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Abstract

We propose an algorithm for non-rigidly registering a
3D template mesh with a dense point cloud, using a mor-
phable shape model to control the deformation of the tem-
plate mesh. A cost function involving nonrigid shape as
well as rigid pose is proposed. Registration is performed by
minimizing a first-order approximation of the cost function
in the Iterative Closest Points framework. We show how
a complex shape model, consisting of multiple PCA mod-
els for individual regions of the template, can be seamlessly
integrated in the parameter estimation scheme. An appro-
priate Tikhonov regularization is introduced to guarantee
the smoothness of the full mesh despite the splitting into lo-
cal models. The proposed algorithm is compared to a re-
cent generic nonrigid registration scheme. We show that
the data-driven approach is faster, as the linear systems to
be solved in the iterations are significantly smaller when a
model is available. Also, we show that simultaneous opti-
mization of pose and shape yields better registration results
than shape alone.

1. Introduction

The aim of a 3D registration algorithm is to align two
meshes or point clouds, called the template and the target,
as closely as possible. To this end, the template undergoes
certain transformations while the target remains unchanged.
The registration is called non-rigid if the transformations in-
clude changes in shape. The way in which the shape is al-
lowed to change is controlled by what is sometimes called
the stiffness- or deformation prior, as it is defined indepen-
dent of the data. In this paper we suggest an efficient non-
rigid registration algorithm where deformation is controlled
by a morphable shape model learned from a database of
meshes. While the algorithm relies on the availability of a
model, it is computationally more efficient than approaches
with generic stiffness constraints based on vertex neighbor-
hoods.

From a morphable model point of view, the proposed

method can also be seen as a direct model fitting algorithm
for point cloud targets. This is in contrast to the typical ap-
proach to fitting a morphable model to a point cloud, which
is a three step process: First, a generic, nonrigid registra-
tion scheme is employed to register a reference mesh with
the point cloud. Then the point cloud is converted to the
topology of the reference mesh, which is the same as the
topology of the morphable model. Finally, the model is fit-
ted, which is trivial when the target shares its topology. The
method to be proposed allows to fit the model directly to
the point cloud without preceding registration and conver-
sion steps. Throughout the paper, we assume the target to
be a dense point cloud, gained, for example, from laser-
scanning, 3D surface reconstruction, etc. While the pro-
posed method is not specific to a certain domain, the mor-
phable model used to generate examples and experimental
data is one of human head shape, which seems to be the
predominant domain of morphable models. Note, however,
that in contrast to many works on morphable models of the
head or face, we are concerned with shape alone; texture
information is neither used nor required.

Our algorithm is based on minimizing a cost function
that involves both nonrigid shape and rigid pose, which will
be shown to give better registration results than shape alone.
The optimization is computed using the Iterative Closest
Points (ICP) scheme with a first order approximation of the
cost function. Therewith our methodology is closely related
to that of many rigid registration algorithms. Special at-
tention is paid to the integration of a complex morphable
model, consisting of multiple sub-models for individual re-
gions, in the cost function.

The paper is structured as follows. After an overview
of related work in section 2, we briefly recapitulate PCA-
based morphable shape models in section 3. Next, we in-
troduce the cost function and its first-order approximation
(section 4). In section 5, we show how a morphable model
that consists of multiple sub-models can be integrated in
the cost function and address regularization issues. In sec-
tion 6, we state the iterative algorithm used to estimate the
parameters. Finally, we compare our method to a recent



generic non-rigid registration algorithm and give examples
of results (section 7).

2. Related work

As the literature on nonrigid 3D registration is exten-
sive, our review of related work concentrates on methods
developed in the context of morphable (head) models. For
an entirely different class of approaches, based on surface
geometry, see, for example, Bronstein et al. [12] and their
excellent monograph [11] which provides an extensive bib-
liography. Also, the discussion of methods developed for
2D image registration is beyond scope here. PCA shape
models have been successfully used in this context, e. g. by
Albrecht et al. [1].

