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Abstract

Recursive Bayesian Estimation (RBE) is a widespread
solution for visual tracking as well as for applications in
other domains requiring hidden state estimation. Although
theoretically sound and unquestionably powerful, from a
practical point of view RBE suffers from the assumption of
complete a priori knowledge of the transition model, that
is typically unknown. The use of wrong a priori transition
model may lead to large estimation errors or even to di-
vergence. This work proposes to prevent these problems,
in case of fully observable systems, learning the transition
model on-line via Support Vector Regression. An applica-
tion of this general framework is proposed in the context
of linear/Gaussian systems and shown to be superior to a
standard, non adaptive solution.

1. Introduction

The problem of hidden state estimation from noisy mea-
surements is transversal to several disciplines. Recursive
Bayesian Estimation (RBE) is the tool typically used to
tackle this problem.

One of the main limitations to its use is the requirement
to a priori specify a process dynamic the user believes the
system to generally follow, also referred to as transition
model . In most cases this model is unknown and is em-
pirically selected among a restricted set of standard ones.
This approximate tuning of a recursive Bayesian filter may
seriously degrade its performances, that could be optimal
(e.g., Kalman filter) or sub-optimal (e.g., particle filter) in
case of correct system identification.

In this paper, we propose to learn the transition model
on-line without any intervention of the user via Support
Vector Machines. We provide first a conceptual solution
suitable for the general formulation of RBE and we discuss
some points that are valid for every specific instantiation of
this general model. Then, we address the linear Gaussian
case and provide a detailed solution for the Kalman Filter,
dubbed Support Vector Kalman (SVK).

The combination of the strengths of the Kalman filter
and the SVM for visual tracking applications has appeared
already in [6]. SVM was used to provide an adaptive mea-
surement process to a standard Kalman filter with fixed tran-
sition model. The focus was on getting good measurements
even in presence of highly similar targets, rather than on im-
proving tracking performances learning on-line the motion
traits of the object of interest. More closely related to our
work are the efforts produced on the derivation of Adaptive
Kalman Filters, that have been studied almost since the in-
troduction of this filtering technique. In fact, our SVK can
be seen as a new approach to build an Adaptive Kalman Fil-
ter. The main idea behind adaptive filtering schemes is that
the basic source of uncertainty is due to the unknown noise
statistics, and the proposed solution is to estimate them on-
line from the observed data. One of the most comprehen-
sive contributions is [9]. It reviews proposed approaches
and classify them according to four categories: Bayesian
Estimation (BE), Maximum Likelihood Estimation (MLE),
Correlation Methods (CM) and Covariance-Matching Tech-
niques (CMT). Methods in the first category imply integra-
tion over a large dimensional space and can be solved only
with special assumptions on the PDF of the noise param-
eters. MLE requires the solution of a non-linear equation
that, in turns, is solvable only under the assumptions that the
system is time invariant and completely observable and the
filter has reached a steady state. Under these assumptions,
however, only a time invariant estimation of the parameters
of the noise PDF can be obtained. Correlation Methods,
too, are applicable only to time invariant and completely
observable systems. Finally, Covariance-Matching Tech-
niques can estimate either process or measurement noise pa-
rameters and turn out to provide good and time-varying ap-
proximations for the measurement noise when the process
noise is known. In [10], an improved correlation method is
proposed, but the requirement on the stationarity of the sys-
tem is not dropped. In the context of visual tracking, [16]
presents the application of an Adaptive Kalman Filter. The
process and measurement errors are modified in every frame
taking into account the degree of occlusion of the target:



greater occlusion corresponds to greater value of measure-
ment noise and vice versa. The two noises always sum up
to one. In the extreme case of total occlusion, measurement
noise is set to infinity and process noise to 0. In [17], the
term Adaptive refers to an adaptive forgetting factor, that
is used to trade off the contribution to the covariance es-
timate for the current time step of the covariance estimate
for the previous time step and the process noise. This is
done in order to improve the responsiveness of the filter in
case of abrupt state changes. With respect to all these pro-
posals, our SVK makes less assumptions on the system, the
only one being its complete observability. Moreover, unlike
BE, MLE and CM techniques SVK provides a time-varying
noise statistics estimation. Unlike [16], SVK is not specif-
ically conceived for visual tracking and, hence, generally
applicable. Finally, it is worth pointing out that, unlike all
reviewed approaches, SVK is adaptive in a broader sense,
for it identifies on-line not only the process noise statistics
but also the transition matrix.

