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Abstract

Prior work on multi-view structure from motion is domi-
nated by sequential approaches starting from a single two-
view reconstruction, then adding new images one by one. In
contrast, we propose a non-sequential methodology based
on rotational consistency and robust estimation using con-
vex optimization. The resulting system is more robust with
respect to (i) unreliable two-view estimations caused by
short baselines, (ii) repetitive scenes with locally consistent
structures that are not consistent with the global geome-
try and (iii) loop closing as errors are not propagated in a
sequential manner. Both theoretical justifications and ex-
perimental comparisons are given to support these claims.1

1. Introduction

Given a set of images with known calibration data, we
want to estimate scene structure as well as camera posi-
tions. Although this problem has been studied extensively
over the years, no fully satisfactory solution exists. Among
the things that make this problem so challenging one can
mention the high dimension of the space of unknowns and
the difficulty in correctly matching features between views.
Yet another challenge is the existence of repetitive or pla-
nar structures, short baselines between views or moving ob-
jects in the scene. Unlike ordinary mismatches that will
cause random outliers in the data, repetitive structures can
cause locally consistent geometries that do not agree with
the global geometry. This can lead to two-view geometries
supported by a large number of point correspondences, but
not reflecting the underlying true geometry; cf. Figure 1.

1.1. Structure from Motion Approaches

Many methods for multi-view structure from motion
start by estimating the geometry of two views. Often, a
minimal solver is applied in combination with RANSAC, for

1This work was supported by the European Research Council (grant
209480) and the Swedish Foundation for Strategic Research.

Figure 1. ROAD ROLLER. In this image pair, 28 seemingly correct
correspondences (green lines) are obtained in the estimation of the
epipolar geometry. Even though the epipolar geometry is plausible
and perfectly valid, it does not correspond to the true geometry.

example [14]. The three-dimensional geometry estimated
from these two views is used to estimate the pose of an-
other camera which in turn improves the quality of the re-
construction. More cameras are thus added, essentially one
by one. The reconstructions are often improved using lo-
cal optimization, so called bundle adjustment [18]. We will
refer to this approach as sequential structure from motion.
An apparent weakness of these methods is that the quality of
the reconstruction might depend heavily on the choice of the
initial pair. This is addressed in [20] where a heuristic ap-
proach based on covariance estimation of the structure and
the CIRC criterion [22] is presented. Another weak point
is the iterative process of adding new cameras. It might be
that the final reconstruction is affected by the order in which
cameras are added. Had the cameras been added in a differ-
ent order we might have found a better reconstruction. Fur-
thermore, due to their sequential nature these methods suf-
fer from drift (error build-up) [2] as the error is not evenly
distributed over the sequence. An automated system using
this technique was presented in [16] showing impressive re-
sults of large-scale reconstructions. The system, known as
BUNDLER, will be compared to our work.

A different approach is taken by the methods based on
factorization. In [21] a solution for the affine camera model
is provided and [17] gives an extension to perspective cam-
eras. The missing data problem and sensitivity to outliers
are major concerns for this approach and it has been the ob-
ject of study in subsequent papers, e.g. [19]. Hierarchical
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methods [13, 5] organize images in a hierarchical cluster
tree, and do the reconstruction from root to leafs.

In this paper, a non-sequential method for estimating the
geometry of multiple views is suggested. Unlike sequential
and hierarchical methods, our approach does not depend on
a good initial solution of a partial 3D reconstruction. The
method consists roughly of three parts. First the orienta-
tions of all cameras are estimated with a method being ro-
bust to low-level noise as well as completely inconsistent
outlier rotations. Then the robust algorithm from [4] is used
to solve the structure and motion with known orientations
and finally the reconstruction is improved using bundle ad-
justment. Note that all views are used in the computation of
camera positions and scene structure in order to get a global
solution. Only the orientations are taken from the pairwise
estimations and as we shall see, these are often quite accu-
rately estimated.

Our approach belongs to the same category as [12],
where camera orientations are estimated using an over-
parameterized linear least-squares formulation. As is well-
known, linear least squares can be sensitive to outliers in the
data. Then, various heuristics for identifying 4 inlier points
are applied and finally, these 4 points are fed to the convex
optimization scheme to recover camera translations and the
3D coordinates of the 4 points. The requirement of identi-
fying 4 correct matches in multiple views makes this step
of their algorithm sensitive to outliers. In contrast, we re-
move incorrect pairwise rotations before estimating camera
orientations and do not rely on identifying 4 good matches.
Our system also has clear similarities to [23]. They set up
a rather involved Bayesian model to detect outlier rotations
based on cycle errors. This leads to an intractable optimiza-
tion problem, and hence they restrict the approach to cycles
of length at most six. We will show examples where this
is not sufficient (see Section 4.2). Another method to dis-
card erroneous rotation estimates is given in [7], where a
random sampling strategy over spanning trees is suggested.
In [15], cycles are also used as a means to estimate camera
orientations. From a spanning tree they generate a set of
fundamental cycles in the camera graph. For each of these
cycles they compute the rotational deviation from the iden-
tity. This error is distributed over the respective rotations in
the cycle to form a consistent cycle. Unlike our approach
they cannot handle outliers among the relative rotations.

