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Abstract

Atmospheric visibility distance is a property of the at-

mosphere, which can be remotely sensed by computer vi-

sion. In this aim, a non-linear mapping function between

the atmospheric visibility distance and the contrast in im-

ages must be estimated. The function depends on the scene

depth distribution as well as on the radiometry of the scene.

In order to calibrate and deploy such camera-based atmo-

spheric visibility estimations, we present two methods which

aim at computing the scene depth distribution and the ra-

diometry of the scene beforehand. The scene depth is recov-

ered by registering a full 3D model of the environment in the

frame of the camera. The radiometry of the scene is partly

recovered by looking at the temporal correlation between

the variation of pixels intensity and the variation of the sky

luminance estimated by a luminance meter oriented toward

the North direction. Based on clear-sky models, it is demon-

strated that such a process detects a set of pixels, which

include pixels belonging to North-oriented Lambertian sur-

faces. This finding leads to a simplified way of detecting

Lambertian surfaces without any additional luminance me-

ter. Good results obtained experimentally prove that such

techniques are relevant to estimate the atmospheric visibil-

ity distance.

1. Introduction

Atmospheric visibility distance is a crucial information
for transport safety as well as a good evidence of air pol-
lution. Electro-optical sensors such as transmitometers or
scatterometers have been developed to measure this envi-
ronmental parameter. Transmitometers are reliable but are
very expensive, which explains why they are deployed at
critical places like major airports. The reliability of scat-
terometers is sometimes questionable but these instruments
are still quite expensive. Cameras are multi-functional sen-
sors, which are massively deployed in urban cities, along
road networks or in tourist attractions for safety and security

reasons. These sensors are potentially good environmental
sensors and allow estimating the meteorological visibility
distance.

Different methods have been developed to build camera-
based visibility meters. A first family of method detects the
most distant visible picture elements in the scene. These
methods only need a good geometrical calibration of the
camera to be operated. Nevertheless, they are restricted to
the depth distribution of objects which are in the field of
view of the camera. In the field of road safety, the road
surface is considered and the range of considered distances
is lower than 1000 m [5, 8]. In the field of meteorological
observation, higher ranges are considered by using points
of interests like hills or mountains [4].

A second of family of methods seeks a mapping func-
tion between a reference measurement obtained by an ex-
ternal data source, e.g. a visibility meter, and an image-
based visibility descriptor. High-frequency filters such as a
Sobel gradient or a high-pass filter based on a fast fourier
transform are commonly used [15]. These basic descriptors
being sensitive to illumination variations, different methods
were proposed to cope with this situation. [14] proposed
to use a homomorphic filter or a Haar function in addition
to the high-pass filter in order to reduce the effects of non-
uniform illumination. [3] proposed a visibility descriptor
which is robust to illumination variations by making use of
Lambertian surfaces only. However, the method to select
the Lambertian surfaces is superfificially justified.

The methods differ also by the way the mapping function
is built. In the field of atmospheric environment, a linear
fitting of data is generally performed, but such approaches
are not valid anymore in case of shorter visibility ranges.
Recently, a model-driven approach has been proposed [2].
The calibration of the method is made easier by introduc-
ing a physics-based model and a simplified depth distribu-
tion model of the scene. This method allows dealing with
a full range (0-15000 m) of visibility distances by applying
a non-linear fitting to the data. However, the obtention of
the depth distribution model of the scene still need a pair
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of fog images, which still hinder the deployment of such a
method.

In this paper, we address two of the aforementioned
problems. First, we propose to select the Lambertian sur-
faces in a scene by computing the temporal correlation be-
tween the variation of a pixel intensity and the variation of
the luminance of a sky element. This empirical method is
compared to an analytical method and validated in a con-
trolled environment. Second, we propose to compute the
depth distribution by registering the scene with a full 3D
model of the environment.

The paper is organized as follows. First, Koschmieder’s
theory on the visual appearance of objects in the atmosphere
is recalled as well as the model-driven approach proposed in
[2] to estimate the visibility by camera. Second, our method
of Lambertian surfaces selection is presented and justified.
Third, we show how we propose to compute a depth dis-
tribution model, based on existing geographical databases.
Fourth, an experimental evaluation of the work carried out
is proposed. Finally, results are discussed and perspectives
are drawn.

