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Abstract

A robust classification method is developed on the ba-
sis of sparse subspace decomposition. This method tries
to decompose a mixture of subspaces of unlabeled data
(queries) into class subspaces as few as possible. Each
query is classified into the class whose subspace signifi-
cantly contributes to the decomposed subspace. Multiple
queries from different classes can be simultaneously classi-
fied into their respective classes. A practical greedy algo-
rithm of the sparse subspace decomposition is designed for
the classification. The present method achieves high recog-
nition rate and robust performance exploiting joint sparsity.

1. Introduction

Classification is a task of assigning one or more class
labels to unlabeled data (query data). A collection of la-
beled data (training data) is available for the classification.
The patterns or signals to be classified are usually groups of
measurement data expressed as high-dimensional vectors.

Depending on purposes, we need pattern classifiers that
can answer

• a label to each of queries,

• a label to a set of queries,

• a few labels to each of queries,

• a label “invalid” to an unclassifiable query.

We develop a framework of using subspaces for all these
functionalities. We regard the unlabeled data as a mixture
of subspaces. The key idea is to decompose it into the sub-
spaces of classes as few as possible. Only the classes ex-
plaining concisely the mixture are relevant to the unlabeled
data. In the classification, the unlabeled data are usually
supposed to belong to a few (typically one) classes. There-
fore, the classification process can be interpreted as sparse
decomposition of the subspace mixture.

This work is inspired by the recently developing field
of compressed sensing [1, 2, 3, 4, 5] and its innovative ap-
plications to robust face recognition [6], action recognition
[7], computer vision and image processing [8]. The essen-
tial idea of these works is to exploit the prior knowledge
that a signal is sparse and compressible. The theory of
compressed sensing is very helpful and informative for us
to answer questions such as “How many measurements are
enough for the pattern recognition?” and “What is the role
of feature extraction?” It is worthy to explore the potential
of sparse decomposition for substantial improvement of the
subspace methods.

The rest of this paper is organized as follows. Sec-
tion 2 provides preliminary details and definitions of sub-
space representation for sparse decomposition. In Section
3, we propose a classification method namedsparse sub-
space method, which exploits the sparseness property for
the classification tasks described above. A practical algo-
rithm of the sparse subspace decomposition is presented in
Section 4. We show some tentative evaluation results of the
sparse subspace method using a face database in Section 5
before concluding in Section 6.

2. Preliminaries

Let Sk ∈ R
d×nk be a matrix of training dataset ofk-th

class (k = 1, . . . , C), in whichnk labeled patterns are rep-
resented as thed-dimensional column feature vectors. We
describe as follows the linear subspaces, their union, block
sparsity, and sparse linear representation of a subspace. We
also define a classification space where the sparsity should
be encouraged.

Linear subspaces of training datasets The class sub-
space is defined as a vector subspace whose elements are
the feature vectors of labeled data. We describe the sub-
space as a vector subspace in the normed space:

Sk := spanSk ⊂ (Rd, l2). (1)

Sk approximates thek-th class subspace. We denote the
dimensionality ofSk by dimSk = rankSk.
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Union of subspaces The union of subspaces is the sub-
space obtained by combining the feature vectors of each
class.

S := ∪C
k=1Sk = spanS ⊆ (Rd, l2) (2)

Here,S is the concatenation ofSk as

S := [S1, . . . ,SC ] ∈ R
d×N (3)

andN :=
∑C

k=1 nk. The dimensionality ofS is denoted by
dimS = rankS.

We say that the subspacesSk (k = 1, . . . , C) are inde-
pendent if and only if any subspaceSk is not a subset of the
union of the other subspaces,i.e., Sk 6⊂ ∪C

i6=kSi for ∀k.

Linear representation of vector(s) Given sufficient
training dataset, ad-dimensional vectorq of unlabeled
data (hereafter “query” vector) will be approximately rep-
resented as a linear combination of vectors from class sub-
spaces.

q =

C
∑

k=1

Skαk = Sα (4)

Here,αk ∈ (Rnk , l2) is a vector of coefficients correspond-
ing to thek-th class, and

α :=







α1

...
αC






∈ (RN , l2) (5)

is the concatenation ofαk.
If a set of queries is given as a matrix

Q := [q(1), . . . ,q(n)] ∈ R
d×n, (6)

then we will solve
Q = SA. (7)

Here,
A := [α(1), . . . ,α(n)] ∈ R

N×n (8)

is the matrix of unknown coefficients, and

α(j) :=









α
(j)
1
...