Morphable models of human heads or faces have been
applied to a large number of problems in computer vision
and graphics. These include, for example, recognition [10],
tracking [16] and several varieties of 3D reconstruction, e. g.
from uncalibrated video [13] or from stereo images [3]. The
most prominent model is that of Vetter and Blanz [9], com-
prising both geometry and texture. Registration of novel
laser-scans is performed with a modified optical flow algo-
rithm that exploits texture and geometry information. An
algorithm for fitting the 3D model to a 2D photograph of
a face is proposed, using analysis by synthesis techniques
and stochastic optimization in the model’s parameter space.
Romdhani and Vetter [17] extended this fitting algorithm,
exploiting various image features such as edges or specular
highlights. An analysis-by-synthesis approach was also re-
cently used by Blanz et al. [8] for fitting the model directly
to a textured 3D scan, paying special attention to compen-
sating the effects of unfavorable lighting.

Fewer algorithms deal with fitting problems from a
purely geometric point of view, i.e. without using texture
information. As described in the introduction, the prob-
lem of fitting a shape model to an unstructured (and un-
textured) point cloud is often approached in a three step
process of model-independent registration, topology con-
version and model fitting. Generic registration schemes of
this kind can be found, for example, in Kéhler et al. [15].
Their method is based on iteratively subdividing a coarse
mesh and aligning the new vertices to the reference model.
The initial model for the subdivision is obtained from man-
ually placed landmarks. Allen et al. [2] register full hu-
man body scans by using a generic nonlinear optimizer on
a three-term cost function. The function penalizes distances
to the target as well as dissimilarities between transforms of
adjacent points, thereby controlling the rigidity of the over-
all transformation. The registration is guided by a set of
manually annotated landmarks. Landmarks are not required
by Anguelov et al. [6] who formulate the registration prob-
lem in the framework of a Markov random field. A variety
of local and relational cost measures are incorporated in the

field and the registration is computed by loopy belief prop-
agation. While computational complexity is not addressed,
the size of the network and the complexity of the different
measures suggest that the method is costly. In [5], the same
authors fit a combined model of articulated pose and PCA-
based deformation to laser-scans of the whole human fig-
ure. A specifically designed nonlinear optimization scheme
is used where iteratively subsets of the parameters are kept
fixed while others are optimized; also the adaptation rate
of different parameters is controlled in order to avoid local
minima. The algorithm can be used for “shape completion”
by fitting it to partial scans. Shape completion is also possi-
ble with our approach and briefly addressed in section 6.2.

The ICP algorithm, originally introduced by Besl and
McKay [7], is regarded as state of the art for rigidly register-
ing two or more partially overlapping meshes. Several au-
thors have extended ICP to nonrigid registration problems.
Haehnel et al. [14], for example, combine ICP optimization
with a coarse to fine approach in order to learn 3D mod-
els of non-stationary objects with a mobile robot. Amberg
et al. [4] use the ICP scheme to minimize a cost function
similar to that of [2] in a stepwise optimal fashion. While
they include a term for manually placed landmarks, these
are not mandatory for their approach. We discuss their al-
gorithm in more detail in section 7, where we compare it to
our method.

3. Morphable shape models

In this section we briefly recapitulate morphable shape
models. To build such a model for a certain domain—
human heads in our case—a database of meshes with a com-
mon, semantically consistent topology is required. Seman-
tic consistency means that topologically equivalent vertices
in different meshes are required to represent the same point
on the head such as the tip of the nose, the center of the
upper lip, etc.

Morphable shape models are based on Principle Com-
ponent Analysis (PCA) of the geometry. However, if the
shapes to be described by the model are complex, a sin-
gle PCA can often represent only an insufficient amount of
shape variability. Therefore, it is common to split the do-
main into different regions each of which is described by
its own PCA (e. g. [9]). To avoid discontinuities at the bor-
ders, the regions are defined as overlapping and contribu-
tions of different regions to a single vertex location have to
be blended. The regions used in this paper are depicted in
figure 1 (left). The integration of these multi-PCA models
in a single formal framework is discussed in section 5.