2. Recursive Bayesian Estimation

The problem of hidden state estimation from noisy mea-
sures in discrete-time systems is typically solved via Recur-
sive Bayesian Estimation. In this framework, following the
notation from [1], the system is completely specified by a
first order Markov model compound of

• a law of evolution of the state,

xk = fk(xk−1, νk) (1)

where k ∈ N is the discrete time variable, xk is the
state at time k, νk is an i.i.d. process noise sequence
and fk is a possibly non-linear function relating the
state at time k with the previous one.

• a measurement process,

zk = hk(xk, ηk) (2)

where zk is the noisy measurement at time k, ηk is an
i.i.d. measurement noise sequence and hk is a possibly
non-linear function relating the measurement at time k
with the current state.

• an initial state x0, that in the context of Bayesian rea-
soning is known via its PDF p(x0).

From a Bayesian point of view, the problem of estimating
the state translates into the problem of estimating a degree
of belief in its possible values, i.e. its PDF, given all the
available information, i.e. the initial state and all the mea-
surements up to a given moment. To reason probabilisti-
cally, first of all two PDFs must be derived from the known
laws of state space dynamics and measurement: from fk

one can obtain the transition model p(xk|xk−1) and from
hk one can get the observation likelihood p(zk|xk). Then,
the solution is seeked recursively: given the PDF of the state
for time k − 1 and the availability of a new measurement,
a new estimate for the PDF at time k is computed. A gen-
eral but conceptual solution can be obtained in two steps:
prediction via the Chapman-Kolmogorov equation and up-
date using the current measure zk (details can be found in
[1]). This conceptual solution is analytically solvable only
in few cases. A notable case is when the state dynamics
and the measurement equations are linear and the noises are
Gaussian. In this situation, the optimal solution is provided
by the Kalman filter [7].

2.1. On-line learning of the motion model

One of the main disadvantages of RBE is the need to a
priori specify the transition model. The difficulty of iden-
tifying a proper transition model for a specific application
typically leads to an empirical and suboptimal tuning of the
estimator parameters. A widespread solution to this prob-
lem is to learn the transition model off-line from training
sequences. Besides the availability of these training se-
quences, that, depending on the application context, may be
easily as well as nearly impossible to have, the major short-
coming of this solution is that it does not allow for taking
advantage of the opportunity to change the transition model
trough time, although this would be beneficial and neither
the conceptual solution nor the solving algorithms require it
to be fixed in time.

In this paper, we propose to overcome the difficulties and
the shortcomings due to empirical set-up of the transition
model by learning it on-line . If the state is completely ob-
servable, i.e. the hk function just adds measure noise on the
state, as it is the case in most practical applications, the tran-
sition model is directly related to the dynamics exhibited
by the measures. Hence, it is possible to exploit their tem-
poral evolution in order to learn the function fk, and, im-
plicitly, the PDF p(xk|xk−1). That is, we can avoid to de-
fine p(xk|xk−1), and instead use in its place a learned PDF
p̃z1:k−1(xk|xk−1), derived from a learned f̃z1:k−1 . Here,
p̃z1:k−1 formally indicates that the PDF is learned using as
training data the relationships between all the consecutive
measures from 1 to k − 1.