2. Vision through the Atmosphere

2.1. Koschmieder’s Theory

The attenuation of luminance through the atmosphere
was studied by Koschmieder [16], who derived an equa-
tion relating the extinction coefficient of the atmosphere β,
which is the sum of the scattering coefficient and of the ab-
sorption coefficient, the apparent luminance L of an object
located at distance d, and the luminance L0 measured close
to this object:

L = L0e
−βd + L∞(1− e−βd) (1)

(1) indicates that the luminance of the object seen through
fog is attenuated by e−βd (Beer-Lambert law); it also re-
veals a luminance reinforcement of the form L∞(1−e−βd)
resulting from daylight scattered by the slab of fog between
the object and the observer, the so-called airlight. L∞ is the
atmospheric luminance.

On the basis of this equation, Duntley developed a con-
trast attenuation law [16], stating that a nearby object ex-
hibiting contrast C0 with the fog in the background will be
perceived at distance d with the following contrast:

C =

[

L0 − L∞

L∞

]

e−βd = C0e
−βd (2)

This expression serves to base the definition of a standard
dimension called meteorological visibility distance V , i.e.
the greatest distance at which a black object (C0 = −1)
of a suitable dimension can be seen on the horizon, with
the threshold contrast set at 5% [6]. It is thus a standard

parameter that characterizes the opacity of a fog layer. This
definition yields the following expression:

V ≈
3

β
(3)

2.2. Contrast of Lambertian Targets

Assuming a linear response function of the camera, the
intensity I of a distant point located at distance d in an out-
door scene is given by Koschmieder’s model (1):

I = Re−βd +A∞(1− e−βd) (4)

where R is the intrinsic intensity of the pixel, i.e. the inten-
sity corresponding to the intrinsic luminance value of the
corresponding scene point and A∞ is the background sky
intensity. Two points located at roughly the same distance
d1 ≈ d2 = d with different intensities I1 6= I2 form a
distant target whose normalized contrast is given by:

C =
I2 − I1
A∞

=

[

R2 −R1

A∞

]

e−βd = C0e
−βd (5)

In this equation, the contrastC of a target located at distance
d depends on V = 3

β
and on its intrinsic contrast C0. If we

now assume that the surface of the target is Lambertian, the
luminance L at each point i of the target is given by:

L = ρi
E

π
(6)

where E denotes the global illumination and ρi denotes the
albedo at i. Moreover, it is a classical assumption to set
L∞ = E

π
so that (5) finally becomes:

C = (ρ2 − ρ1)e
−βd ≈ (ρ2 − ρ1)e

−
3d
V = ∆ρe−

3d
V (7)

Consequently, the contrast of a distant Lambertian target
only depends on its physical properties and on its distance
to the sensor and on the meteorological visibility distance,
and no longer on the illumination. These surfaces are robust
to strong illumination variations in the computation of the
contrast in the scene.

3. The Model-Driven Approach

Let us consider an outdoor scene where targets are dis-
tributed continuously at increasing distances from the cam-
era. Let us denote φ the probability density function of ob-
serving a contrast C in the scene:

P(C < X ≤ C + dC) = φ(C)dC (8)

The expectation of the contrast m in the image is expressed
as:

m = E[C] =

∫ 1

0

Cφ(C)dC (9)

220



Sunlight

model

Atmospheric

Model

Surface reflection

model

Sensor

model

Figure 1. Components of the radiometric sensing problem.

Based on (7), C is a random variable which depends of the
two random variables d and ∆ρ. These two variables are
assumed to be independent, which allows expressing (9) as:

m = E

[

∆ρ
]

E

[

e−
3d
V

]

= ∆ρ

∫ +∞

0

ψ(d)e−
3d
V dd (10)

where ∆ρ denotes the mean albedo difference between the
objects in the scene and ψ denotes the p.d.f. of there being
an object at the distance d in the scene. To compute m, a
realistic expression for the density of objects ψ in the scene
is needed, as well as a map of the albedo of the Lambertian
surfaces [2].

