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Abstract

The segmentation of directed networks is an important

problem in many domains, e.g. medical imaging (vascular

networks) and remote sensing (river networks). Directed

networks carry a unidirectional flow in each branch, which

leads to characteristic geometric properties. In this paper,

we present a nonlocal phase field model of directed net-

works. In addition to a scalar field representing a region

by its smoothed characteristic function and interacting non-

locally so as to favour network configurations, the model

contains a vector field representing the ‘flow’ through the

network branches. The vector field is strongly encouraged

to be zero outside, and of unit magnitude inside the re-

gion; and to have zero divergence. This prolongs network

branches; controls width variation along a branch; and

produces asymmetric junctions for which total incoming

branch width approximately equals total outgoing branch

width. In conjunction with a new interaction function, it

also allows a broad range of stable branch widths. We

analyse the energy to constrain the parameters, and show

geometric experiments confirming the above behaviour. We

also show a segmentation result on a synthetic river image.

1. Introduction

The automatic extraction of specific entities from real

images is in general a difficult problem. (By ‘extraction’

is meant: ‘find the region R in the image domain that “con-

tains” the entity’, where ‘contains’ means that R is the pro-

jection to the image domain of the volume occupied by

the entity in the real world.) The difficulty arises because

the entity sought is usually not distinguishable from the

background using local image measurements alone. Rather,

knowledge of the probable ‘shape’ of the region R is neces-

sary in order to extract the entity successfully. In many ap-

plications, this knowledge is currently provided, in one way

or another, by a human being. Automation of the extrac-

tion process therefore requires models that incorporate this

knowledge of region geometry. Mathematically, speaking,

we seek to construct the probability distribution P(R|I, K),
where I is the image data and K represents prior knowl-

edge about R and the relation between R and I . As usual,

this can be written as the product of a likelihood P(I|R, K),
and a prior P(R|K) that incorporates knowledge of region

‘shape’. (In practice, we will deal with negative log proba-

bilities, i.e. a total energy E(R, I) that is the sum of a like-

lihood term EI(I, R) and a prior term EP(R).)

The simplest prior models incorporate only local knowl-

edge about ‘shape’, e.g. boundary smoothness. This proves

insufficient, however, for all but the simplest images, and as

a result, there has been a great deal of work on models in-

corporating more sophisticated shape knowledge. Most of

this work models an ensemble of regions as perturbations of

one or more reference regions [1, 3, 6, 7, 8]. This is a very

flexible approach, and it works well for many applications.

It is not appropriate, however, when the region sought can

have arbitrary topology (e.g. if the entity consists of an un-

known number of similar objects), since such an ensemble

of regions cannot be described as perturbations around a fi-

nite number of points in the space of regions. A particular

problem that falls into this latter category is the extraction

of ‘network’-shaped regions (i.e. regions composed of thin

branches that join together at junctions), e.g. road or river

networks in satellite images, or vascular networks in med-

ical images. Such network regions may have several con-

nected components, and may be multiply connected.

The case of undirected networks has been address

in the literature, using the ‘higher-order active contour’

(HOAC) framework [4]. HOACs incorporate non-trivial

shape knowledge via long-range interactions between re-

gion boundary points, thereby removing the need for ref-

erence regions. A reformulation of HOACs as nonlocal

‘phase field’ models [5] avoids certain drawbacks of the

contour representation, facilitates model analysis and im-

plementation, allows a ‘neutral’ initialization and complete

topological freedom, and results in reduced execution times.

Many of the networks that appear in applications, how-

ever, are directed. Each network branch has a ‘flow direc-



tion’, and each junction therefore has ‘incoming’ and ‘out-

going’ branches. The existence of such a flow typically

changes the geometry of the network, because often the

flow is in some sense conserved. Thus branches tend not to

end, because this would involve the flow stopping, and junc-

tions often consist of small-width incoming branches join-

ing together to form larger-width outgoing branches. This

paper proposes a model for such directed networks. The

eventual goal is hydrographic network extraction from re-

mote sensing images, but the model is probably relevant to

other applications involving networks. More specifically,

we would like a prior model P(R|K) that satisfies the fol-

lowing desiderata:

1. a large range of branch widths should be possible, but

2. changes of width should be slow, except

3. at junctions, where the branch widths should be

(softly) constrained so that
∑

i wi = 0, where the

widths wi are negative for incoming flow and positive

for outgoing flow. Note that this includes the fact that

branches should not end, i.e. they should be prolonged,

since these can be viewed as junctions with only in-

coming flow.1

To construct such a model, we extend the nonlocal phase

field model of undirected networks described in [5]. The

phase field function φ still represents the region R corre-

sponding to the network, and still interacts nonlocally so

as to favour network configurations. The novel element is

a tangent vector field v representing the ‘flow’ through the

network branches. The vector field is coupled to φ in such

a way that it is strongly encouraged to be zero outside R;

to have unit magnitude inside R; to have zero divergence;

and, more weakly, to be smooth. The transition from unit

magnitude inside the region to zero magnitude outside, cou-

pled with small divergence, encourages the vector field to

be parallel to the region boundary. Both the divergence and

smoothness constraints then tend to propagate this paral-

lelism to the interior of network branches. (It is possible to

encourage such parallelism directly, but this is less physical,

and in practice we have not found it necessary.) Small di-

vergence and parallelism, coupled with the constraint on the

magnitude, aids prolongation of network branches; allows

a larger range of stable widths; controls rate of change of

width along a branch; and encourages asymmetric junctions

1Such a linear constraint arises if ‘flow volume’ is proportional to

branch width in the image. This will be true if flow speed is roughly con-

stant, and if ‘channel volume’ is proportional to branch width in the image,

which is true for river networks if channel depth is roughly constant. On

the other hand, for tubular networks in three dimensions, one would rather

expect the sum of the (appropriately signed) squares of the widths to be

zero. In any case, our aim is not to model the detailed physics of each

situation, but to model networks that possess certain qualitative geometric

properties.

for which total incoming branch width equals total outgoing

branch width.

Section 2 recalls the model in [5] and then describes the

new directed network model. Section 3 describes numeri-

cal experiments showing that the above behaviour is indeed

realized, and a segmentation experiment showing the im-

provement brought by using the directed network model.

2. Phase field model of directed networks

We first recall the undirected network model in [5]. A

phase field φ is a real-valued function on the image domain

Ω. A phase field determines a region by the map ζz(φ) =
{x ∈ Ω : φ(x) > z} where z is a given threshold. The basic

phase field energy is [5]

Es
0(φ) =

∫

Ω

d2x

{

D

2
∂φ · ∂φ

+ λ(
φ4

4
−

φ2

2
) + α(φ −

φ3

3
)

}

. (1)

If (1) is minimized subject to ζz(φ) = R, i.e. for a

fixed region, then away from the boundary, the minimizing

function φR assumes the value 1 inside, and −1 outside R
thanks to the ultralocal terms. The derivative term ensures

the smoothness of φR, producing a narrow interface around

the boundary ∂R interpolating between −1 and +1. The

energy of φR is given approximately by a linear combina-

tion of the length of ∂R and the area of R [5]. Es
0 is thus

equivalent to a classical active contour model.

To introduce prior shape information, a nonlocal term is

then added to give a total energy Es
P = Es

0 +ENL, where [5]

ENL(φ) =

−
β

2

∫∫

Ω2

d2x d2x′ ∂φ(x) · ∂φ(x′) G(
|x − x′|

d
) , (2)

where d is the interaction range. This term creates long-

range interactions between points of ∂R (because ∂φR is

zero elsewhere) using an interaction function, G, which de-

creases as a function of the distance between the points. In

this paper, the interaction function G will be taken to be

either the interaction function described in [5], or the mod-

ified Bessel function of the second kind of order 0, K0. For

certain parameter ranges, Es
P favours undirected network-

shaped regions where the network branches have approxi-

mately the same width. The parameter ranges can be found

by a stability analysis [2].

2.1. Directed networks

Directed networks by definition possess a sense of di-

rection in each branch, usually due to a unidirectional flow



through a channel represented by the branch. Conserva-

tion of flow then leads to geometric constraints on the net-

work, particularly at junctions, meaning that directed net-

works possess different characteristic geometric properties

to undirected networks. To model such networks, we intro-

duce a phase field prior, EP(φ, v), that in addition to φ, is

a functional of a tangent vector phase field v which ‘rep-

resents’ the flow through the network. We note immedi-

ately that v is not supposed to be equal to the physical flux

through the network. This would require a much more com-

plicated model than the one we are proposing. Rather, v is

an auxiliary quantity (probabilistically speaking, a hidden

variable) that introduces interactions that constrain the ge-

ometry of the network. We will see, however, that in many

ways it does behave like a physical flux.

