 | 177 | 624 | 219 | 122 | 158

Table 1. Working in the kitchen - first line: primitive Event type
(i.e. transition between two SRs), second line: number of occur-
rences, third line: time spend for the PE

7.2. Activity Recognition Experiments
We compute the topology of DTr.s: using 9 clusters
(the number of clusters can be greater than the learnt
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Figure 10. Topology correspondence (a) Learning dataset Topol-
0ogy (DTpearn) (b) Testing Dataset Topology (DT'rest) - The re-
gions where the persons in DTrest and DT cqry are eating are
marked with “X”

clusters to allow some flexibility in the matching process),
and we align DTres; and DTpeqrn topologies. The
alignment find 6 SRs (figure 10 (b) yellow lines) shared
between DTres; and DT eqry topologies. The shared SRs
are relevant enough to recognize the selected activities.

We compute the PE sequence of D7T7.s:, and we search
the DTy cqrn’s modeled activities.

To validate the activity recognition, we use an activity
ground truth (G17res;). We search for the N histograms
that better fit the model respectively for each activity in
Table 2. The histograms represent the interval of time
where the activity is recognized. We align the intervals
with the activity ground truth (figure 8-9) and calculate the
following performance measures:

TP = True Positives, number of detected activity in-

tervals that overlap the ground truth activity.

TPT= True Positive Time, the time percentage of activity
intervals that overlap the ground truth activity.

FDT = False Detection Time,the time percentage of activity
intervals that do not overlap the ground truth activity for
the whole video.

AT = Number of Ground Truth activity instances.

AD = Number of detected Ground truth activity instances.
The experimental results are displayed in Table 2. An

Activity TP | TPT | FDT | AT | AD
Working in the kitchen | 26 | 74% | 3% | 16 | 16
Eating 5 | 100% | 1% 5 5

Working at the Table 34 | 76% | 2% | 28 | 26

Table 2. Activity detection results.

example of recognized “Working in the kitchen” can be
found in figure 8. All the activity instances are recognized,
and most of the False Detection segments are of small size.
An example of “Eating” is illustrated in figure 9. The time
duration of the TPs is more accurate than the previous
example. Is important to note that the activity is recognized
even when the chair position is different between DT7cqrn,
and DTr.s; when the person is eating (see “X” in fig-
ure 10). This is because the selected clustering granularity
merges all the slow points near the corner of the table in
one SR, allowing the traslation of the chair.

The results show for the algorithm a good capability
to recognize different types of activities (high/low PEs
interaction and long/short time duration).

8. Conclusions
We propose a novel method to detect and recognize

loosely constraint activities in unstructured scenes. We first
propose a method to learn the scene logical regions (scene
topology) in a unsupervised way.



We show that the learnt regions for two different individ-
uals can be matched when the individuals are performing
similar activities. We secondly propose a bridge (Primi-
tive Event) that links automatically vision features (trajecto-
ries) and high level activities. We propose an activity search
method capable of detecting long/short term activities based
on Primitive Event histograms.

Future work include learning in an unsupervised way the
model of the activities by taking into account a large train-
ing dataset containing a total of 14 monitored elderly peo-
ple. Also we are working on improving the similarity
measurement for the searching activity process by using a
Bayesian characterization of the activities. Although that
the tuning of the searching activity process parameter does
not have a strong impact on the performance results we are
still planning to optimize these parameters using Genetic
Algorithm.
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