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Abstract This work is inspired by the recently developing field
of compressed sensing [1,[2,3]4, 5] and its innovative ap-
A robust classification method is developed on the ba- plications to robust face recognitidn [6], action recoipmit
sis of sparse subspace decomposition. This method trieg7], computer vision and image processihg [8]. The essen-
to decompose a mixture of subspaces of unlabeled datdial idea of these works is to exploit the prior knowledge
(queries) into class subspaces as few as possible. Eachihat a signal is sparse and compressible. The theory of
query is classified into the class whose subspace signifi-compressed sensing is very helpful and informative for us
cantly contributes to the decomposed subspace. Multipleto answer questions such as “How many measurements are
queries from different classes can be simultaneouslyielass enough for the pattern recognition?” and “What is the role
fied into their respective classes. A practical greedy algo- of feature extraction?” It is worthy to explore the potehtia
rithm of the sparse subspace decomposition is designed foiof sparse decomposition for substantial improvement of the
the classification. The present method achieves high recog-subspace methods.
nition rate and robust performance exploiting joint spéysi The rest of this paper is organized as follows. Sec-
tion[2 provides preliminary details and definitions of sub-
space representation for sparse decomposition. In Section
[3, we propose a classification method namspdrse sub-
1. Introduction space methgdwhich exploits the sparseness property for
S o the classification tasks described above. A practical algo-
Classification is a task of assigning one or more class rjihm of the sparse subspace decomposition is presented in
labels to unlabeled data (query data). A collection of la- gectior#. We show some tentative evaluation results of the

beled data (training data) is available for the classificati sparse subspace method using a face database in 9dction 5
The patterns or signals to be classified are usually groups of)efore concluding in Sectidd 6.

measurement data expressed as high-dimensional vectors.
Depending on purposes, we need pattern classifiers thab preliminaries
can answer

) Let S;, € R4<" be a matrix of training dataset &fth
e alabel to each of queries,

class ¢ =1,...,C), in whichn, labeled patterns are rep-
e alabel to a set of queries, resented as thé-dimensional column feature vectors. We
describe as follows the linear subspaces, their unionkbloc
e afew labels to each of queries, sparsity, and sparse linear representation of a subspace. W

- . also define a classification space where the sparsity should
e alabel “invalid” to an unclassifiable query.

be encouraged.
We develop a framework of using subspaces for all these
functionalities. We regard the unlabeled data as a mixtureLinear subspaces of training datasets The class sub-
of subspaces. The key idea is to decompose it into the subspace is defined as a vector subspace whose elements are
spaces of classes as few as possible. Only the classes exhe feature vectors of labeled data. We describe the sub-

plaining concisely the mixture are relevant to the unlatbele space as a vector subspace in the normed space:
data. In the classification, the unlabeled data are usuall
y Sy, :=spanS; C (R%,1?). (1)

supposed to belong to a few (typically one) classes. There-
fore, the classification process can be interpreted asesparsS; approximates thé-th class subspace. We denote the
decomposition of the subspace mixture. dimensionality ofS;, by dim S, = rank Sy.
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Union of subspaces The union of subspaces is the sub-

The systems of linear equationsk (7) is called the prob-

space obtained by combining the feature vectors of eachlem for multiple measurement vectors (MMV), while the

class.
S:=UY Sy =spanS C (R?,1%) 2)
Here,S is the concatenation &, as
S:=[Si,...,8¢] € RN (3)

andN := chzl ni. The dimensionality of is denoted by
dim S = rank S.

We say that the subspac§s (k = 1,...,C) are inde-
pendentif and only if any subspa&g is not a subset of the
union of the other subspacés., S ¢ ug&ksi for Vk.

Linear representation of vector(s) Given sufficient
training dataset, al-dimensional vectorq of unlabeled
data (hereafter “query” vector) will be approximately rep-

case of a single measurement= 1 as [4) is referred to
as SMV [9,[10/111]. The query vectors correspond to the
measurements in this context.