Since v is zero outside the network, we design the ul-

tralocal potential of the model to have only two local min-

ima: the background, where (φ(x), |v(x)|) = (−1, 0); and

the foreground where (φ(x), |v(x)|) = (1, 1). This control

of the magnitude of v is in one sense unphysical: for exam-

ple, the channel may widen while the flow speed decreases,

thereby conserving the flow. However, in another sense, it

represents real physical effects. Often rigidity in the physi-

cal nature of the channel (e.g. stiffness of the channel wall,

resistance to widening in the substrate in which the chan-

nel is embedded) means that such widening is not possible.

Some rigidity is already built into the model via φ, but con-

trol of the magnitude of v, coupled with the divergence term

to be described in a moment, reinforces this: it will control

the rapidity of width variations. Control of the magnitude of

v also represents the fact that in directed networks there is

a force that pushes the flow through the network (e.g. grav-

ity, pressure), which, in conjunction with viscosity and fric-

tional forces, produces a preferred speed. Again, we do not

pretend to be modelling the physics in detail: the constraint

on the magnitude of v is a stand-in for these effects, de-

signed to realize certain constraints on the geometry.

In addition to the potential, we introduce a term that pe-

nalizes the divergence of v. This represents a soft version of

flow conservation, but the parameter multiplying this term

will be large so that in general the divergence will be small.

We also add a small overall smoothing term on v, since con-

straining the divergence is not sufficient to ensure smooth-

ness. Because of the transition from |v| = 1 to |v| = 0
across the boundary of the region, the divergence term tends

to make v parallel to the boundary, i.e. the flow is along the

channel. Coupled with the constraint on |v| inside the chan-

nel, this means that width variations are constrained to be

slow along a channel, while at junctions, it tends to produce

configurations where total incoming flow is approximately

equal to total outgoing flow, which translates to the sum of

the incoming widths being approximately equal to the sum

of the outgoing widths.

The total prior energy, EP(φ, v), is then the sum of a

local term E0 and the nonlocal term ENL. E0 is

E0(φ, v) =

∫

Ω

d2x

{

D

2
∂φ · ∂φ +

Dv

2
(∂ · v)2

+
Lv

2
∂v : ∂v + W (φ, v)

}

. (3)

The third term is the smoothing term: ∂v : ∂v =
∑

m,n(∂mvn)2, where m, n ∈ {1, 2} label the two Eu-

clidean coordinates. W (φ, v) is a potential which defines

the stable phases (φ, |v|) = (−1, 0) and (φ, |v|) = (1, 1).
The generic form of the potential W we use is a fourth or-

der polynomial in φ and |v|, constrained to be differentiable.

We define W (φ, v) = w(φ, |v|), where W is given by

W (φ, v) =
|v|4

4
+ (λ22

φ2

2
+ λ21φ + λ20)

|v|2

2

+ λ04

φ4

4
+ λ03

φ3

3
+ λ02

φ2

2
+ λ01φ . (4)

We fix many relations between the parameters by requir-

ing that the two minima described above are the only lo-

cal minima, by requiring that W be bounded below, and

by requiring that the potential energy of the foreground is

greater than of the background, i.e. w(1, 1) > w(−1, 0).
Figure 1 shows a contour plot of w satisfying these require-

ments, showing local minima at the desired points. The

saddle point (φs, vs) between the two minima plays an im-

portant role in initializing the gradient descent algorithm:

the ‘neutral’ initialization is given by (φ, |v|) = (φs, vs),
the direction of v being random. In addition, we constrain

the parameter β in ENL so that the part of EP containing

derivatives, i.e. everything except W , is positive definite (it

is a quadratic form). Since constant values of φ and v pro-

duce zero in these derivative terms, which is the global min-

imum value of these terms, and since constant values of φ
and v equal to those at the global minimum of W , which is

W (−1, 0), produce the global minimum of W , the global

minimum of EP is at (−1, 0). Thus the background is glob-

ally stable, not only metastable.