Furthermore, we propose to learn the motion model us-
ing Support Vector Machine in ε-regression mode (SVR).
SVMs are well known and effective tools in pattern recog-
nition based on the statistical learning theory developed by
Vapnik and Chervonenkis. Their use as regressors is proba-
bly less popular but even in this field they obtained excellent
performances [15].



2.2. SVMs in ε-regression mode

To introduce SVMs as regressors, and in particular in
ε-regression mode, let us have a quick look at the regres-
sion of a linear model given a series of data (xi, yi). In
ε-regression mode the SVR tries to estimate a function of
x that is far from training data yi at most ε and is at the
same time as flat as possible. In the linear case, the model
to regress is

f (x) = 〈w,x〉 + b (3)

and the solution with minimal complexity is given by the
solution of the following convex optimization problem

min 1
2 ||w| |2 + C

∑l
i=1(ξi + ξ∗i )

{
yi − 〈w,xi〉 − b ≤ ε + ξi

yi − 〈w,xi〉 − b ≥ −ε − ξ∗i

(4)

The constant C is an algorithm parameter and weights the
deviations from the model greater than ε. The problem is
then usually solved using its dual form, that is easier and
extensible to estimation on non-linear functions ([15]).

2.3. SVRs for transition model identification

In the context of RBE, given the first order Markovian
assumption, one is left with two options to regress fk: a) to
learn it from measures, that is to provide to the SVR as train-
ing data at time k the tuples 〈x̂1, z2〉, . . . , 〈x̂k−2, zk−1〉,
where x̂k stands for the state vector estimate obtained from
the recursive Bayesian filter at time k; b) to learn if from
states, that is to provide to the SVR as training data at time k
the tuples 〈x̂1, x̂2〉, . . . , 〈x̂k−2, x̂k−1〉. Going into more de-
tails, since the SVR can only regress functions f : R

n → R,
if the state vector has dimension n, n SVRs are used, and
each one is fed with tuples of the form 〈x̂k−2,oi

k−1〉, where
the superscript i indicates the i-th component of a vector
and o represents either x̂ or z. Generally speaking, to learn
the model from filtered states may induce the learning fil-
ter to repeatedly confirm itself, i.e. to learn the transition
model that itself is imposing on the data. While this effect
may guarantee a certain level of smoothness of the output,
if this loop degenerates the filter may trust too much the
learned model and diverge completely from the real state
of the system, ignoring subsequent measures. On the other
hand, learning form measures avoids this risk and results in
a more responsive filter; yet, for the same reasons, this gives
a filter definitely more sensitive to noise, whose effects on
the jitter of the output or on the quality of the learned tran-
sition model cannot easily be mitigated. Therefore, we ad-
vocate the use of the learning from states strategy and will
introduce a specific mechanism to avoid degeneracy of the
learning loop.

Another choice that may affect performances is the tem-
poral window used to select states (or measures) for train-

Figure 1. An example showing the importance of the inclusion of
the temporal variable among those used for regression.

ing. Clearly, it does not make sense to use all the transitions
of states since the beginning of the observations to learn
the transition model for the current time slot, or, at least, it
does not make sense during regression to equally weight the
hint each of them provides. A solution that may be used to
address this problem is dynamic SVR for time series regres-
sion [3]. While we believe that this may be beneficial, and
we plan to experiment with this solution in the near future,
so far we have relied on a simpler solution, namely a slid-
ing window of fixed length, to prevent the too old samples
of motion from polluting the current estimate.

Finally, the influence of the time variable must be con-
sidered during regression. To understand this, consider the
circular motion on the unit circle depicted in the leftmost
chart of Fig.1. Assuming for clarity of the graphical expla-
nation the state vector to be composed only by the x position
of the point, some of the samples from which the SVR has
to regress the transition model of this point are depicted in
the second chart. As can be seen, without taking into ac-
count the evolution of the state through time, even with a
perfect regression (represented by the dotted line in the sec-
ond chart), it is impossible to have a correct prediction of
the state at time t, given the state at time t−1: for example,
at time t = 4 and t = 6 the previous state, xt−1, is equal
for the two positions, but the output of the regression should
be different, namely x4 = −1 and x6 = 0. This situation
can be disambiguated adding time as an input variable to the
function to be regressed, as shown by the last chart. There-
fore, in the end the tuples in input to every SVR are of the
form 〈2, x̂1, x̂2〉, ..., 〈k − 1, x̂k−2, x̂k−1〉.