α
(j)
C









∈ R
N (9)

is the concatenated vector of coefficients for thej-th query.
The matrixA can also be described as

A =







A1

...
AC






(10)

where
Ak := [α

(1)
k , . . . ,α

(n)
k ] ∈ R

nk×n. (11)

The systems of linear equations as (7) is called the prob-
lem for multiple measurement vectors (MMV), while the
case of a single measurementn = 1 as (4) is referred to
as SMV [9, 10, 11]. The query vectors correspond to the
measurements in this context.

Uniqueness The solutionα to (4) orA to (7) exists if and
only if

q(j) ∈ S ∀j, (12)

i.e., the queries lie on the union of class subspaces. For
dimS < d, the solution does not always exist. The solu-
tion may be dense even if it exists. Most components are
nonzero despite the fact that at mostn class subspaces are
relevant ton queries. This problem is due to invalid situa-
tion where training datasets are insufficient to identify the
class, uniquely.

The actual problem we should cope with is the under-
determined cased = dimS < N , i.e., the dimensional-
ity of the union of subspaces is less than the total num-
ber N of training samples. Unless the training data ma-
tricesSk are rank-degenerated so thatdimS < d, theC
subspaces of training data cannot be independent in thed-
dimensional space. There is an infinite number of ways
to express the query vector by the linear combination of
the subspace bases. The underdetermined problem requires
regularization to select a unique solution. A sparse solution
indicating relevant classes would be preferable.

Block sparsity A vectorξ ∈ (RN , l0) is calledm-sparse
if ||ξ||0 ≤ m. Here, || · ||0 denotes thel0 norm, which
counts the nonzero vector components. As the support of a
function is the subset of its domain where it is nonzero, the
support of a vectorξ is defined asT = {i|ξi 6= 0}. Thel0

norm is the cardinality of the support.
We define a block-wise sparsity level in a similar manner

to [11]. Let fN be a map from∀X ∈ (RN×n, lF ) to γ ∈
(RC

+, l
0) according to a listN := {n1, . . . , nC} such that

fN :







X1

...
XC






→







||X1||F
...

||XC ||F






:= γ. (13)

Here,Xk ∈ (Rnk×n, lF ) is thek-th row block ofX with
respect toN , and || · ||F denotes the Frobenius normlF .
Clearly,

fN :







x1

...
xC






→







||x1||2
...

||xC ||2






(14)

for n = 1. A vectorx ∈ (RN , l2) is called blockM -sparse
over N if xk 6= 0 for at mostM indicesk. The block
sparsity is measured as

||x||0,N := ||fN (x)||0. (15)



That is, || · ||0,N counts the number of nonzero blocks.
We measure the row block sparsity of a matrixX ∈
(RN×n, lF ) overN as

||X||0,N := ||fN (X)||0. (16)

A matrixX is row blockM -sparse if||X||0,N ≤ M .
We remark that the row blockM -sparse matrixX can

be converted into a blockM -sparse vector vec(X⊤). Here,
the operator vec transforms a matrix into a column vec-
tor by stacking all the columns of the matrix. ForN :=
{n1, . . . , nC} andN ′ := {nn1, . . . , nnC}, the block spar-
sity ofX ∈ R

N×n overN is preserved as

||X||0,N = || vec(X⊤)||0,N ′ . (17)

Sparse representation of subspace In the underdeter-
mined case, the columns of matrixS ∈ R

d×N represent
an overcomplete basis ofRd for d < N . Equation (4) and
(7) can be consistent with infinitely many solutionsα and
A, respectively.

We denote the subspace of query vector(s) byQ =
spanq or spanQ. If a possible solutionα or A is block
sparse overN = {n1, . . . , nC}, the query subspaceQ con-
sists of a small minority of class subspaces corresponding
to nonzeroαk orAk. In other words, the query subspace is
sparsely represented by the class subspaces. The sparsity of
the subspace representation can be quantified as||α||0,N or
||A||0,N .