For each region, the model is computed as follows. The
geometry of the region in each mesh in the database can be
represented as a single vector of concatenated vertex coor-



dinates, where NN is the number of vertices in the region:

b= (z1 412128 YN 2N) (1)

The whole database, with respect to the currently regarded
region, is described by a matrix B = [b; ...bys] where
M is the number of meshes in the database. Denoting
by u = ﬁZf& b; the region’s mean shape, and by
B = [b; — p...by — ] the database centered on the
mean, the region’s PCA model is obtained by computing
the spectral decomposition

PAPT = BTB. (2)

P is the orthonormal matrix of eigenvectors and A is a di-
agonal matrix of eigenvalues. Typically, columns of P cor-
responding to eigenvectors with small eigenvalues are omit-
ted to obtain a more compact model that captures the most
dominant variations in the data. We will refer to P as the
region’s PCA model matrix in the following.

4. Cost function

We approach model-based non-rigid registration as a
problem of estimating a set of parameters that minimize
a cost or error function. In this section, we assume that
correspondences between vertices of the template—i. e. the
morphable model—and points of the target point cloud are
known. Template vertices are denoted as vectors p; and
corresponding target points as q;. The correspondence as-
sumption will, of course, be dropped in the final algorithm.

As a template vertex p; belongs to the morphable shape
model, it can be written as

p; = Mim + ;. 3)

We can adopt two points of view on this equation. From
a morphable model perspective, M, is a part of the PCA
model matrix that describes the region p; belongs to; p,;
is a part of that model’s mean vector and m is a parame-
ter vector that determines the region’s shape. From a non-
rigid registration point of view, p; is a vertex of the template
mesh, M; is a linear deformation model and m is a param-
eter vector that describes the deformation. We will refer to
M, as the shape matrix of the vertex p; in the following
and suspend the discussion of its structure until section 5.

To obtain a good registration, not only shape but also
pose and scale of the target must be estimated. Other-
wise, deviances in pose and scale will be compensated by
the shape model, resulting in higher fitting errors and un-
necessarily deformed meshes. This claim will be under-
pinned experimentally in section 7. We describe scale by
a factor s and onse by a translation vector t and a vector
0 =[0,0,06.]" of Euler angles.

For given correspondences, the cost function to be mini-
mized is

e(s,0,m,t) = Z |srot(6) (Mym + ;) + t — qul|*,
“)

where rot(6) is the 3 x 3 rotation matrix corresponding with
the Euler angles in the argument. There are closed form so-
lutions for the problem of estimating rigid the transforma-
tion parameters @ and t, which is sometimes referred to as
the Procrustes problem. These methods are, however, dif-
ficult to combine with the estimation of other parameters
such as the shape/deformation parameter m in our case.
Therefore, our strategy is to formulate a first-order approx-
imation of the cost function and compute the solution iter-
atively. This approach is also prevalent in the literature on
ICP for rigid matching of point clouds.

To linearize rotation, we use the well known approxima-
tion of rot(@) for small angles in the argument, which can
be derived from a Taylor series expansion of a rotation ma-
trix:

0 —6. 0,
rot(0) =~ I3+ [95 O —gm}
y 0o

= I;+A® )

I3 denotes the 3 x 3 identity matrix. To solve for the angles,
they can be swapped with the coordinates of a rotated point

p=[ry2":

rot(@)p = p+ABOp
0 z —y [
LT
y —x 0 0.
= p+[pl, 0 @)

The notation [p],, is motivated by the fact that the matrix
in equation (6) is the matrix form of the cross product of p
with an arbitrary vector. Equation (7) can also be derived
directly from the Jacobian of a quaternion rotation [18].

Now the first order approximation of the error func-
tion can be derived as follows. Assume a given pose and
shape / deformation (s, 6, m, t) changes by an unknown
amount (As, AG, Am, At). The new error is

e= Z [[(1+ As) s - rot(AB)rot(6)-

(M; (m + Am) + ;) +t + At —qi|* (8

Assuming the change in rotation A8 is small, we can use
equation (5) to substitute

rot(Af)rot(0) ~ (I3 + AO)rot(0).