In the following section we address in detail the linear-
Gaussian case, when the Kalman filter is the optimal solu-
tion, and show how our framework can be instantiated to
successfully and advantageously learn the transition matrix
on-line.

3. Support Vector Kalman

In the case of linear process and measurement functions,
of Gaussian zero-mean noise and of Gaussian PDF for the
initial state, all the subsequent PDFs of the state are (multi-
variate) Gaussians as well. Therefore, they are completely
specified by their mean vector, that is usually considered



also the estimation of the state, and their covariance matrix.
The RBE framework for this case becomes:

xk = Fkxk−1 + νk, E
[
νkνT

k

]
= Qk (5)

zk = Hkxk + ηk, E
[
ηkηT

k

]
= Rk. (6)

Since among the hypothesis of the Kalman filter is the
linearity of fk, two consequences immediately arise: we
must use a linear kernel, i.e. the SVR formulation intro-
duced in 2.2; and, we must modify it in order to regress a
linear function. In fact, the standard function learned by an
SVR is (3), i.e. an affine mapping. As discussed in [12], a
linear mapping can be learned without harming the general
theory underneath SVM algorithms. Moreover, a solving
algorithm for the linear mapping was also proposed in the
paper that introduced the standard and widespread solution
for the affine case, i.e. the Sequential Minimal Optimization
(SMO) algorithm [11].

Using this set-up for the SVRs, it is possible, given the
training data in the considered temporal window, to obtain
an estimate of Fk. In fact, each weights vector wk learned
by an SVR at time k is almost directly one of the row of
the estimate F̂k of Fk. This almost refers to a last but not
least aspect to be considered in order to regress a truly linear
function: the problem of normalization. Typical implemen-
tations of SVMs require the input and output to be normal-
ized within the range [0, 1] or [−1, +1]. While this normal-
ization may be thought of as neutral as far as the SVR output
is concerned, it has subtle consequences when the weights
vector of the SVR is used as a dynamic parameter for a
Kalman filter. To illustrate this, let us consider a simple ex-
ample where a mapping from a scalar x to y is learned, and
the variables are normalized to the range [−1, +1]. Then

x̃ =
2x − xmax − xmin

xmax − xmin
ỹ =

2y − ymax − ymin

ymax − ymin
, (7)

where the superscript ˜ denotes the normalized variables
and xmax, xmin are the maximum and minimum value of
the measured variable within the considered temporal win-
dow. Hence, the function of x that gives the unnormalized
y is

ỹ = wx̃ ⇒ y = ax + b, a =
(2(ymax − ymin)w)

(xmax − xmin)

b = ymax + ymin − (ymax − ymin)(xmax + xmin)w
xmax − xmin

(8)

i.e., again an affine mapping. Therefore, using the unnor-
malized coefficient a as an entry of the transition matrix
F̂k results in poor prediction, since the constant term is not
taken into account. In order to obtain a linear mapping, that
fits directly into the transition matrix of a Kalman filter, a

two steps normalization must be carried out. Given a se-
quence of training data, a first normalization is applied,

x̂ = x − xmax + xmin

2
ŷ = y − ymax + ymin

2
. (9)