Classification space By definition, the block sparsity
||α||0,N or ||A||0,N is measured by thel0 norm of theC-
dimensional vectorγ := fN (α) or fN (A). The compo-
nents ofγ imply the degrees of class membership. The
sparserγ is, the more certainly the class label of each
query is identified. The sparsity is properly measured by
the l0 norm. Therefore, we refer to the normed space
C = (RC

+, l
0), whereγ resides, as the classification space.

3. Classification based on sparse subspace rep-
resentation

From the viewpoint of classification, each query vector
is supposed to be composed only of vectors from the sub-
space of a class to which the query is classified. The sub-
space spanned by the query vectors should be represented as
sparsely as possible by the class subspaces concerned with
the queries. In our notation, theC-dimensional vector in
the classification space,γ := fN (α) or fN (A), is intended
to be sparsest. The sparsity is properly measured by thel0

norm ofγ. Therefore, we incorporate minimization of the
l0 norm in the classification framework.

3.1. Formulation

Let S ∈ R
d×N be the concatenation ofSk ∈ R

d×nk

(k = 1, . . . , C, d = rankS < N =
∑C

k=1 nk), i.e., the
matrices of training datasets. Given the matrixQ ∈ R

d×n

of n query vectors, we solve thel0-minimization problem:

min
A

||A||0,N subject to Q = SA. (18)

Here,N specifies the sizes of row blocks for sparsification.
Typically, N = {n1, . . . , nC}. The matrixA is released
from being row-block sparse ifN = N1 := {∀ni =1, i=
1, . . . , N} = {1, . . . , 1}.

One can rewrite the problem (18) as

min
A

|| vec(A⊤)||0,N ′ subject to

vec(Q⊤) = (S⊗ In) vec(A⊤) (19)

where⊗ denotes the Kronecker product, andIn is the iden-
tity matrix of sizen. The listN ′ defines the block sizes of
thenN -dimensional vector vec(A⊤).

Thel0-minimization problem (19) is well investigated in
the literature [11]. The uniqueness of the solution is guar-
anteed under the condition called block restricted isometry
property (block RIP). Assumingq(j) ∈ S, the RIP condi-
tion for our problem can be described as

(1 − δM|N ′)||v||22

≤ ||(S⊗ In)v||
2
2

≤ (1 + δM|N ′)||v||22 ∀v ∈ R
nN . (20)

whereδM|N ′ is called the block-RIP constant dependent on
the block sparsityM overN ′. In practice, we normalize
the blocksSk in order for the matrixS ⊗ In to satisfy the
condition. The block RIP condition is less stringent than the
standard RIP condition, which is widely used in the field of
compressed sensing [1, 2, 3, 4, 5].

3.2. Dimensionality reduction

In (18), we assume the linear systemQ = SA to be
underdetermined asd = rankS < N , and regularize it by
the l0 minimization. Actually, we do not have to deal with
the queries and training data in a space of dimensiond ≥
N . The recent works in the emerging area of compressed
sensing show that a small number of projections of a sparse
vector can contain its salient information enough to recover
the vector with regularization that promotes sparsity [1, 3,
12]. The statements in [13, 14] guaranteeing the recovery
are described as follows.

Theorem 1 Letx := Ψ⊤s be ad-dimensional vector rep-
resented by am-sparse vectors ∈ R

d using a basisΨ⊤ ∈
R

d×d. Then,s can be reconstructed from âd-dimensional
vectorx̂ := Φx with probability1 − e−O(d̂). Here,Φ ∈

R
d̂×d is a random matrix and̂d ≥ d̂0 := O(m log(d/m)).



Specially,d̂ ≥ 2m log(d/d̂) holds if m ≪ d [15, 16]. It
is also possible to recover the sparse vectors from a small
number of projections,̂x, with overwhelming probability in
more general case whereΦ andΨ are incoherent [15, 17,
5].

The reconstructability in Theorem 1 suggests that one
can obtain thed-dimensionalm-sparse solution from a
much lowerd̂-dimensional vector after linear transforma-
tion. Wright et al. [6] showed, in their framework of face
recognition based on sparse representation, that the compu-
tational cost is reduced without significant loss of recogni-
tion rate by linear transformations into lower dimensional
feature spaces, such as Eigenfaces, Fisherfaces, Lapla-
cianfaces, downsampling, and random projection. These
transformations act as dimensionality reduction that pre-
serves information for the recognition. Especially, ran-
dom projection is a data-independent dimensionality reduc-
tion technique, and one can exactly recover the originald-
dimensional vector. For this reason, we employ the dimen-
sionality reduction ifd is too high for computation.