Assuming further the changes of the other parameters are
small as well, computing a Taylor expansion of equation (8)
and omitting higher order terms yields

e=Y_[[pi+t+piAs+AOP;

+srot(0)M; Am + At — qi||> (9)

with

pi = srot(0) (M;m + ;) . (10)
Note that p; + t is the registration prior to the change of
parameters.

Applying equation (6) and rearranging, we get the fol-
lowing linear system which can be solved for the parameters
minimizing the cost function:

p1 [P1], stot(@)M; I3] | s
. [ .]X ‘ ) v
k B : | |Am
Py [Pn], stot(@)Mny I3 | At
q —p1—t
= : (11)
av —pny — ¢

Here, N is total number of vertices in the template mesh /
morphable model.

5. Multi-PCA models

How does the linear system of equation (11) relate to a
PCA-based morphable shape model with multiple overlap-
ping regions, each described by its own PCA?

Clearly, by “stacking” the per-vertex mean vectors p;,

we obtain [pu] ... u%]T which is simply the mean vector
of the meshes. The relation of the per-vertex shape matrices
M, to the regions’ PCA model matrices is more subtle and
can be established as follows.

Assume that the model domain (here: the head) is split
up into K different regions and denote the PCA model ma-
trix of the j-th region by P(). Further denote the allocation
of vertices to regions by index sets R ... Rg withi € R
if a template vertex p; belongs to region R ;. Also note that
R; NRy # 0 if the two regions are adjacent due to overlap
(see section 3).

The location of a vertex p; belonging to region R; is
determined by p; and three consecutive rows of the region’s
PCA model matrix P (). Denote these three matrix rows of
2160 by PEJ ) and let, by definition, be

PP =0 if i¢R, (12)

Then the shape matrix M; of each vertex in equation (11)
can be defined as

M; =¢ '[PV . P (13)

"
Figure 1. Left: Subdivision of the head into eight regions, each
described by its own PCA model. Center: Discontinuity at the
border between two regions. Right: The smoothness prior leads to
an undistorted mesh (A\; = 10).

where ¢; is the number of regions to which p; belongs. The
blending factor c¢;” ! weights down the contribution of differ-
ent region models if the vertex belongs to several regions.
Otherwise, an area where n different regions overlap would
be scaled by factor n. With the given definition of ¢;, all
regions a vertex belongs to contribute the same to its lo-
cation. Other weighting schemes, preferring some regions
over others for some vertices, are possible.

5.1. Regularization

In this section we address two problems—smoothness at
region borders and total deformation strength—that can be
met by adding regularization terms to the linear system of
equation (11). Denoting the respective Tikhonov matrices
by I and A, the matrix in the equation becomes:

p1 [Pil, Is | srot(6)M;
py  [Pn], I3 | srot(0)My =K (14)
AT
0 oA

Note that the translation and the shape term have been
swapped to simplify notation. The factors A;, Ay control
the influence of the regularizers.

Smoothness prior I' Despite of the overlap at the borders
of the regions, visible discontinuities can appear in the over-
all mesh: In the fitting process, the mean squared fitting er-
ror of each region is minimized. Therefore, for a vertex that
belongs to several regions, each region model may yield a
different location. The blending factor c; ! in equation (13)
can hide this effect only if the deviation between different
region models is small. Otherwise, discontinuities become
visible, as shown in figure 1 (center).

The problem can be met by introducing a “smoothness
prior” I in the linear system of equation (11). This prior



forces different region models to yield the same locations
for shared vertices and is defined as follows. Be p; a vertex
that belongs to exactly two regions, R ; and Ry. Then the
shape matrix M; of p; has exactly two blocks that are non-
zero, namely ng ) and ng). Hence, the region models of
R; and R, yield the same location for p; if
[...p@..._pg@... m=T;m=0. (15

?