Uniqueness The solutionx to (4) or A to () exists if and
only if
q¥) € S8 vj, (12)

i.e., the queries lie on the union of class subspaces. For
dim S < d, the solution does not always exist. The solu-
tion may be dense even if it exists. Most components are
nonzero despite the fact that at mastlass subspaces are
relevant ton queries. This problem is due to invalid situa-
tion where training datasets are insufficient to identify th
class, uniquely.

The actual problem we should cope with is the under-

resented as a linear combination of vectors from class sub-jetermined casé = dimS < N, i.e., the dimensional-

spaces.
c

q= Z Spar = Sa
k=1

Here,ay, € (R™*,1?) is a vector of coefficients correspond-
ing to thek-th class, and

(4)

(e3]
o= € (RV,1?) (5)
ac
is the concatenation efy,.
If a set of queries is given as a matrix
Q:=[q",....q"] e R, (6)
then we will solve
Q =SA. 7
Here,
A:=[aW ... a™] eRN*" (8)
is the matrix of unknown coefficients, and
agj)
o) = : eRY (9)
)
o

is the concatenated vector of coefficients for fkil query.
The matrixA can also be described as

A
A= (10)
Ac
where
Ap =M, . o] e R, (11)

ity of the union of subspaces is less than the total num-
ber N of training samples. Unless the training data ma-
trices Sy, are rank-degenerated so thin S < d, the C
subspaces of training data cannot be independent id-the
dimensional space. There is an infinite number of ways
to express the query vector by the linear combination of
the subspace bases. The underdetermined problem requires
regularization to select a unique solution. A sparse smhuti
indicating relevant classes would be preferable.

Block sparsity A vector¢ € (RY,19) is calledm-sparse
if ||€]lo < m. Here,|| - ||o denotes thé® norm, which
counts the nonzero vector components. As the support of a
function is the subset of its domain where it is nonzero, the
support of a vecto¢ is defined ag” = {i|¢; # 0}. Thel°
norm is the cardinality of the support.

We define a block-wise sparsity level in a similar manner
to [11]. Let fyr be a map fronvX € (RV*" [F)to~ €
(RY,1°) according to a listV" := {n, ..., nc} such that

X1 [ X417

I = (13)

Xc [ Xcllr

Here, X, € (R™>*" [F) is thek-th row block of X with
respect to\/, and|| - || denotes the Frobenius norifi.
Clearly,

X1 [Ix1]]2

In: (14)

Xc l[xcll2
forn = 1. Avectorx € (R¥,[?) is called block) -sparse
over N if x; # 0 for at mostM indicesk. The block

sparsity is measured as

[xllo.n = [[fx()llo- (15)



That is, || - [|o.» counts the number of nonzero blocks. 3.1. Formulation
We measure the row block sparsity of a mat¥ < LetS € RN be the concatenation &, € R4

Nxn JF
(R, 17) overV as (k=1,...,C,d =rankS < N = .0 n,), i.e, the
matrices of training datasets. Given the mafixc R**"

[Xllo.ar:= 1w (X)llo- (16) of n query vectors, we solve th&-minimization problem:

A matrix X is row block M -sparse iff| X || < M. min|[Al[on Subjectto Q = SA. (18)
We remark that the row blocRZ-sparse matrixX can A
be converted into a block/-sparse vector véX " ). Here, Here, N specifies the sizes of row blocks for sparsification.
the operator vec transforms a matrix into a column vec- Typically, N' = {ni,...,n¢}. The matrixA is released
tor by stacking all the columns of the matrix. F&f := from being row-block sparse i = N = {Vn; =1,i=
{n1,...,nc}yandN" := {nny,...,nnc}, the block spar- 1,...,N} ={1,...,1}.
sity of X € RV*" over\ is preserved as One can rewrite the problef{[18) as
min || veq A" . subject to
1] 0.7 = | veoX ™) lo.x- (17) inllved A Dllo  sub

vedQ') = (S®I,)vedA") (19)

Sparse representation of subspaceln the underdeter-  where® denotes the Kronecker product, aijdis the iden-

mined case, the columns of matif € R?*" represent tity matrix of sizen. The list\” defines the block sizes of
an overcomplete basis & for d < N. Equation[#) and  thenN-dimensional vector veA ").