3.3. Classifiers

n-to-one classifier Since the minimizerA for (18) is a
row block M -sparse matrix, theM blocks indicate the
MC (MC ≤ M ) classes concerned with the query sub-
spaces. For the task of classifying alln queries into one
class (MC = 1), we calculate the residualsrk of the repre-
sentations by the class subspaces.

rk(Q;A) := ||Q− SkAk||F . (21)

The residuals quantify the dissimilarities between the query
subspace and the class subspaces. Note that most of the
residuals are||Q||F because of the sparsity. If the query
subspaceQ can be approximately represented by one of the
class subspaces, the class label is identified as

argmin
k

rk(Q;A). (22)

This classification method achieves the same task as the mu-
tual subspace methods [18, 19, 20] in a fundamentally dif-
ferent strategy. The mutual subspace methods are robust
owing to the multiple queries. The robustness is further en-
hanced by the block sparsification in our scheme. Thel0

minimization in (18) encourages the vector of class mem-
bership degrees,fN (A), to be as sparse as possible in the
classification space. For the underdetermined problem with
a sparse solution, the recent works in the emerging area of
compressed sensing [1, 2, 3, 4] prove the exact recovery un-
der thel0 or l1 regularization. Since thel0 / l1 minimizer
is very insensitive to outliers, the sparse representationis
robust compared to the conventional representations byl2-
based regularizatione.g. PCA.

We also remark that ifn = 1 and N = N1, our
n-to-one classification is exactly the same as the sparse
representation-based classification (SRC) proposed in [6].
Our classification based on sparse subspace representation
is therefore an extension of the SRC for multiple queries.

n-to-ones classifier It is also possible to classifyn
queries into their respective classes. We calculateC × n
residual matrix whosekj-th entry measures the dissimilar-
ity between thej-th query and its reconstruction in thek-th
subspace:

r
(j)
k (Q;A) := ||q(j) − Skα

(j)
k ||2. (23)

Note that most of the residual entries are||q(j)||2 because of
the sparsity. If the query subspaceQ can be approximately
represented by union of a small number of class subspaces,
the class label for thej-th query is identified as

argmin
k

r
(j)
k (Q;A). (24)

Again, our method is expected to be robust owing to
the multiple queries. Furthermore, the classes irrelevant
to the queries are strongly excluded by thel0 minimiza-
tion. Therefore, the classifier (24) can detect the respective
class for each query without giving the number of relevant
classes.

n-to-M classifier Let us mention the potential of the
sparse subspace representation for findingn-to-M rela-
tions, although we do not go into the detail of this type of
multiple classification in this paper. If a query simultane-
ously belongs to multiple classes, the query vector is rep-
resented as a linear combination of vectors from the sub-
spaces of the relevant classes. The residualsr

(j)
k for such

query cannot be zero, but the relevant classes are found by
thresholdingr(j)k . Thus, each ofn queries is assigned to
some ofM classes.

Classification validity A classifier should answer “in-
valid” if the given query belongs to an unknown class. As
suggested in [6], such an unclassifiable query is perceived
to be so by measuring how the nonzero components ofA

concentrate on a single class. Wrightet al. defined the spar-
sity concentration index (SCI), which quantifies the validity
of the classification [6]. One may compute the SCI for each
column ofA to validate the corresponding query.

3.4. Sparse subspace method

Our classification method based on the sparse subspace
representation is summarized in Algorithm 1.



Algorithm 1 Sparse subspace method (SSM)

Input: Q ∈ R
d×n: matrix of n queries as (6), S ∈

R
d×N : concatenated matrix of training datasets as (3),

N : list of row block sizes;
Output: L: set of class labels;
1 perform dimensionality reduction ofQ andS if d is

intractably high;
2 normalize the columns ofS to have unitl2 norm;
3 decomposeQ with respect toS to obtain the sparse sub-

space representation.
4 find the class labelL = {argmink rk(Q;A)} or

L = {argmink r
(1)
k (Q;A), . . . , argmink r

(n)
k (Q;A)}.

The major concern is the sparse subspace decomposition
of Q at Step 3. In the next section, we present a practi-
cal algorithm of the decomposition, SSD-ROMP, which ef-
ficiently and stably provides approximate solution to (18).