These are the data on which the Kalman filter has to work.
In other words, at every time step, the output of the previ-
ous time step must be renormalized if its value changes the
minimum or maximum within the temporal window. This
is equivalent to a translation of the origin of the state space
and does not affect the Kalman algorithm itself. No nor-
malization is required for the covariance matrix. After this
normalization, the data can be scaled in the range [−1, +1],
as required by the SVR, according to

x̃ =
2

x̂max − x̂min
x̂ ỹ =

2
ŷmax − ŷmin

ŷ, (10)

where the mining of the subscripts is the same as in (7). Us-
ing this two steps normalization, the unnormalized function
of the Kalman data is

ỹ = wx̃ ⇒ ŷ =
(ŷmax − ŷmin)
(x̂max − x̂min)

wx̂, (11)

i.e. the required linear mapping.
A final remark is worth pointing out. The noise model

assumed by an SVR is Gaussian, with mean and covariance
being random variables whose distributions depend on C
and ε [13]. The mean, in particular, is uniformly distributed
between −ε and ε. Therefore, the SVR noise model is a
superset of that assumed by the Kalman filter, i.e. a zero-
mean Gaussian. In other words, the SVR is a theoretically
sound regressor to apply in all the set-ups when the Kalman
is the optimal filter.

3.1. Adaptive process noise model

As we have seen in the Introduction, the classical defi-
nition of an adaptive Kalman filter is more concerned with
dynamic adjustment of Qk than with the adaptation of the
transition model [10, 17]. Our proposal makes it easy to
learn on-line the value of Fk, but provides also a sound and
efficient way to dynamically adjust the value of the process
noise. The value of Qk, in fact, is crucial for the perfor-
mances of the Kalman filter. In particular, the ratio between
the uncertainties on the transition model and on the mea-
sures tunes the filter to be either more responsive but more
affected by noise or smoother but with a greater latency in
reacting to sharp changes in the dynamics of the system.

Within our framework, a probabilistic interpretation of
the output of the SVR allows to dynamically quantify the
degree of belief on the regressed motion model, and, con-
sequently, the value of Qk. Some works have been done
already on a probabilistic interpretation of the output of a



SVR [5, 4, 8]. All of them look for error bars on the pre-
diction, i.e. the variance of the prediction. Therefore they
are all suitable for estimating a Gaussian covariance matrix
for the regression output. We chose to use [8] since it is the
simplest method and turned out also the most effective in
the comparison proposed in [8].

Given a training set, this method performs k-fold cross
validation on it and considers the histogram of the residu-
als, i.e. the difference between the known function value at
xi and the value of the function regressed using only the
training data not in the xi fold. Then it fits a Gaussian or
a Laplace PDF to the histogram, using a robust statistical
test to select between the two PDFs. In our implementa-
tion, in accordance with the hypothesis of the Kalman filter,
we avoid the test and always fit a Gaussian, i.e. we esti-
mate the covariance as the mean squared residual. We also
keep Qk diagonal for simplicity. Hence, every SVR pro-
vides only the value of the diagonal entry of its row of Qk.
As discussed before, however, learning from states is prone
to degeneration of the learning loop into a self confirming
filter unaffected by measures. To avoid this, we prevent the
covariance of every SVR to fall down a predetermined per-
centage of the corresponding entry of R. This has experi-
mentally proved to be effectively enough to avoid the coa-
lescence of the filter while at the same time preserving its
ability to dynamically adapt the values of Q.

Finally, this method of update of the process noise al-
lows for an intuitive interpretation of C. Since it weights
the deviations from the regressed function greater than ε, it
is directly related with the smoothness of the Support Vec-
tor Kalman output. In fact, if C is kept high, errors will
be highly penalized, and the regressed function will tend
to overfit the data, leading to greater residuals during the
cross validation and to a bigger uncertainty on the transi-
tion model. This will result in a more noisy output of the
Kalman estimation. If, instead, C is kept low, the SVR will
generalize better and the residuals during the cross valida-
tion will be less significant. The resulting tighter covari-
ances will produce a smoother estimate by the Kalman fil-
ter.