(@) can be consistent with infinitely many solutionsand The!°-minimization problem[{19) is well investigated in

A, respectively. the literature[[1l1]. The uniqueness of the solution is guar-
We denote the subspace of query vector(s) ®y= anteed under the condition called block restricted isometr

spanq or span Q. If a possible solutiory or A is block property (block RIP). Assuming’) € S, the RIP condi-

sparse oveN = {ng,...,nc}, the query subspae@ con- tion for our problem can be described as

sists of a small minority of class subspaces corresponding )

to nonzeraxy or Ay. In other words, the query subspace is (1 = barn)llvII2

sparsely represented by the class subspaces. The spérsity o <|(S®I,)v|3

T|h§||subspace representation can be quantifigidés - or < (L4 6p) VI3 ¥ € RN, (20)

0N

whered v is called the block-RIP constant dependent on

the block sparsityl/ over A”. In practice, we normalize
Classification space By definition, the block sparsity  the blocksS in order for the matrixS @ I,, to satisfy the
|lee|lo.ar or [[Allo.a is measured by the norm of theC- condition. The block RIP condition is less stringent tham th
dimensional vectoty := fy(a) or fa(A). The compo-  standard RIP condition, which is widely used in the field of

nents ofy imply the degrees of class membership. The compressed sensirlg [1,/2[3[4, 5].
sparsery is, the more certainly the class label of each

query is identified. The sparsity is properly measured by 3.2. Dimensionality reduction
the Y norm. Therefore, we refer to the normed space

C = (RY,1°), wherev resides, as the classification space. In (18), we assume the linear systdn = SA to be

underdetermined as = rank S < NN, and regularize it by
the° minimization. Actually, we do not have to deal with
3. Classification based on sparse subspace rep- the queries and training data in a space of dimengion
resentation N. The recent works in the emerging area of compressed
) ) - sensing show that a small number of projections of a sparse
~ From the viewpoint of classification, each query Vector yector can contain its salient information enough to recove
is supposed to be composed only of vectors from the sub-he yector with regularization that promotes sparsity 1, 3

space of a class to which the query is classified. The subm]' The statements ifi LB, 114] guaranteeing the recovery
space spanned by the query vectors should be represented asa qdescribed as follows.

sparsely as possible by the class subspaces concerned with

the queries. In our notation, th@-dimensional vector in ~ Theorem 1 Letx := ¥'s be ad-dimensional vector rep-
the classification space,:= fx /() or fn-(A), isintended ~ resented by an-sparse vectos € R? using a basisb " &
to be sparsest. The sparsity is properly measured bif the R4 Then,s can be reconstructed from &dimensional
norm of~. Therefore, we incorporate minimization of the vectorx := ®x with probability1 — e=©(®. Here, & ¢
1° norm in the classification framework. R¥*4 is a random matrix and > dy := O(mlog(d/m)).



Specially,d > 2mlog(d/d) holds if m < d [15,[16]. It We also remark that ifn = 1 and N/ = A;, our

is also possible to recover the sparse vestisrom a small n-to-one classification is exactly the same as the sparse
number of projectionss, with overwhelming probabilityin ~ representation-based classification (SRC) proposed in [6]
more general case whefie and ¥ are incoherenf[15, 17, Our classification based on sparse subspace representation

i) is therefore an extension of the SRC for multiple queries.
The reconstructability in Theored 1 suggests that one

can obtain thed-dimensionalm-sparse solution from a
much lowerd-dimensional vector after linear transforma- o . :
queries into their respective classes. We calculate n

tion. V\_/r_|ght et al [B] showed, in their fra_mework of face residual matrix whoséj-th entry measures the dissimilar-
recognition based on sparse representation, that the compu

tational cost is reduced without significant loss of recegni :ﬁk?:;gfee_n thg-th query and its reconstruction in tieth
tion rate by linear transformations into lower dimensional '
feature spaces, such as Eigenfaces, Fisherfaces, Lapla-
cianfaces, downsampling, and random projection. These
transformations act as dimensionality reduction that pre-
serves information for the recognition. Especially, ran-
dom projection is a data-independent dimensionality reduc
tion technique, and one can exactly recover the original
dimensional vector. For this reason, we employ the dimen-

sionality reduction ifd is too high for computation. arg mkin T}gj)(Q; A). (24)

n-to-ones classifier It is also possible to classify:

