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Abstract

In this contribution we present the results of a pilot study
in which an Extended Range Telepresence System is used to
calibrate parameters of a pedestrian model for simulation.
The parameters control a model element that is intended
to make simulated agents walk in the direction of the esti-
mated smallest remaining travel time. We use this to, first,
show that that an Extended Range Telepresence System can
serve for such a task in general and second to actually find
simulation parameters that yield realistic results.

1. Introduction
1.1. Desired Walking Direction of Pedestrians

The Social Force Model [20, 9] is a model to simulate the
dynamics of crowds of pedestrians'. It was first introduced
in 1995 [10] and has been actively discussed since. The
modeling approach is derived from Newtonian Dynamics
where forces between objects determine the acceleration of
an object. From the acceleration speed and location changes
follow by integration. In the Social Force Model there are
three sources for the total force acting on a pedestrian agent:
a force “pulling” a pedestrian (or an agent respectively) to-
ward his destination, forces between pedestrians (usually
repulsive), and forces repelling the agent from walls and
obstacles.

For our purposes details of the repulsive forces between

IFor an overview of related work on models for pedestrian dynamics
see [43]

pedestrians and other pedestrians/walls/obstacles are irrele-
vant and we focus on the driving force term
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which makes pedestrian agent ¢ head toward his desired des-
tination. ?(t) is the direction of the desired velocity and
v (t) the desired speed. #;(t) is the current velocity. 7 is a
model parameter, which can be interpreted as summarizing
the effects of reaction time and inertia.

The traffic simulation software VISSIM in version 5.30
includes a pedestrian simulation built on the Social Force
Model [31, 4, 39]. It allows calculation of the desired direc-
tion v () either as pointing in the direction of the shortest
path (considering obstacles) or pointing in the direction of
the “estimated smallest remaining travel time”. This second
method — called “dynamic potential” — is controlled using
two parameters g and h. By default these are setto g = 1.5
and h = 0.6 in VISSIM 5.30 as it is installed. Recently
details of the method have been published [30]. As there is
nearly no empirical data available that can be used to cal-
ibrate parameters g and h, so far they have been set to ac-
commodate expectations on the visual impression’. While
clearly using the dynamic potential method yields better re-
sults in such situations than when each agent moves pre-
dominantly into the direction of shortest path the need to
collect data is obvious.

2Compare for example simulation: www . youtube.com/
user/ptvvision#p/u/3/8SmRBTJ-jeU, Vs. observation:
www.youtube.com/watch?v=49HIZbFLPhg www.youtube.
com/watch?v=JtKkHJIXUVQY, www.youtube.com/watch?v=
LodYbDco0OjY, www.youtube.com/watch?v=1WgnQjwAAac.
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The following is a summary of the method to calculate
the direction of the estimated smallest remaining travel time
(dynamic potential):

First a field f, which is defined on a regular grid with
spacing of about 20 cm, is calculated for a particular desti-
nation. A field value is either f(z,y) = 1, if the location
is not occupied by an agent or 0 < f < 1, if it is occu-
pied. The precise value of f depends on the movement di-
rection of the location occupying agent: if that particular
agent is heading (spatially) towards the corresponding des-
tination then the value of f is larger (closer to 1) than if the
agent moves away from it. Parameter g sets the overall im-
pact of the presence of an agent (i.e. if g = O then f = 1
everywhere) and parameter i determines the impact of the
movement direction of the agent (i.e., if h = 0 then each
occupied grid point has a value f = 1/(1 + g).

The full equation for 1/ f(z, y) if a grid point is occupied
by an agent is

(0 (11250 950))

fz,y) (W) [VS(z,y)|
with —V.S(z,y) being the direction of the shortest path,
(v%) being the average of desired speeds of agents who are
heading for that destination, ¥(x, y) the velocity of the lo-
cation occupying agent.

Once the field f(x,y) is calculated, it is numerically in-
tegrated solving the Eikonal equation
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with T'(x, y) being the desired field of estimated remaining
travel time. For the integration method see [22, 17, 18, 19]

VT (z,y)* = 3)

The desired walking direction for an agent ¢ at a location
(z,y) at time ¢t heading towards the corresponding destina-
tion results from this as

VT (x,y,t)

-0
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It is hoped that the telepresence system can assist in
shedding light on this topic by allowing to supplement real

participants with simulated ones.