4. Experimental results

We provide first two simulations concerning a simple 1D
estimation problem (i.e., a point moving along a line). In the
first experiment, the motion is kept within the assumptions
required by the Kalman filter, in particular there is a lin-
ear relationship between consecutive states. In the second
one, a case of non-linear motion is considered. Finally, we
provide experimental results concerning tracking of the 3D
position and orientation of a moving camera for real-time
video augmentation.

4.1. Simulation of linear motion

In both simulations, comparisons have been carried out
versus three Kalman filters adopting different motion mod-
els: drift (Kalman DR), constant velocity (Kalman CV) and
constant acceleration (Kalman CA). Two different tunings
were considered for each Kalman filter: a more responsive
one, when Q has been set equal to 10−2R; and a smoother
one, with Q = 10−4R. As far as SVK is concerned, it was
fed with noisy measures of the position and the velocity of
the point, therefore regressing a 2 × 2 model matrix. The
only rough tuning regards C, which is taken equal to 2−10

in this simulation and to 2 in the non-linear case: intuitively,
an easier sequence allows for using a smoother filter.

During the linear motion sequence, motion is switched
every 160 samples among a constant acceleration, a con-
stant position and a constant velocity law. Therefore, each
Kalman filter has a slice of time when the real motion per-
formed by the point is exactly that described by its transi-
tion matrix. Results on the whole sequence are reported in
Fig.2 and Tab.1. As for simulation parameters, R has been
kept constant in time and equal to 100 ∗ I, with I denoting
the identity matrix; constant acceleration was 30.0 m/s2,
constant velocity was 1000 m/s and Δt was 0.5. Gaussian
noise with covariance matrix R was added to the data to
produce noisy measurements for the filters.

As shown by the first column of Tab.1, our proposal
achieves the best Root Mean Squared Error (RMSE) on the
whole sequence. This is an encouraging proof of the bene-
fits that on-line learning of the transition model can produce
on the hidden state estimate. This is also shown by the two
charts in the first row of Fig.2. At the scale of the charts,
the estimation of our filter is indistinguishable from the real
state of the system, whereas the delay of Kalman DR and
the overshots/undershots of Kalman CA and Kalman CV in
presence of sharp changes of motion are clearly visible.

Going into more details, we separately analyze each of
the three different parts of motion. Here, we discuss not
only the performance on the whole interval associated with
each motion law, but, also, those achieved in the final part
of each interval (i.e., the last 80 samples). In fact, final sam-
ples allow to evaluate the accuracy of the steady state of the
estimators, filtering out the impact of possible delays due to
the filter degree of responsiveness.

During the constant acceleration interval, Kalman CA
performs best, both with the responsive and the smooth tun-
ing. This is reasonable, since theoretically it is the opti-
mal filter for this specific part of motion. What is important
is that our filter performs slightly worse than Kalman CA,
but definitely better than Kalman CV and Kalman DR (2-nd
column of tab.1). This is also demonstrated by the first chart
on the second row of Fig.2, which, for better visualization,
displays only absolute errors less than 50. Only our filter
stays in the visualized range, apart from the optimal one.



Figure 2. The charts in the first row show the evolution of the different filters against ground truth data in case of linear motion: the one
on the left compares SVK to Kalman filters tuned for smoothness, that on the right to Kalman filters tuned for responsiveness. The three
subsequent charts report absolute errors for, respectively, the constant acceleration, the constant velocity and the constant position intervals.
Finally, last chart shows the covariances on state variables provided by SVK throughout the whole sequence.

When considering only the steady state part (5-th column
of tab.1) the analysis does not change, partly because this
interval is the very first one and, hence, there are no delays
to recover, and partly because the Kalman CV and DR do
not have the proper transition matrix for this part and, thus,
cannot recover from errors.