4. Sparse subspace decomposition

The sparse decomposition ofQ in (18) is considered as
a MMV problem whose solution is row-block sparse. The
solution has two important characteristics: the column vec-
torsα(j) of A share nonzero blocks as their support, and
the block partitions are fixed byN in advance.

4.1. Prior work on MMV

Configuration of the nonzero entries in the solutionA

is called the joint sparsity model (JSM) [21, 22]. There
are some prior works on the MMV problems with sev-
eral JSMs [9, 10, 21, 22, 23, 11, 24]. Most of them
[9, 10, 21, 22, 25, 23] focus on a JSM in which the column
vectorsα(j) simply share their supportT . This JSM is the
special case of our row-block sparsity model withN = N1

described in Section 3.1. Efficient algorithms for the MMV
problem with this JSM have been designed as the extensions
of greedy algorithms such as matching pursuit (MP) and
orthogonal matching pursuit (OMP) [26, 27, 28, 29, 30].
OMP is an efficient algorithm that can recover am-sparse
vector from aO(m logN)-dimensional vector [30]. It it-
eratively selects the basis (column ofA) with the largest
contribution to the current residual to reduce greedily the
representation error at each iteration. The existing MP-
and OMP-based algorithms for the MMV problem can be
directly used for our problem with the row-block sparsity
model only whenN = N1.

Eldar and Mishali [11] introduced the block sparsity
model and block RIP condition applicable to MMV prob-
lems including ours. The uniqueness was guaranteed in 3.1.
By l1 convex relaxation, we can cast the vectorized version

in (19) as

min
A

|| vec(A⊤)||1,N ′ subject to

vec(Q⊤) = (S⊗ In) vec(A⊤). (25)

Here, we redefinefN as a map from(RN×n, lF ) to (RC
+, l

1)
in the same form as (13), and define1

||A||1,N := ||fN (X)||1. (26)

According to [11], thisl1 minimization problem is a second
order cone problem (SOCP).

4.2. Sub-optimal algorithm

Algorithm 2 Sparse subspace decomposition (SSD-ROMP)

Input: Q ∈ R
d×n: matrix of n queries as (6), S ∈

R
d×N : concatenated matrix of training datasets as (3),

N : list of row block sizes, M0: sparsity level;
Output: A: row-block sparse matrix as (10),I: set of in-

dices of nonzero blocks;
1 let the index setI := ∅ and residualR := Q;
2 repeat
3 U := S⊤R;
4 γ := fN (U);
5 let J be a set of indices of theM0 biggest com-

ponents ofγ, or all of its nonzero components,
whichever set is smaller;

6 sortJ in descending order of the componentsγ;
7 among all subsetsJ0 ⊂ J such thatγi ≤ 2γj for

all i < j ∈ J0, chooseJ0 with the maximal energy
||γ|J0

||22 :=
∑

k∈J0

γ2
k;

8 I := I ∪ J0;
9 for eachj do

10 α(j) := argmin
α

||q(j) −
∑

k∈I

Skα||2;

11 end for
12 R := Q−

∑

k∈I

SkAk;

13 until ||R||F = 0 or cardI ≥ 2M0.

We present a practical greedy algorithm of the block
sparse decomposition. Although there are optimization
packages that solve the SOCP in polynomial time, we prefer
a simple and efficient algorithm of the sparse recovery like
the MP and OMP. As compared with the signal recovery in
compressed sensing, approximate solutions may be enough
for the classification purpose. Since the sparsity level is at
mostO(n) for n queries, we want the decomposition algo-
rithm to work efficiently in the case of extreme sparseness.

1The norm|| · ||2,I defined in [11] is the same as our|| · ||1,N , and it
is actually thel1 norm throughfN as we defined.
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(a)

(b)

(c)

SSM SRC

Figure 1. Examples of one-to-one classification. The first, second, and third columns respectively show the query images, residuals of the
representations by SSM with respect to 38 sujects, and thoseby SRC. (a) A valid query image of subject #16. (b) The same query image
as (a) with 30% pixels corrupted by salt and pepper noise. (c)An invalid image from unlearned face database.