(@A) =[la? - Sl (23)

Note that most of the residual entries Hrg?) ||, because of

the sparsity. If the query subspa@ecan be approximately
represented by union of a small number of class subspaces,
the class label for thg-th query is identified as

3.3. Classifiers _ _ _
Again, our method is expected to be robust owing to

n-to-one classifier Since the minimizerA for (18) is a  the multiple queries. Furthermore, the classes irrelevant
row block M—Sparse matrix, the\l blOCkS indicate the to the queries are Strong|y excluded by ﬂﬁen‘]inimiza-
Mc (Mc < M) classes concerned with the query sub- tion. Therefore, the classifidf (24) can detect the respecti

spaces. For the task of classifying allqueries into one  class for each query without giving the number of relevant
class (M = 1), we calculate the residuatg of the repre-  ¢lasses.

sentations by the class subspaces.

r(Q;A) = [|Q — SpA|| (21) n-to-M classifier Let us mention the potential of the
sparse subspace representation for findintp-M rela-
The residuals quantify the dissimilarities between theygue tions, although we do not go into the detail of this type of
subspace and the class subspaces. Note that most of th@ultiple classification in this paper. If a query simultane-
residuals aré|Q||» because of the sparsity. If the query ously belongs to multiple classes, the query vector is rep-
subspac& can be approximately represented by one of the resented as a linear combination of vectors from the sub-

class subspaces, the class label is identified as spaces of the relevant classes. The residtéé]sfor such
guery cannot be zero, but the relevant classes are found by
argmkinrk(Q;A). (22) thresholdingr,(j). Thus, each of. queries is assigned to

some ofM classes.
This classification method achieves the same task as the mu-

tual subspace methods [18) 19] 20] in a fundamentally dif- Classification validity A classifier should answer “in-
ferent strategy. The mutual subspace methods are robus\i}a"d” if the given query belongs to an unknown class. As

owing to the multiple queries. The robustness is further en'suggested i 6], such an unclassifiable query is perceived
hanced by the block sparsification in our scheme. he to be so by measuring how the nonzero components of
minimization in [18) encourages the vector of class mem- ., ontrate on a single class. Wrightl. defined the spar-
bership degreedv(A), to be as sparse as possible in the sity concentration index (SCI), which quantifies the vajidi

classification space. For the underdetermined problem withof the classificatior [6]. One may compute the SCI for each
a sparse solution, the recent works in the emerging area Ofcolumn ofA to validate the corresponding query
compressed sensirid [1/2[3, 4] prove the exact recovery un-

der thel® or {! regularization. Since th& / I' minimizer
is very insensitive to outliers, the sparse representasion
robust compared to the conventional representatiorid-by Our classification method based on the sparse subspace
based regularizatioe.g PCA. representation is summarized in Algorithin 1.

3.4. Sparse subspace method



Algorithm 1 Sparse subspace method (SSM) in (I9) as

Input: Q € R¥™: matrix of n queries as[{6), S <
R¥*N: concatenated matrix of training datasets[as (3),
N list of row block sizes; vedQ') = (S®IL,)vedAT). (25)
Output: L: set of class labels;
1 perform dimensionality reduction & andS if d is  Here, we redefingy- as amap fronfR <" 1) to (R, I*)

mjin||vec(AT)||17N, subject to

intractably high; in the same form a§ (13), and defthe
2 normalize the columns & to have unit? norm;
3 decompos€) with respect t@ to obtain the sparse sub- A1 = [l (X1 (26)

space representation. . According to [11], thig! minimization problem is a second
4 find the class label = {argming r,(Q; A)} or order cone problem (SOCP).