4. Classification of Lambertian Surfaces

4.1. Principle

Classifying the objects in a scene image which are likely
to follow Lambert’s law is a difficult problem. Indeed, dur-
ing the process of image formation, four components inter-
act with each other (see Fig. 1), which makes it difficult to
separate the numerous physical variables. The first compo-
nent is the sunlight. The second component is the atmo-
sphere. The third component is the nature of the surfaces.
The third component is the response function of the cam-
era. To solve this complex problem, we estimate the surface
properties in clear-sky conditions and rely on the analysis of
time-series of pixel intensities during the motion of the sun
[11, 1, 10].

4.2. Materials

4.2.1 Sky Model

Perez’s sky model [18] describes the luminance of any ar-
bitrary sky element as a function of its elevation, and its
relative orientation with respect to the sun [13]. Consider
the illustration in Fig. 2, the relative luminance lp of a sky
element is a function of its zenith angle θp and the angle γp
with the sun:

lp = [1 + a (b/ cosθp)] .
[

1 + c exp(dγp) + e cos2 γp
]

= f(θp, γp) (11)

where the 5 parameters (a, b, c, d, e) specify the current at-
mospheric conditions.

The atmosphere is usually not transparent, especially in
case of fog or haze or pollution. In our case, we aim at
estimating the Koschmieder’s model parameters, knowing
surface properties. We thus assume that the atmosphere is
clear and thus use input images which have been grabbed in
presence of fine weather. For clear skies, the parameters of
Perez’s sky model take on the following values: a = −1,
b = −0.32, c = 10, d = −3, e = 0.45.

The model expresses the absolute luminance Lp of a sky
element as a function of another arbitrary reference sky el-
ement. For instance, if the zenith luminance Lz is known,
then:

Lp = Lz

f(θp, γp)

f(0, θs)
(12)

where θs is the zenith angle of the sun. Many equations for
the zenith luminance are proposed in the literature [7]. For
a clear sky, Krochman’s model is as following [12]:

Lz = 0.1+0.063θs+0.001θs(θs−30)e0.0346(θs−68) (13)

where θs is expressed in degrees. By combining (11),(12)
and (13), we are able to express the absolute luminance of
any arbitrary reference sky element.

φ
s

φ
c

Luminancemeter

Sun

Zenith

Sky elementθ
pθ

s

θ
c

γ
p

Figure 2. Geometry of Perez’s sky model. The sun direction is
given by (θs, φs), the sky element direction is given by (θc, φc)
and the angle between the sun and the sky element is γp.

221



4.2.2 Light Transport Model

The radiance at a point ~x in a scene is given by the light
transport equation:

Lo (~x, ~ωo) =

∫

Ω

brdf (~x, ~ωo, ~ωi) .Ei (~x, ~ωi) .(~n(~x).~l(~x))dωi

(14)
where Lo(~x) denotes the outgoing radiance from point ~x,
Ei(~x) the input radiance at point ~x, brdf the bidirectional
reflectance distribution function of the material at point ~x.
We want to detect the Lambertian surfaces, hence a diffuse
brdf can be used in the light transport equation:

Lo(~x) =
ρ

π

N
∑

i=1

Ei,n(~x).(~n(~x).~l(~x)) (15)

As we restrict ourselves to an outdoor scene during day-
time, we assume that the illumination can be divided into
two terms - direct light from the sun Ed, and ambient light
Ea from the sky. The light transport equation can again be
simplified:

Lo(~x) =
ρ

π

(

Ea + Ed.(~n(~x).~l(~x))
)

(16)

4.2.3 Sensor Model

The outgoing radiance Lo(~x) from point ~x is sampled from
an input image of the scene by the sensor. The gray level
at each point will the direct radiance of the point scaled by
a constant if the camera has a linear response. This scaling
constant is denoted k, while the unit-less value provided by
the camera is G(~x):

G(~x) = k.
ρ

π

(

Ea + Ed.(~n(~x).~l(~x))
)

(17)

We have to choose a reasonable value for the gain of the
camera k. The camera may be adapted to the sunlight or to
the ambient light. Let us test these two assumptions.