Just as in the case of the the undirected network model,

we expect that EP has local minima corresponding to net-

work shapes. This was directly verified for the undirected

network model via a stability analysis of a long bar [2]. We

intend to perform such an analysis for the current model in

the future. However, the numerical experiments show that

such an expectation is indeed correct.

3. Experiments

In sections 3.1 and 3.2, we study gradient descent evolu-

tions using Es
P and EP. In section 3.3, we show a segmen-

tation result on a synthetic image of a ‘river configuration’.
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Figure 1. The potential w.

Derivatives are discretized using the Fourier basis, and we

employ a forward Euler scheme. We omit the expressions

for the functional derivatives, as these are standard calcula-

tions.

3.1. Geometric evolutions of v for fixed φ

Figure 2 shows gradient descent evolutions of v with φ
fixed to a ‘junction’ configuration.2 The first experiment

uses the divergence term but no smoothing. Initialized with

constant v = (0,−vs), it shows the effects of the diver-

gence term and the potential, which align the field with the

network while conserving the flow. In the second exper-

iment, the initial v was given a random direction at each

point. In this case, the divergence of v is small and v is

parallel to the boundary near the boundary, but it is not

smooth. The condition of small divergence still allows a

great deal of freedom: we can add to v any u with ∂ · u = 0
that preserves the magnitude. The third experiment uses the

smoothing term instead of the divergence term. The result is

a smooth field, but the field does not run along the network.

The fourth experiment uses both divergence and smoothing

terms. The vector field evolves from an initially random

configuration towards a smooth and divergence-free config-

uration that runs along the network.

3.2. Geometric evolutions of v and φ

Figure 3 shows gradient descent evolutions using the

new energy EP.3 For comparison, figure 4 shows gradient

descent evolutions using the undirected phase field model

2The parameter values were (λ04, λ03, λ22, λ21) = (2.275,

−0.467, 1.34,−3) for all evolutions, while from top to bottom:

(Lv, Dv) = (0, 0.1); (0, 0.1); (0.1, 0) and (0.1, 0.1).
3From top to bottom, parameter values were: (λ04, λ03, λ22, λ21, D,

β, d, Lv, Dv) = (3.13,−0.99, 0.131,−2, 0.7, 0.4, 4, 7, 240) ; (3.13,

−0.99, 0.131,−2, 1, 2, 4, 7, 240); (1, 0.072, 0.207,−1, 1, 2, 3, 2, 20)
and (1.25,−0.325, 0.368,−1, 1, 2, 3, 7, 240).

Figure 2. Geometric evolutions of v keeping φ fixed. First column:

initial configuration. Second column: intermediate configuration.

Third column: final configuration. From top to bottom: result

with the divergence term using a vertical initialization; result with

the divergence term using a random initialization; result with the

smoothing term; result with the smoothing and divergence terms.

Es
P .4 The initial regions are shown in the leftmost column;

time runs from left to right. The binary images are obtained

by thresholding φ at φs. The initial configuration for v had

(0,−vs) everywhere, while φ had the value −1 outside the

region and φs inside.

Both models produce stable network configurations, but

it is illuminating to examine the differences in detail. The

first two experiments in each set used the interaction func-

tion in [4, 5]. This interaction function constrains the possi-

ble stable widths quite severely. This renders moot desider-

ata 1 and 3 in section 1, and as a result, in these four ex-

periments, the widths of the branches are all more or less

the same. The directed model, though, tends to produce

straighter branches with even less width variation than those

in the undirected case. This corresponds to desideratum 2.

The last two experiments in each group use K0 as the

4From top to bottom, parameter values were: (λ, α, D, β, d) =
(1.24, 0.038, 0.75, 0.137, 4); (1.24, 0.056, 0.75, 0.125, 4); (1.23,

0.076, 0.75, 0.83, 5.65) and (1.23, 0.076, 0.75, 0.917, 5.65).



Figure 3. Gradient descent evolutions using the new, directed net-

work model EP. The initial regions are shown in the leftmost col-

umn; time runs from left to right.

interaction function. This constrains the stable width far

less severely, and as a result we see a large range of widths

in both groups. We have thus satisfied desideratum 1 for

our directed model. However, the spatial distribution of this

range is very different in the undirected and the directed

cases. In the undirected case, each branch varies in width

along its length, tending to bulge out away from junctions.