We adopt the regularized OMP (ROMP) [31] because it
can stably provide approximate solution from noisy queries.
We modify the ROMP to seek for the nonzero row blocks
of the solution as shown in Algorithm 2. This algorithm
selects multiple row-blocks ofS⊤SA that have comparable
magnitudes measured byfN at each iteration. Note that the
algorithm requires the additional parameterM0 = O(M)
although the solution is insensitive to this parameter.

Intensive computations are the matrix multiplication at
Step 3 and the least squares problem at Step 10, which
costO(nNd) andO(nM2

0d) time, respectively. The cost
of least squares problem can be reduced toO(nM0d) by
the conjugate gradient (CG) method as suggested in [31].
The total running time of Algorithm 2 isO(nM2

0Nd) or
O(nM0Nd) using CG.

5. Experiments

We demonstrate our sparse subspace method (SSM) de-
scribed in Algorithm 1. We perform face recognition exper-
iments using a cropped version of the Extended Yale Face
Database B [32, 33]. The database consists of 2,414 face
images of 38 individuals. We randomly select half of the

images of each subject for the training dataset (nk ≈ 32,
k = 1, . . . , 38), and the other half for queries. Each image
is expressed as ad = 192 × 168 = 32,256 dimensional
vector storing the grayscale values.

One-to-one classification Figure 1 shows examples of
one-to-one classification. The SSM tries to answer a class
label for a single query. We reduced the dimensionality to
d̂ = 1,024 by the Gaussian random projection at Step 1 in
Algorithm 1. We set the block sizesN = {n1, . . . , n38}
and the sparsity levelM0 = 4 in Algorithm 2. Since SSM
behaves as the SRC [6] whenN = N1, we also executed
the SRC implemented with ROMP. The SSM and SRC, in-
cluding the random projection, run in less than 0.2 seconds
on a moderate workstation.

For the valid query image of subject #16 as Fig. 1(a),
we see that only the residualr16 is significantly small. The
SSM and SRC stably detectr16 as the smallest even if the
query is contaminated with noise as shown in Fig 1(b) be-
fore the dimensionality reduction. We also observe in Fig
1(c) that none of the residuals can be significantly small
for the invalid query (taken from the UMIST face database



[34]). In all cases, the residuals tend to be left undisturbed
in SSM although the classification results are the same as
SRC. This indicates that irrelevant class subspaces are ruled
out by the block sparse model.

n-to-one classification For different numbersn of
queries, we evaluated the recognition rate ofn-to-one clas-
sifier with respect to reduced feature dimensiond̂ by Gaus-
sian random projection. For̂d > 120, the recognition
rate increases withn and d̂ as shown in Fig. 2. The rate
is enhanced to more than 99% atd̂ > 350 with n ≥ 4
queries. The perfect classification is achieved atd̂ > 400
with n ≥ 8 queries. Then-to-one classifier provides better
performance than the one-to-one classifier applied to each
query, because then-to-one classifier takes advantage of the
joint sparsity. However, the SSM did not improve the recog-
nition rate at low dimensionŝd < 120. We should cope with
this matter in the future work.

n-to-ones classification We also performed then-to-ones
classification. Figure 3 shows an example using the Ex-
tended Yale Face Database B. We gave the classifier five
query images, three of which are taken from subject # 5 and
two from # 29. These five queries are classified into their
respective classes indicated by the significantly small resid-
uals.
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Figure 2. Recognition rates ofn-to-one classifier on Extended Yale
B database, with respect to feature dimension.

6. Concluding remarks

We have developed the sparse subspace method (SSM),
which enables us to classify multiple queries into their re-
spective classes, simultaneously. The SSM is based on the
sparse decomposition of the query subspace. The query
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Figure 3. An example ofn-to-ones classification. Residuals
r
(1)
k , . . . , r

(5)
k are shown from top to bottom. Each ofn = 5

queries is classified into one of two classesk = 5 and29.

subspace is represented only by the relevant class sub-
spaces. Since this sparse decomposition can be cast as
the MMV problem with a row-block joint sparsity model,
the uniqueness, robustness and recovery of the solution are
guaranteed under the block RIP condition. We realized the
block sparse decomposition by modifying the greedy algo-
rithm ROMP. We experimentally showed that the classifica-
tion of multiple queries improves the recognition rate on a
face database. The joint sparsity model and the decompo-
sition algorithm should be improved further. More detailed
performance evaluation also remains in the future work.
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