First, we assume that the camera is adapted to the sun-
light, so that k ∝ 1

Ed
. (17) becomes:

G(~x) ∝
ρ

π

(

Ea

Ed

+ (~n(~x).~l(~x))

)

(18)

A reasonable assumption, consistent with models from [7],
consists in assuming that the ambient light is proportional
to the sunlight, i.e. Ea

Ed
= c. (18) thus becomes:

G(~x) ∝
ρ

π
(c+ ~n(~x).~l(~x)) (19)

Second, we assume that the camera is adapted to the am-
biant light, so that k ∝ 1

Ea
. (17) thus becomes:

G(~x) ∝
ρ

π

(

1 +
1

c
(~n(~x).~l(~x))

)

(20)

4.2.4 Modeling the Illumination with the Motion of the

Sun

The direction of the sunlight, ~l(~x), at time t and the surface
normal of a point i, ~n(~x), can be expressed in Cartesian
coordinates as in the following equation where φ’s are the
azimuth angles and θ’s are the elevation angles.

~l(~x) = [cos θt cosφt, cos θt sinφt, sin θt]
T (21)

~n(~x) = [cos θi cosφi, cos θi sinφi, sin θi]
T (22)

The scalar product is then:

~n(~x).~l(~x) = cos θt cos θi cos(φt − φi) + sin θt sin θi (23)

According to [10], ~l(~x) and ~n(~x) are rotated so that θt =
0 without any loss of generality, which implies that (23)
becomes:

~n(~x).~l(~x) = cos θ′i cos(φt − φi) (24)

According to (24), the lighting variation at a point due to
the sun over time is a sinusoidal function with the scale and
the phase being the parameter. Combining (19) or (20) with
(24) allows obtaining the intensity of a pixel belonging to a
Lambertian object as a sinusoidal function with amplitude
and phase as parameters:

G(~x) ∝
ρδ

π
cos(φt − φi) (25)

where δ = cos θ′i if the camera is adapted to the sunlight and
δ = c cos θ′i if the camera is adapted to the ambient light. If
we only consider surfaces whose normal is North-oriented,
we have φi = 0 and obtain:

G(~x) ∝
ρδ

π
cosφt (26)

4.3. Method

The linear coefficient of correlation of Bravais-Pearson
is computed between the measured gray level taken from
the image Gt and the expected gray level profile over time
for each pixel gt.

rp =

∑

t

(Gt − Ḡt) · (gt − ḡt)

√

∑

t

(Gt − Ḡt)
2 ·

√

∑

t

(gt − ḡt)
2

(27)

where Ḡt and ḡt are the sample means of Gt and gt. rp is
computed for each pixel to give the "Lambertian confidence
map". When the correlation rp obtained for a pixel is close
to 1, the pixel is supposed to have Lambertian behavior, be-
cause of the expected linearity between the measured gray
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(a) (b) (c)

Figure 3. Lambertian confidence map: (a) the test site; (b) the map obtained using the luminance profile of the sky measured by an
additional luminancemeter; (c) the map predicted by a sinusoidal function which accounts for the motion the sun.

levelGt and the expected one gt. The behavior is otherwise
unknown. In short, the temporal correlation between the
expected and the measured gray level, is an indicator of the
surface to be Lambertian or not. The expected gray level
profile has now to be chosen. We have tested two different
options:

• A first method proposed by [3] consists in using the
profile of luminance of a sky region measured by an
additional luminance meter shown in Fig. 4. By us-
ing the MATILDA database [9], the Lambertian con-
fidence map shown in Fig. 3(a) is obtained. This lu-
minance profile, which was experimentally obtained,
can be roughly assimilated to a sinusoidal function of
the time. Indeed, we modeled in section 4.2.1 the lu-
minance of any arbitrary sky element by combining
Perez’s sky model and Krochmann’s zenith luminance
model. We computed this model with respect to the
sun θs angle variation. We chose a relevant sky ele-
ment, i.e. the sky element observed by the luminance
meter. This one is oriented towards the North direction
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Figure 4. Luminance profile measured by a luminance meter ori-
ented toward the North with a site angle of 40o.
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Figure 5. Theoretical luminance profile of a sky element oriented
toward the North direction with a site angle of 40o obtained by
combining Perez’s sky model and Kochmann’s zenith luminance
model. A sinusoidal curve is plotted to show the similarity of both
profiles.

and has a site angle of 40o, i.e. θp = 50o (see Fig. 2).
The obtained curve is plotted in Fig. 5. We also plot
a sinusoidal function. As one can see, both curves are
roughly the same shape.