For a vertex belonging to more than two regions, each un-
ordered pair of regions the vertex belongs to yields a sys-
tem like the one in equation (15). In practice, there are very
few vertices of this kind and they can be ignored without
harm. When added to the linear system of equation (11), the
smoothness prior should be scaled by s. Rotation and trans-
lation can be omitted as they do not affect the Euclidean
distances minimized by the prior. Finally, I' is defined as

Iy,
r=s| : (16)
'

where L is the number of vertices belonging to two regions.
Figure 1 (right) shows the effect of the smoothness prior.

Deformation strength A So far, the shape model con-
trols the “direction” of the deformation and the smoothness
prior controls the interaction of the individual PCA models
at the regions borders. However, the actual strength of the
deformation is still unregulated. This can be met by adding
a second regularization term, acting, like the smoothness
prior, on the deformation parameters m. Obviously, the
strength of the deformation is directly correlated with the
norm ||m|| as each element of m controls one “direction”
of deformation. However, not all of them are equally im-
portant: The directions are the orthogonal dimensions of
the PCA models, and dimensions associated with a larger
eigenvalue represent a larger variance of shape in the mesh
database than those with a smaller eigenvalue. To control
deformation strength in accordance with the model, the el-
ements of m must be weighted differently. Therefore, de-
note by AY) the eigenvalue matrix of the j-th region’s PCA
model (see section 3) and define the deformation strength
prior as the diagonal matrix

—1
A = diag (\/A(U,...,\/A(K)) . (17)

6. Iterative estimation

In this section we state the iterative nonrigid registra-
tion algorithm that registers the template mesh—the mean
mesh of the morphable shape model—with a given point
cloud C C R3. Or, equivalently, we state the algorithm

that fits the morphable shape model to a dense point cloud.
The algorithm establishes correspondences q; € C for all
vertices p; of the template mesh/shape model and deter-
mines the scale, pose and shape/deformation parameters
5,0, m,t that minimize the cost function defined in equa-
tion (4). Note that the reached cost minimum may be a
local one, as is typically the case with ICP based registra-
tion schemes. Therefore, the point cloud must be roughly
aligned with the template before optimization. In practice,
an alignment of the principal axes is sufficient.

6.1. Algorithm

The following quantities are maintained by the algorithm
and initialized as follows:

e The accumulated scale, rotation, shape and translation,
s « 1, rot(0) «— I3, m «— 0, t «— 0. Note that
accumulated rotation is maintained as a matrix rather
than a vector of Euler angles in order to avoid problems
such as gimbal lock. We denote this matrix by rot(8)
for reasons of consistency, although there is no vector
6 maintained by the algorithm.

e The current registration of the template is initialized by
the undeformed mean of the database meshes: p; «—
p; forv = 1...N. In order to avoid repeating equa-
tions, p; is to be understood as the current registration
“minus translation”, as in equation (10).

Step 1 In the main loop, the first step is to establish pre-
liminary point correspondences: For each point p; +t of the
current registration, the point q; of the target point cloud C
which is closest to p; + t with respect to the Euclidean dis-
tance is searched. This can be computed efficiently with an
appropriate data structure, e. g. a KD-tree.

Step 2 Next the parameter changes are estimated. The
matrix K of equation (14) is set up and the parameter
changes are computed, using the SVD of K:

qi—p1—t

As

{ AA;;} _KH| ()

At gN*EN*t
Step 3 Next, the accumulated parameters are updated:
s « (I14+As)-s (19)
rot(0) <« rot(A6) -rot(0) (20)
t — At+t 1)
m <« Am-+m (22)

Step 4 Finally, a new registration is computed based
on the current parameters:

pi:=srot(0) Mym+ ;) for i=1...N (23)



Figure 2. Shape completion: Here, the fitting target is only a pro-
file curve (red line). A plausible head is found that closely approx-
imates the target.

The process starts over with step one, until the change of the
mean squared error (MSE), ¢ = + S [Ip; +t — qi|”,
computed with respect to the current correspondences, falls
below a threshold.