During the constant velocity part, SVK has the best over-
all RMSE (3-rd column of tab.1). This is due to the delay
accumulated by Kalman CV, theoretically the optimal fil-
ter, during the previous intervals. Therefore, we can high-
light one of the major advantages brought in by SKV: in
case of sharp changes of the motion law, dynamical up-
date of parameters renders SVK even more accurate than
the optimal filter due to its higher responsiveness. This
is confirmed by the second chart on the last row of Fig.2,
showing the progress of the position and the velocity co-
variances of SVK. It can be seen that, immediately after the
change of motion from constant position to constant veloc-
ity at sample 320, both covariances significantly increase,
somehow ”detecting” such a change, thanks to the adaptive
process noise modeling embodied into our filter. The result-
ing lower confidence in the predictions automatically turns
the filter from smoothness to responsiveness, preventing the
overshots/undershots exhibited by standard Kalman filters.

After few samples the covariance on the velocity decreases
again, proving that SVK has confidently learned the new
model. Considering only the steady state (6-th column of
tab.1) Kalman CV is, as expected, the best one. Unlike the
CA interval, however, only the responsive tuning performs
well since the smoother Kalman CV has accumulated too
much delay to recover. This difference is due to the intrin-
sically higher smoothness of the CV model with respect to
the CA one. Kalman CA, with both tunings, is the second
best and this is also predictable since a constant velocity
motion may be seen as a special case of a constant accel-
eration one. Again, the most important finding is that SVK
is by far closer to the optimal filters than to those adopting
a wrong motion model. And again, visualizing only errors
less than 50, it is the only one visible in the corresponding
chart of Fig.2, apart from the optimal ones.

Finally, due to the delay accumulated by the other filters,
SVK turns out the best estimator also in the constant posi-
tion interval (4-th column of Tab.1). As far as the steady
state is concerned, all the filters exhibit a good RMSE apart
from the very smooth ones, namely CV and DR tuned to-
wards smoothness, for the latter do not recover from delays
even after 80 samples. Unlike the other motion intervals,
SVK keeps on being the best, even when the steady state



Filter Whole CA CV Drift CA* CV* Drift* R=1000
SVK 2x2 Model 22.41 9.79 38.02 35.41 8.91 9.63 1.67 43.36

Kalman CA Q = 10−2R 76.62 4.83 51.3 125.87 4.59 4.55 6.06 79.65
Kalman CA Q = 10−4R 357.45 4.26 242.19 581.52 3.72 4.04 7.87 357.69
Kalman CV Q = 10−2R 227.38 100.12 155.13 355.71 104.84 3.74 5.31 228.08
Kalman CV Q = 10−4R 1680.37 1213.78 1160.73 2439.37 1416.30 49.82 109.30 1681.04
Kalman DR Q = 10−2R 4498.51 6015.22 4536.67 1793.30 8056.45 4757.75 2.77 4500.00
Kalman DR Q = 10−4R 29698.38 25771.38 31583.97 29279.53 35763.45 37809.42 16743.08 29699.11

Table 1. Comparison of RMSE on linear motion: first column reports the RMSEs on the whole sequence; then, partial RMSEs on each
piece of motion are given as well as RMSEs concerning only the final part of each interval (marked with *), when the filter may have
reached the steady state; finally, RMSEs on the whole sequence for higher measurement noise are reported in the last column

only is considered. A reason for this is provided again by
the chart of covariances. During the constant position part,
the SVR is able to regress a very good transition matrix and
both the uncertainties are kept really low compared to the
values in R. Therefore, the filter is highly smooth, as can
be seen in the chart of absolute errors, and this keeps the
RMSE low also in the last part.

Our proposal is robust to higher measurement noise, too.
As an example, we report in the last row of Tab.1 the RM-
SEs for the same simulation, but with R = 1000I. Even in
this case SVK turns out to be the overall best thanks to its
adaptive behavior. Considerations similar to previous ones
apply to the three different parts of motion, whose data can-
not be reported in this publication due to space limits.

To summarize, simulations with linear motion laws show
that the proposed SVR-based approach to on-line learning
of the transition model is an effective solution for the track-
ing problem when the assumption of stationary transition
matrix cannot hold because the tracked system undergoes
significant changes in its motion traits.