• A second method consists in choosing the expected
gray-level profile gt as a sinusoidal function accord-
ing to (26). This leads to the Lambertian confidence
map shown in Fig. 3(b).

Whereas both methods are not based on the same theo-
retical foundations, the mathematical functions are the same
which means that they should give approximately the same
results. This is confirmed experimentally by comparing
Figs. 3(a)&(b), where the same areas of the scene are con-
sidered as including North-oriented Lambertians surfaces.
Nevertheless, the map obtained with the sinusoidal model
seems to be a little more noisier.
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(a)

(b)

(c)

Figure 6. Calibration of the camera: (a) estimation of the geoloca-
tion of the camera by a GPS receiver; (b) target used for geometri-
cal calibration; (c) different positions of the target to calibrate the
camera.

5. Estimation of a Scene Depth Distribution

To solve (10), we need a map of Lambertian pixels as
well as a depth distribution of the scene. The previous sec-
tion was dealing with the estimation of the Lambertian ob-
jects in the scene. In this section, we deal with the estima-
tion of the depth distribution ψ.

5.1. Principle

This is difficult problem which cannot be solved with-
out any additional information. [19] proposed some a priori

depth distributions in natural or man-made scenes which are
Gaussian distributions. These models are too much approx-
imative in our case. The camera does not move which does
not allow to use structure from motion algorithms. Since
we are dealing with visibility problems, fog can be used
to infer a scene structure. [17] used a pair of fog images
grabbed in different fog conditions to compute an approxi-
mate 3D model of a city model. This method is used in [2]
to compute a scene depth model and derive the distribution
model ψ to be used in (10). A new possibility which has
been explored consists in using an existing 3D model of the
environment, like in [4]. However, they only register a few
interest points and obtain a sparse depth map. In this paper,
we propose to register a full 3D model of the environment.

5.2. Implementation

First, the intrinsic and extrinsic parameters of the cam-
era have to be calibrated and its absolute pose must be mea-
sured. In this aim, the geolocation of camera has been esti-
mated using an accurate GPS receiver (see Fig. 6(a)). Then,
a series of 35 images with a target (see Fig. 6(b)) equipped
with a GPS antenna was grabbed. The image in Fig. 6(c)
shows the different positions of the targets. These differ-
ent information allow estimating the intrinsic parameters (in
particular the distortion parameters) of the camera in an ab-

Projective cone of the

virtual camera

Figure 7. 3D model of the environment (DTM+3D buildings) pro-
jected in the image space of the camera. The color corresponds to
the id of the objects.

solute geographic reference frame. A LOD1 3D model of
the environment of one meter accuracy, constructed from a
DTM and the extrusion of a national data basis of 3D build-
ing gutter lines, is then projected in image space to construct
a depth map (see Fig. 7).

From this 3D view, a dense depth map can be recon-
structed. A depth map of the scene is shown in Fig. 8),
where the actual characteristics of the camera which were
previously estimated, are used. A depth histogram Hd of
Fig. 8 is deduced and is shown in Fig. 9. An exponential
distribution is fitted to Hd and is overlaid in red in Fig. 9.
We assume that the distribution ψ of (10) follows the same
model. Because Hd dos not take into account the Lamber-
tian surfaces, this assumption means that we assume a uni-
form distribution of Lambertian surfaces with respect to the
scene depth.