L = {argming r,(cl)(Q; A), ... argming r,(gn)(Q; A)}.

4.2. Sub-optimal algorithm

The major concern is the sparse subspace decompositiorlgorithm 2 Sparse subspace decomposition (SSD-ROMP)
of O at SteB. In the next section, we present a practi- Input: Q € R matrix of n queries as[{6), S ¢
cal algorithm of the decomposition, SSD-ROMP, which ef- R4*N: concatenated matrix of training datasetsas (3),
ficiently and stably provides approximate solutionigl (18). N list of row block sizes, M,: sparsity level:

Output: A: row-block sparse matrix as ([L@; set of in-

4. Sparse subspace decomposition dices of nonzero blocks;
P P P 1 letthe index sef := () and residuaR. := Q;

The sparse decomposition € in (I8) is considered as 2 repeat
a MMV problem whose solution is row-block sparse. The 3 U:=S'R;
solution has two important characteristics: the columnvec 4 7= I (U);
torsa¥) of A share nonzero blocks as their support, and 5 et J be a set of indices of thé/, biggest com-

the block partitions are fixed by in advance. ponents ofy, or all of its nonzero components,
whichever set is smaller;

sort7 in descending order of the componets
7 among all subsets, C J such thaty; < 2~; for

»

4.1. Prior work on MMV

Configuration of the nonzero entries in the solutian alli < j € Jo, chgosejo with the maximal energy
is called the joint sparsity model (JSM) [21,122]. There Ml =D
are some prior works on the MMV problems with sev- keJo

eral JSMs [P/ 10[ 21022, 23 1L 124]. Most of them & Z:=ZU

[9, 10,2122 25, 23] focus on a JSM in which the column 9 for eachj do _

vectorsa¥) simply share their suppof. This JSM is the 10 al?) = arg min g — Z Skalf2;

special case of our row-block sparsity model with= A/ keZ

described in Sectidn 3.1. Efficient algorithms for the MMV 11 endfor _

problem with this JSM have been designed as the extension&2 R:=Q- Z SkA;

of greedy algorithms such as matching pursuit (MP) and 13 until |R|» :kGOIorcardI = o,

orthogonal matching pursuit (OMP)_[26,147,1 28] 29] 30]. -

OMP is an efficient algorithm that can recovemasparse

vector from aO(mlog N)-dimensional vector [30]. It it- We present a practical greedy algorithm of the block

eratively selects the basis (column Af) with the largest ~ sparse decomposition. Although there are optimization

contribution to the current residual to reduce greedily the packages that solve the SOCP in polynomial time, we prefer

representation error at each iteration. The existing MP- a simple and efficient algorithm of the sparse recovery like

and OMP-based algorithms for the MMV problem can be the MP and OMP. As compared with the signal recovery in

directly used for our problem with the row-block sparsity compressed sensing, approximate solutions may be enough

model only whenV = Aj. for the classification purpose. Since the sparsity levet is a
Eldar and Mishali [I1] introduced the block sparsity MostO(n) for n queries, we want the decomposition algo-

model and block RIP condition applicable to MMV prob- rithm to work efficiently in the case of extreme sparseness.

lems including ours. .The unigueness was guargntdE]in 3.1 The norm|| - || 7 defined in[[L1] is the same as olir |[1 -, and it
By I' convex relaxation, we can cast the vectorized version s actually the! norm throughfxs as we defined.
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Figure 1. Examples of one-to-one classification. The fietpad, and third columns respectively show the query imagsiluals of the
representations by SSM with respect to 38 sujects, and thoS&RC. (a) A valid query image of subject #16. (b) The sameyqueage
as (a) with 30% pixels corrupted by salt and pepper noiséArfdhvalid image from unlearned face database.