4.2. Simulation of non-linear motion

Given its ability to dynamically adapt the transition ma-
trix, we expect SVK to be superior to a standard Kalman
filter also in the case of non-linear motion. Hence, to assess
its merits we have run simulations with a motion compound
of two different sinusoidal parts linked by a constant posi-
tion interval. The motion law of the two sinusoidal parts is
as follows:

x1(t) = 300t + 300 sin(2πt) + 300 cos(2πt), (12)

x2(t) = 300t− 300 sin(2πt) − 300 cos(2πt). (13)

Aggregate results are shown in Fig.3 and Tab.2 for the same
levels of measurement noise as in 4.1. Our filter proves
again to be the overall best.

4.3. 3D camera tracking

In this experiment, we track the 3D position of a mov-
ing camera in order to augment the video content, taking

as measurement the output of a standard pose estimation
algorithm [14] fed with point correspondences established
matching invariant local features [2]. Results consist of
videos available on our website 1 and as supplementary ma-
terial. Video ARnormalFPS.avi shows side-by-side the
augmentation resulting from the use of Kalman CA and our
SVK. Both filters have been tuned to be as responsive as in
4.2 and measurement noise covariances has been adjusted
to match the range of the input data. The video shows a
fast change of motion of the camera, the purpose of filters
being to keep the virtual object spatially aligned with the
reference position, denoted for easier interpretation of re-
sults by a white sheet of paper. We can see that both fil-
ters exhibit a delay following the sharp motion change, but
SVK is subject to a smaller translation error, recovers much
faster and, unlike Kalman CA, without any overshot. Since
it might be difficult to analyze the different behaviors of
filters at normal speed, video ARslowFPS.avi plays the
same sequence as video ARnormalFPS.avi at a lower
frame rate.

5. Conclusions and Future Work

A new approach to build an adaptive recursive Bayesian
estimation framework has been presented, both from a con-
ceptual point of view and in terms of its practical instantia-
tion in the case of linear transition and measurement mod-
els and Gaussian noise. Its performances are definitely en-
couraging: the proposed SVK filter has been shown to out-
perform a standard Kalman solution, while, at the same
time, requiring less parameters to be arbitrarily (and pos-
sibly wrongly) tuned. As for the linear/Gaussian scenario,
we plan to evaluate the proposed approach against compara-
ble solutions for adaptive Kalman filtering (i.e. Covariance
Matching Techniques and [17]). More broadly speaking, we
see this work as a step towards a general and parameters free
tracking system. Endowing this vision, future work will be
directed to: a) the instantiation of our proposal also in the
case of non linear and non Gaussian tracking, in particular
adapting it in order to be beneficially used also with parti-

1http://www.vision.deis.unibo.it



Figure 3. Simulation dealing with non-linear motion. Charts on the left compares SVK to Kalman filters tuned for smoothness, those on
the right to Kalman filters tuned for responsiveness. The top row reports experiments with R = 100 ∗ I, the last row with R = 1000 ∗ I.
With the adopted scale, in the first two charts the estimation of our filter is almost indistinguishable from the ground truth.

R = 100 Whole R=1000 Whole
SVK 2x2 Model 20.61 SVK 2x2 Model 47.98
Kalman CA resp. 61.92 Kalman CA resp. 62.32

Kalman CA smooth 308.32 Kalman CA smooth 308.66
Kalman CV resp. 72.69 Kalman CV resp. 72.95

Kalman CV smooth 248.30 Kalman CV smooth 248.46
Kalman DR resp. 143.63 Kalman DR resp. 144.87

Kalman DR smooth 434.83 Kalman DR smooth 435.20
Table 2. Comparison of RMSE on non-linear motion.

cle filters and b) to the insertion of algorithms for automatic
on-line selection of best SVR parameters.
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