6. Experimental Evaluation

In this section, an experimental evaluation of our visibil-
ity estimation method on the MATILDA public database [9]

Figure 8. Dense depth map reconstructed from the 3D model of
the environment.
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is carried out. In section 4, we have proposed two methods
to detect Lambertian surfaces in an outdoor scene. In sec-
tion 5, we have proposed a method to compute a depth dis-
tributionHd of a scene using a 3D GIS, which is assumed to
follow an exponential distribution. Based on these results,
we are able to solve (10) using the mathematical solutions
provided in [2]:

m =
1

N

∑

i,j

∇i,jrpi,j

A∞

≈
η∆ρ

η + 3
V

(28)

where ∇ denotes the gradient operator and rp the confi-
dence that the pixel is Lambertain obtained by linear cor-
relation. η is obtained by fitting the data of MATILDA with
a low visibility distance (<1000 m) with ground truth data.
The model is then extrapolated for the higher visibility dis-
tances following the methodology proposed in [2]. The ad-
justed model is plotted in Fig. 10.

Results are detailed in Table 1 and give the mean relative
error on the MATILDA database for the different applica-
tions proposed in [2]. The new results are on the last line
of the table and were obtained by choosing ψ as an expo-
nential distribution and by using a sinusoidal function to de-
termine the confidence Lambertian map, i.e the map shown
in Fig. 3(c). The obtained results still stlightly improve the
state of the art for all ranges of visibility compared to ex-
isting methods, except the range 0-10,000 dealing with air
quality. This can be explained by the few outliers above the
model in Fig. 10.

These results allow to validate two assumptions. First,
an additional luminance meter is not mandatory to compute
a relevant confidence map of Lambertian surfaces. A sinu-
soidal function, applied with images acquired in clear sky
conditions, is a good substitute. Second, the type of depth
distribution can be guessed by registering a 3D GIS in the
frame of the camera image. These two results are very im-
portant in order to calibrate camera visibility meters without
any fog episodes.

7. Conclusion and Perspectives

Atmospheric visibility distance is a property of the at-
mosphere, which can be remotely sensed by computer vi-
sion. In this aim, a non-linear mapping function between
the atmospheric visibility distance and the contrast in im-
ages must be estimated. This function depends on the scene
depth distribution as well as on the radiometry of the scene.
In order to estimate a scene depth distribution, we propose
to register a three dimensional geographical information
system (GIS) in the frame of the camera. This method al-
lows guessing a model of the actual distribution. In our ex-
perimental tests, this was enough to estimate correctly the
visibility distance. However, in this work we only used the
histogram of depth. In the future, it should be interesting
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Figure 9. Depth distribution of the test scene. The histogram of
the depth map is plotted using bars. An exponential distribution is
adjusted to these data and is shown in red color.

to use this kind of depth map to implement other visibility
monitoring methods like the methods proposed by Bäumer
et al. [4] dedicated to meteorological observations or the
method proposed by Hautière et al. [8] dedicated to road
safety. In this aim, an automatic registration of the depth
image in the camera frame should be added to improve the
robustness of the method. Then, the radiometry of the scene
is partially recovered by looking at the temporal correlation
between the variation of pixels intensity and a sinusoidal
function. Based on clear-sky models, it is demonstrated that
such a process detects a set of pixels, which corresponds
to North-oriented Lambertians surfaces. This result is con-
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Figure 10. Data fitting with the exponential distribution model. A
few outliers can be seen above the model in the range 5,000-10,000
which explain a lower accuracy of the model in this range.
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Application Ground Transport Air Transport Meteorological Environmental

Safety Safety Observation Monitoring

Range [m] 0-400 0-1000 0-5000 0-10000 0-15000
Number of data 13 19 45 70 150

Weighted logarithmic model [3] 10.4% 22.5% 23.4% 29.9% 41.9%
Uniform distribution [9] 12.6% 18.1% 29.7% ∞ ∞

Exponential distribution [2] 9.7% 11.2% 33% 50% 63.5%
Our method 9% 10.5% 28.5% 55.8% 55.3%

Table 1. Mean relative errors of meteorological visibility distance estimation with respect to the envisioned applications on the MATILDA
database.

sistent with the empirical method proposed previously by
Babari et al. [3], which computes the temporal correlation
between the variation of pixels intensity and the variation
of the sky luminance estimated by an additional luminance
meter oriented toward the North direction. By combining
these two results, good experimental results are obtained
which should simplify the calibration and the deployment
of such camera-based visibility meters in the future.
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