1.1.1 Related work

Route choice issues of pedestrians are an open issue of dis-
cussion. This is mainly due to the fact that the environment
in which pedestrians are moving usually is highly complex
[6] and that often many pedestrians are involved. It has
been stressed that from an application point of view a re-
alistic simulation of situations where smallest travel time

is balanced against shortest path is highly relevant while at
the same time available models usually do not offer good
solutions [40]. Travel time as determinant of the motion
has been discussed and modeled in a number of previous
works, sometimes for macro- or mesoscopic approaches
[13, 14, 32, 8, 44], but more often within the scope of mi-
croscopic models. Of these the majority are field-based as
the dynamic potential approach [12, 49, 46, 26, 27, 23, 47,
29, 28, 7, 24], but there exist also other methods which are
based on an additional routing network, discrete choice or
heuristics [5, 3, 11, 21, 34].

1.2. Extended Range Telepresence

Telepresence systems aim at creating the impression of
being present in a (remote real or virtual) target environ-
ment. The feeling of presence is achieved by visual and
acoustic sensory information recorded from the target envi-
ronment and presented to the user on an immersive display.
Furthermore, in extended range telepresence the user’s mo-
tion is tracked and transferred to his virtual representation,
so that the user can freely move and walk around in the
target environment by using his feet instead of devices like
joysticks, foot pedals, steering wheels [1, 48] or similar in-
put devices. As a result, by using extended range telepres-
ence, the user can use his proprioception, i.e., his own sense
of motion, which is especially important for way-finding in
target environments [2].

Mechanical locomotion interfaces that allow natural
walking of the user in the target environment include pas-
sive devices like the commercially available VirtuSphere 3,
where the user walks inside a large sphere, omnidirectional
treadmills [15, 45], or actively driven floor surfaces [16, 50].
However such interfaces require expensive mechanical set-
ups and complex control algorithms.

To allow exploration of an arbitrarily large target envi-
ronment while moving in a limited user environment, we
use Motion Compression [35, 41]. While preserving the
length of the path and the turning angles, Motion Compres-
sion curves the path in the target environment until it fits
into the limited user environment and then guides the user
on this user path. At the same time, the user has the im-
pression of walking on the original target path, since hu-
mans do not realize small inconsistencies between the dis-
played and the perceived path curvature during locomotion.
Experimental results in [35] show that test persons are no
longer able to detect the direction of curvature for curva-
tures £ < 0.1 m~! and subjects quickly accustom to the
inconsistency of visual and proprioceptive perception even
for a user environment of 3 by 3 m where the curvature is
usually greater than 0.3 m~'. The available user environ-
ment in our system is 4 by 4 m. Figure 1 shows exemplary
trajectories that a user would cover in both environments.

3(http://www.virtusphere.com)
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For this project the environment displayed to the user of
the telepresence is 3D animation output of VISSIM as ex-
plained in [38, 37]. In this way the telepresence user moves
through an environment with a number of virtual agents.
These virtual (simulated) agents react to the telepresence
user as if he was a simulated agent. This means that the
telepresence user has virtually stepped into the pedestrian
simulation. Figure 2 shows the user interface of the com-
bined system. Through the egocentric view and the pos-
sibility of walking freely in the simulation, the user is not
passively looking at the simulation, but he feels present in
the simulation and can interact with other pedestrians.

4 m
7 m

4m 8m
User Environment Target Environment
Figure 1. A trajectory as the telepresence user has actually walked
(left) and as he believes he has walked (right). The transformation
process is called Motion Compression.

Figure 2. A user in the telepresence system (upper right) and what
is shown to him via the visual unit (lower left).

2. Experiment Description and Task Formula-
tion

For the scenario as shown in Figures 3 and 4 the user
of the telepresence is told that his task is to walk from his
starting position to a destination on the other side of the
wall when the traffic light turns green such that he arrives
as early as possible. The wall is 12.5 m away from the start-
ing position and the doors are 7.5 m apart (with their inner
sides). The width of the doors is 1.4 m.

The traffic light turns green in second 90 of the simula-
tion. At that time it is estimated, if a simulated agent would

Figure 3. Top view of the scenario used for investigation of param-
eters g and h. Walkable areas are shown in dark gray, obstacles in
white. Simulated agents are set into the simulation on the dark
blue area and follow the route as shown (red dot via yellow line to
green dot) to the dark green area to the right in the way that they
first head for the area with the blue and then the area with the green
dot. On one of the cyan areas the telepresence user is set into the
simulated environment and therefore sees at his starting position
what is shown in Figure 4.

Figure 4. User view as shown to the telepresence user (the partic-
ipant of the experiment) at his starting position. At first the traffic
light is red. The user is told to choose one of the two doors when
the light turns green so that he will arrive at the destination on the
other side as soon as possible.

use the left or the right door from the gradient of field 7" .
This can be visualized as following the gradient field arrows
from the starting position of the user toward the destination
on the other side of the wall. In a strict sense it is not guar-
anteed that a simulated agent will really end up at the door
indicated at that point in time, as the dynamic floor field
changes over time, however for this work we stick with this
simplification. For evaluation this door choice of a simu-
lated agent is compared with the actual user choice.