6.2. Outlier rejection and shape completion

Often, the laser-scan point clouds have holes due to scan-
ning errors or do not show the entire head. As can be seen
in figure 3, our scans, for example, lack the top of the head
as well as some parts of the lower throat. These areas of
missing geometry have a bad effect on the optimization:
Template vertices in those areas are matched with far away
points of the cloud which leads to large squared errors with
an overly strong influence on parameter estimation. To cope
with this, a simple outlier rejection is used. A threshold
is imposed on the distance of “closest points” in step 1 of
the algorithm. The equations corresponding with points for
which the threshold is exceeded can be omitted from the
linear system when the parameters are estimated.

The proposed algorithm can also be used for shape
completion—i. e. for estimating a plausible complete shape
that fits an arbitrarily small piece of given geometry. Tech-
nically, shape completion is the same as outlier rejection in
the proposed method: Equations referring to vertices that
are missing in the target are omitted in step 2 of the algo-
rithm. An extreme example of shape completion is shown
in figure 2, where only the profile curve of the face is given
as the target. Note that in such extreme cases the compu-
tation of the parameters relies mostly on the smoothness
prior I': If there are regions for which there is no given ge-
ometry, entire columns in the matrix of equation (11) con-
tain only zero entries; this follows from the definition of the
vertices’ shape matrices in equation (13). If this is the case,
the shape parameters of the affected regions are underdeter-
mined in equation (11) and only the regularized system of
equation (14) is solvable.

4

Figure 4. Typical progressions of MSE to model during the fitting
process. Red: Generic nonrigid fitting algorithm. Green: Pro-
posed method without rigid pose. Blue: Proposed method with
rigid pose. For all trials, the template mesh was rigidly aligned
with the point cloud prior to registration.

7. Evaluation

Figure 3 shows results of the fitting algorithm for several
male heads with different facial characteristics. The shape
model used is based on a database of 180 laser-scans of
male adults. Meshes based on the target scans were omitted
from the database for the evaluation experiments. Regard-
ing scale, the template / mean mesh has a height of one. The
point clouds were roughly pre-aligned by matching scale
and principal axes. The template mesh has 6300 vertices.
The eight regions depicted in figure 1 (left) were used and
each region is described by 15 eigenvectors in the model.
The regularization weights were established experimentally
and are Ay = 20 and A5 = 0; i.e. a restriction of deforma-
tion strength was not necessary.

By omitting the parts of the fitting equation related to
pose and scale, the proposed algorithm can be used to es-
timate shape parameters only. This leads to the question
whether simultaneous optimization of pose and shape yields
better results than a plain pose registration followed by a
plain shape estimation. Hence we rigidly aligned point
clouds with the template / mean mesh using regular ICP, and
registered the model with the point clouds twice, once with
and once without pose optimization. Example plots of MSE
over the iteration for several trials are shown in figure 4. De-
spite of the preceding pose optimization, the final MSE of
simultaneous pose and shape optimization was on average
five percent lower than that of plain shape fitting (30 trials).

7.1. Comparison with generic fitting

Regarding comparison with other methods, we are pri-
marily interested in the performance of our data-driven ap-
proach in comparison with recent generic non-rigid registra-
tion schemes. We chose the algorithm of Amberg et al. [4],
which is an extension of Allen et al. [2], as a benchmark for
two reasons. Firstly, like our algorithm, it does not require
manually annotated landmarks (although it can incorporate
them if available). Secondly, it is structurally similar to the
proposed approach: It is based on minimizing a cost func-



Figure 3. Results of the fitting algorithm. Laser scans in the bottom row, fitted model in the top row.

tion in the ICP framework with linear parameter updates
during the iteration.