We adopt the regularized OMP (ROMPR) [31] because it images of each subject for the training dataset & 32,
can stably provide approximate solution from noisy queries k£ = 1,...,38), and the other half for queries. Each image
We modify the ROMP to seek for the nonzero row blocks is expressed as @& = 192 x 168 = 32,256 dimensional
of the solution as shown in Algorithid 2. This algorithm vector storing the grayscale values.
selects multiple row-blocks & " SA that have comparable
magnitudes measured lfy at each iteration. Note that the o )
algorithm requires the additional parameld = O(M) One-to-one clas§|.f|ca_t|on Figure[d shows examples of
although the solution is insensitive to this parameter. one-to-one classification. The SSM tries to answer a class
Intensive computations are the matrix multiplication at !2bel for a single query. We reduced the dimensionality to
Step[B and the least squares problem at §@p 10, whick! = 1,024 by the Gaussian random projection at Step 1 in
costO(nNd) andO(nM2d) time, respectively. The cost Algorithm (. We set the block size§ = {ni,...,nas}
of least squares problem can be reducedtaMyd) by and the sparsity levelly = 4 in Algorithm[Z. Since SSM

the conjugate gradient (CG) method as suggested in [31].ehaves as the SRCI[6] whevi = N, we also executed
The total running time of Algorithril2 i€)(nM2Nd) or the SRC implemented with ROMP. The SSM and SRC, in-

O(nMyNd) using CG. cluding the random projection, run in less than 0.2 seconds
on a moderate workstation.
5. Experiments For the valid query image of subject #16 as Fig. 1(a),

we see that only the residuals is significantly small. The
We demonstrate our sparse subspace method (SSM) deSSM and SRC stably detects as the smallest even if the
scribed in Algorithni L. We perform face recognition exper- query is contaminated with noise as shown in[Hig 1(b) be-
iments using a cropped version of the Extended Yale Facefore the dimensionality reduction. We also observe in Fig
Database B[[32, 33]. The database consists of 2,414 fac&l(c) that none of the residuals can be significantly small
images of 38 individuals. We randomly select half of the for the invalid query (taken from the UMIST face database



[34]). In all cases, the residuals tend to be left undistdrbe
in SSM although the classification results are the same
SRC. This indicates that irrelevant class subspaces a@ ru
out by the block sparse model.

n-to-one classification For different numbersn of
queries, we evaluated the recognition rateidb-one clas-
sifier with respect to reduced feature dimensfdlry Gaus-
sian random projection. Fof > 120, the recognition
rate increases with andd as shown in Fig[12. The rate
is enhanced to more than 99% @t> 350 with n > 4
queries. The perfect classification is achieved at 400
with n > 8 queries. Thes-to-one classifier provides better
performance than the one-to-one classifier applied to ea
query, because theto-one classifier takes advantage of th
joint sparsity. However, the SSM did not improve the recoc
nition rate at low dimensions < 120. We should cope with
this matter in the future work.

n-to-ones classification We also performed the-to-ones

classification. Figur€l3 shows an example using the Ex-

tended Yale Face Database B. We gave the classifier five'x - = ote
gaueries is classified into one of two clasges 5 and29.

guery images, three of which are taken from subject# 5 an

two from # 29. These five queries are classified into their

respective classes indicated by the significantly smaillires
uals.
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Figure 2. Recognition rates afto-one classifier on Extended Yale
B database, with respect to feature dimension.
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Figure 3. An example of:-to-ones classification.

D r®

Residuals
are shown from top to bottom. Each of = 5

subspace is represented only by the relevant class sub-
spaces. Since this sparse decomposition can be cast as
the MMV problem with a row-block joint sparsity model,
the uniqueness, robustness and recovery of the solution are
guaranteed under the block RIP condition. We realized the
block sparse decomposition by modifying the greedy algo-
rithm ROMP. We experimentally showed that the classifica-
tion of multiple queries improves the recognition rate on a
face database. The joint sparsity model and the decompo-
sition algorithm should be improved further. More detailed
performance evaluation also remains in the future work.
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