The participants were faced with four situations of simu-
lated demand (the number of blue agents in Figure 4): none,
few, capacity, jammed. To produce these at first it was mea-
sured how large the capacity of the door is with the chosen
parameters (j.qp = 1.32 agents per second). Setting “none”
as demand is obviously trivial. To have “few” demand the
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Figure 5. Field S (static potential, upper figure) and field 7" (dy-
namic potential, lower figure) for a certain point in time of the sim-
ulation. Generally the values of distance and estimated remaining
travel time grow from right to left and with the brightness of the
spot. Distance and travel time is displayed modulo the maximum
brightness. See Figure 6 for the gradients’ corresponding desired
directions resulting from this field 7.
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Figure 6. Desired directions for the region where the user of the
telepresence (the participant) is set into the simulation. It can
clearly be seen that the desired directions on some of the five start-
ing areas point to the upper (left) door although the shorter path
to the destination on the right would lead through the lower (right)
door. This would be different if the desired directions were calcu-
lated under a shortest path movement paradigm.

input volume to the simulation (with respect to the num-
ber of blue agents) was well below capacity (jfe,, = 0.25
agents per second). For “capacity” demand exactly the mea-

none few capacity jammed
-0.5m 1 8 17 20
-1.5m 0 5 13 20
-2.5m 1 2 17 20
-3.5m 0 2 12 20
-4.5m 0 1 12 20

Table 1. Number of participants who have chosen to walk through
the left door depending on the y coordinate of starting position and
demand volume of simulated agents.

sured volume j.q, is put into the simulation right from sec-
ond 0; and to have a “jammed” situation an input volume
of jjammea = 5.0 agents per second was configured for the
initial phase and then the input volume was reduced to jq;.-

The starting positions (the cyan squares) in Figure 3 were
0.5, 1.5, 2.5, 3.5, and 4.5 m to the right of the symmetry
axis (the line equally far away from both doors), i.e. the
y coordinates of the starting positions were y = —0.5 m,
y=—-15my=-25m,y=—-35mory =—4.5mre-
spectively. In this way there are 20 variants of the scenario:
five starting positions times four demand volume variants.

Note: Parameter (v") of equation 2 has been set to a
value of (v°) = 1.3 m/s for the work presented in this paper.
In principle the ratio h/(v°) could replace h as investigated
parameter, but as (v°) is dictated by circumstances and usu-
ally takes very similar values between 1.3 and 1.7 m/s, we
chose to stick with i only. Therefore parameters i and g
are by far the most relevant ones to determine if a simulated
agent chooses the left or the right door. Other parameters —
especially those of the Social Force Model — need not to be
considered.

3. Results
3.1. Experiments

We introduced 20 participants to the scenario. All of
them participated in all 20 variants. As a consequence of
limited available space, we refrain from documenting the
decisions of all participants for all variants and give only
a summary. Table 1 shows how many participants in each
variant chose to walk through the left door (the door which
is never used by simulated blue agents).

Table 1 shows a number of things: First, obviously one
participant chose to walk the longer way when no other
agent was present. Beyond that there were 11 occasions
when a participant walked through the left door, when he or
she had walked through the right door from a starting po-
sition more to the left, and it happened once that someone
walked — from the same starting position — through the left
door at “few” demand and through the right door at capac-
ity. Naturally a model resting on the assumption on move-
ment into the direction of smallest expected travel time can-
not reproduce such behavior. The decisions of 12 of the 20



participants were in agreement with this assumption.

Second, the case of the jammed right door and some
of the cases without simulated competing demand were
the only ones where all participants agreed in their deci-
sion. This implies that there cannot be one “true” parameter
choice for (g, h), but that in principle these are individual
parameters. While this is by all means an expected result, it
complicates the evaluation of the experiment.

3.2. Simulations

Based on the default parameter settings as delivered with
the installation 26 combinations of g, h were selected to be
simulated and compared with the participants’ results. For
g the chosen values were 0.5, 1.0, 1.5, 2.0, 2.5 and for A the
values were 0.0,0.5,0.75,1.0, 1.5. It was also verified that
with g = 0.0 all simulated agents would walk through the
right door from all starting positions and independently of
the value of parameter h.

All simulations were in agreement with the assumption
of smallest remaining travel time movement direction, i.e.
in the simulation results no phenomena as described in the
preceding subsection can be found. Again for the matter of
limited space we refrain from giving all 400 single results
here.