The primary difference between the investigated generic
algorithm and the data-driven approach lies in the cost func-
tion. The generic algorithm estimates a full affine transform
(i.e. 12 parameters) for every vertex of the template mesh.
To prevent a free deformation of the template, a regulariza-
tion term enforces similarity between transforms of vertices
connected by an edge. This is achieved by minimizing the
difference between transformation matrices of adjacent ver-
tices with respect to the Frobenius norm. The strength of
the regularization is determined by a stiffness factor and
the entire ICP optimization is repeated several times with
increasingly lower stiffness. Note that in contrast to the
model-based approach, the generic algorithm does not al-
low to separate shape and pose parameters.

Regarding computation time, the data-driven algorithm
outperforms the generic one by a factor of 17 on average
(30 trials). This is not surprising given the linear systems the
two algorithms solve in each iteration: Denoting by K the
number of regions used and by P; the number of principal
components of the i-th region PCA model, the number of
parameters to be estimated by the data-driven algorithm is
7+ Zfil P;. Denoting by N the number of vertices in
the template / model and by L the number of region-shared
vertices used for regularization, the linear system comprises

3N + 3L+ Y% | P, equations.

In contrast, the generic algorithm estimates 12N param-
eters. There are 4N equations governing the deformation
due to the use of homogeneous coordinates. Computational
cost, however, is dominated by the number of equations in
the regularization term, which is four times the number of
edges in the mesh. If the template is a triangle mesh with a
Euler characteristic of two, the edge count is roughly three
times the number of vertices which sums up to 16NV equa-
tions in total.

This is reflected in the average computation times for
solving a single linear system in the parameter estimation
step (Matlab algorithms, 4 core Xeon, 3 GHz, 4GB RAM):

| | sparse solver | non-sparse solver |

model-based 2.7s 1.0s
generic 478s not enough memory

In summary, the model-based approach profits from
fixed relations between vertices that are encoded in the
model: The ways in which a vertex may move is determined
by the data used to build the model and not by its neighbors.
Therefore, the vertices can be treated as independent during
optimization. In contrast, vertex relations are dynamic in
the generic approach and hence must be included in the pa-
rameter estimation.



Finding an informative measure for comparing the algo-
rithms with respect to registration quality is difficult. An
obvious choice would be the remaining MSE after regis-
tration. This makes sense for the data-driven algorithm, as
the space of possible deformations is limited by the region
PCA models. However, for the generic algorithm, the MSE
can trivially be brought to zero by setting the stiffness fac-
tor to zero at some point of the optimization; this allows the
template’s vertices to move freely to the locations of their
current correspondences. The MSE does not convey any in-
formation about the “quality” of a registration, which may
involve factors such as semantic consistency with the tem-
plate mesh, distortion of triangles, etc.

Therefore, we suggest another error measure for the
generic algorithm: We use the morphable model’s mean
mesh as a template and register it with the point cloud with
the generic method. Then the model is fitted to the reg-
istered template, which is now trivial, as correspondences
have been established by the registration algorithm. The
remaining MSE of this fit is taken as the error measure.
Thereby, the morphable model becomes the judge for the
registration quality—registration counts as good if it is well
reproduced by the morphable model. Note that from a mor-
phable model point of view, this amounts to a comparison
between direct fitting as proposed in this paper and indirect
as described in the introduction. By this measure, the final
MSE of the model-based method is, on average, 30 percent
lower than the final MSE of the generic algorithm.

8. Conclusion

The contributions of this paper can be summarized as
follows: We used the ICP scheme to non-rigidly fit a tem-
plate mesh to an unstructured point cloud, guiding the de-
formation by a morphable shape model. The fitting was
described as a minimization of a cost function by iterative
estimation of nonrigid shape and rigid pose. Including rigid
pose proved to yield better registration results than shape
alone. We showed how a complex shape model, consist-
ing of multiple PCA models for individual regions, can be
integrated in the linear parameter estimation scheme. To
avoid discontinuities at the region borders, we introduced
a smoothness prior which is integrated in the fitting equa-
tions as a Tikhonov regularization. The proposed algorithm
yields better results than a recent generic nonrigid registra-
tion scheme when the model is used to judge registration
quality, which is difficult to measure. Solving smaller lin-
ear systems in each iteration, our method was shown to be
significantly faster.
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