In the directed case, in contrast, each branch tends to pre-

serve the same width, although the extent to which it does

this depends on the value of the divergence term. This can

be seen by comparing the last two experiments in the di-

rected case. The parameter Dv was 20 in the third exper-

iment and 240 in the fourth. As a result, there are some

width variations along each branch in the third experiment,

whereas in the fourth, they are absent. This satisfies desider-

atum 2. In addition, the fourth experiment produces long

straight branches, while at junctions the sum of incoming

and outgoing widths tend to be similar. This can be seen in

figure 3, but it is more clearly illustrated in figure 5, which

shows a zoom on the bottom-left quarter of the final config-

uration in the fourth experiment with the directed model.5

Thus desideratum 2 is satisfied too.

3.3. Segmentation

Figure 6 shows an experiment using a synthetic image

of a ‘river’, consisting of three regions each with a differ-

5Although not shown here, the evolution of the vector field in this ex-

periment showed an interesting behaviour. At a certain point, it ran from

right to left across the short, narrow, horizontal branch (call it B) in figure 5.

The branch joining B from the lower left widened during the gradient de-

scent, and the flow in B gradually reversed to accommodate the extra flow.

This in turn increased the width of the wide, vertical branch flowing down

from the right-hand end of B.

Figure 4. Gradient descent evolutions using the undirected net-

work model Es

P . The initial regions are shown in the leftmost

column; time runs from left to right.

Figure 5. A zoom on the bottom-left quarter of the final configu-

ration in the fourth experiment with the directed model, shown in

figure 3, showing v as well as φ.

ent (constant) intensity value, plus added Gaussian noise.

The highest intensity I1 corresponds to the ‘river’, while

the lowest I−1 and intermediate I0 = (I−1 + I1)/2 intensi-

ties correspond to the background. The zone with intensity

I0 is designed to resemble a network, but one that does not

respect ‘flow’ conservation. The likelihood P(I|R, K) is a

product of Gaussian distributions for the intensity at each

pixel, with means I1 for points in R and I−1 for points in

its complement R̄. The variances for R and R̄ are the same.

Maximum likelihood classification is thus unable to classify

points with intensity I0; the prior that decides whether such

points are part of the estimated river region or not.



Figure 6. From left to right, top to bottom: synthetic image with

three grey levels and added noise; ground truth; segmentation us-

ing undirected network model; segmentation using directed net-

work model. Note how the constraint on branch width in the di-

rected network model avoids including parts of the background

that have similar intensity to the ‘river’.

As can be seen in the bottom row of figure 6, the undi-

rected network model, although it finds a network-shaped

region, includes a significant amount of the confounding

region with intensity I0. The directed network model on

the other hand, is considerably more accurate because of

the geometric constraints arising from ‘low’ conservation.6.

Figure 7 shows a zoom on the central part of the bottom-

right result in figure 6, showing v as well as φ.

4. Conclusion

We have introduced a nonlocal phase field model for di-

rected network-shaped regions. The model contains two

field variables: a scalar field that describes the region by its

smoothed characteristic function, with a long-range inter-

action that tends to produce network-shaped regions, and a

vector field that represents the ‘flow’ through the network.

The vector field is strongly encouraged to be divergence-

free, and of unit magnitude inside and zero magnitude out-

side the region. This forces the field in the region to be

parallel to the region boundary, and to conserve flow. This

results in slow width variations along a network branch, ex-

6The parameters used for the undirected and directed net-

work models were: (λ, α, D, β, d) = (25, 0.053, 15, 0.01) and

(λ04, λ03, λ22, λ21, D, β, d, Lv, Dv) = (1.025,−0.211, 0.564,−1.5,

0.2, 0.2, 5, 8, 1000).

Figure 7. A zoom on the central part of the result in figure 6, show-

ing v as well as φ.

cept at junctions, where total incoming flow/width is en-

couraged to be equal to total outgoing flow/width. We have

confirmed the expected behaviour of the model via gradi-

ent descent evolutions, and via an extraction experiment

on a synthetic image representing part of a hydrographic

network, showing that the new model can avoid errors that

arise if the undirected network model is used.
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