3.3. Evaluation: Comparison

As mentioned before, the decisions of the participants
varied especially for the cases of “few” and “capacity” de-
mand. Assuming that a hypothetical distribution of the in-
dividually correct (g,h) combinations is single peaked with
the peak near the averages of g and h, we try to find pa-
rameter combinations which are best, or at least good, on
average.

To do so there are three possibilities:

Method A: If a parameter combination (g, h) is in agree-
ment with one single decision of one single participant the
combination receives a positive point, else a negative one.
The best parameter combination is the one with the most
points (with a maximum of 400 points for 20 participants
and 20 decisions each).

Method B: For each participant it is checked which pa-
rameter combination has the best agreement with his or her
decisions. This combination receives a point. If more than
one set of parameters describe the choice equally well, all
receive a point, no matter how many there are. The best pa-
rameter combination is the one with the most points (with a
maximum of 20 for 20 participants).

Method C: All parameter combinations are compared to
the majority choice as shown in Table 1. The best parameter
combination is the one which has most agreements (with
a maximum of 20 for 20 scenario variants). Compared to
method A it is therefore neglected how clear the majority
decision is.

h'.g | 00 05 1.0 1.5 2.0 25
0.0 A/B/C A/C A/C
0.5 A/B/IC A/IC A/C
0.75 A/C
1.0 A/C
1.5

Table 2. This table summarizes for the three different evaluation
methods which parameter combinations prove to be best repro-
ducing participants’ exit choice.

Applying method A the following eight combinations
emerge as equally good (with 302 points): (¢ = 1.5/
h =10.0),(@g =15/h =05), (g = 2.0/h = 0.0),
(g=20/h =205),(@¢ =25/h=200),(G=25/
h =0.5), (g =25/h =0.75),and (g = 2.5/ h = 1.0).
See also Table 2.

According to method B (g = 1.5/h = 0.0)and (g = 1.5
/ h = 0.5) describe best the behavior of most (namely 12
of the 20) participants. This is a subset of the best pa-
rameter choice according to method A. The remaining best
choices according to method A all describe the behavior of
11 participants and therefore rank second best according to
method B. All other parameter choices describe the behav-
ior of 6 participants. Only for three participants all choices
are reproduced by one or more parameter sets.

Applying method C yields the same results as method A
in terms of best parameter combinations: all of them repro-
duce all majority decisions correctly.

The results are summarized in Table 2.

3.4. Discussion

The limitations of the proposed approach are threefold:

1. The number of 20 participants is at the lower limit of
what allows to draw conclusions.

2. The investigation presented is limited to one single
scenario. Other scenarios might favor other parame-
ter choices.

3. The choice of variants (starting position and demand)
has an impact on the results.

Having these limitations in mind we note the following:

e The telepresence system can be used for investiga-
tion of certain parameters of pedestrian dynamics and
therefore calibration of parameters of a pedestrian dy-
namics simulation. For the simulated agents (blue shirt
in Figure 4) that formed the jam no real persons had to
be recruited.

e The choices of the participants varied significantly. It
would therefore be desirable to have a distribution of



(g, h), i.e. more than one dynamic potential instead of
just one.

e All three methods of evaluation yield about the same
parameter sets.

e Among these best parameter sets is also (g = 1.5/
h = 0.5) which is the one closest to the default config-
uration delivered with the setup (¢ = 1.5/ h = 0.6).

e Further parameter sets with best agreement tend to
have a larger g.

o All best parameter sets have at least a value of g = 1.5
showing that introducing the method of the dynamic
potential was a step in the right direction compared to
the conventional routing along the shortest path which
results from g = 0.0.

As this scenario is about a discrete choice (“left or right
door?”) the resulting parameters should fit best for simula-
tions that include similar discrete choices. The result can-
not necessarily be transferred to situations with a continu-
ous choice on quickest vs shortest path (e.g. when someone
walks around a corner within a large group) or situations
with a significant and relevant counterflow. For the first
slightly smaller values of g might prove to yield most real-
istic results, while for the latter larger values of h might be
necessary. However, without empirical data available this is
just a guess.

4. Summary

It has been demonstrated with a concrete example that
it is possible to use a telepresence system to verify the pa-
rameter choice of a pedestrian dynamics simulation model.
Compared to a real experiment the telepresence system
saved the resources which would have been required to use
real people instead of the simulated agents causing the de-
lays.

At the same time it has been shown — admittedly on a
rather coarse grain level — that within the pedestrian dynam-
ics simulation the concept of the dynamic potential and as a
detail equation 2 improves the degree of realism concerning
the choice behavior of simulated agents in this particular
scenario.
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