1.2. Contributions and System Overview

Our main contribution is a robust structure from motion
system. For all parts of the pipeline, the ability to cope with
outliers is in focus. From a practical point of view, this im-
proves state-of-the-art for handling short baselines, repeti-
tive structures and closed-loop sequences. From a theoret-
ical point of view, our main technical contributions are (i)
showing that even though the estimation of two-view epipo-

lar geometry may be ill-posed due to a short baseline, the
relative rotation can still be reliably estimated, and (ii) a
new mathematical model for robust estimation of orienta-
tions based on cycles and the notion of consistency. The
theoretical results are of general nature and provide moti-
vations not only for this paper, but also for other systems
based on similar concepts such as [15, 7, 23].

The outline of our system pipeline is as follows.

1. Feature extraction using SIFT [10] and matching be-
tween pairs of views.

2. Estimation of the relative orientation for pairs of views.
A standard 5-point solver [14] is used in a RANSAC
loop in combination with bundle adjustment.

3. Detection and removal of large errors among the rela-
tive rotations.

4. Estimation of camera orientations using the remaining
relative rotations.

5. 3D reconstruction using the estimated camera orien-
tations. The reconstruction is computed using SOCP
as described in [4, 9]. Auxiliary variables are used to
handle outliers.

6. Bundle adjustment to improve the 3D reconstruction.

2. Estimation with Short Baseline
Geometries with short baselines are problematic for most

approaches to structure from motion. Even though match-
ing is particularly simple, the problem of estimating the 3D
structure is ill-posed. In this section, we will show that the
relative rotation for a two-view geometry can still be reli-
ably estimated. The theoretical findings are accompanied
with experimental validations. The results provide strong
motivations for our approach as well as similar methods
to structure from motion. In particular, the mathematical
model of rotational consistency presented in the next sec-
tion is based on this fact.

Let us first look at estimating the relative orientation of
two cameras with the same camera center when there is no
noise. Allowing points at infinity, any translation direction
will do so the problem is not well-posed. However, as the
main theorem of this section shows, it is only in some rare
degenerate configurations that the rotation is not uniquely
determined.

Before stating the theorem, we recall the definition of an
essential matrix. Consider two views of the same scene. Let
x and y be unit vectors representing the projections in two
different images of the same 3D point. Then, these points
satisfy the epipolar constraint

xT [t]×Ry = 0, (1)



whereR is a rotation andE = [t]×R is the essential matrix.
We will use the following property for essential matrices. It
is proven as Lemma 5.6 in [11].

Lemma 1. Let E = [t]×R be an essential matrix. If E is
skew-symmetric then R = I or R = eπ[t]× .

Theorem 1. If the image points xi and yi are related by a
pure rotation

yi = Qxi (2)

then for a unit vector t, every solution of the form

γixi = [I 0]Ui, γ′iyi = [R t]Ui (3)

where γi, γ′i > 0 has R = Q unless the image points lie
on a 2nd order surface yTi Ayi = 0, where A 6= 0 with
eigenvalues λ1,λ2 and λ1 + λ2 and λ1λ2 ≤ 0.

Proof. From (3) we get

γ′iyi = γiRxi + at, a ∈ R. (4)

We form an essential matrix E = [t]xRQ
T and note that

yTi [t]xRQ
T yi

(2)
= yTi [t]xRxi

(4)
=

(γiRxi+at)
T

γ′i
[t]xRxi = 0.

Hence with A = E +ET we get yTi Ayi = 0. It was shown
in [8] that such a matrix has eigenvalues λ1, λ2 and λ1+λ2,
with λ1λ2 ≤ 0. It remains to consider the case A = 0. By
Lemma 1, this implies that S = I or eπ[t]× . In any case
St = t. Using (4)

γ′iyi = γiRxi + at
(2)
= γiRQ

T yi + at = γiSyi + at. (5)

Taking cross products with t yields,

γ′it×yi = γit×(Syi) = γi(St)×(Syi) = γiS(t×yi) (6)

which means that t× yi is an eigenvector of S with positive
eigenvalue. Unless all yi are parallel with t this excludes the
solution S = eπ[t]× . Hence S = I and thus R = Q.

The theorem states that in general there are no other so-
lutions than R with t 6= 0. It is easy to see that the same
holds if t = 0. This shows that in the noise-free case the
rotation can generally be determined even with zero base-
line. To see what happens when there is image noise a sim-
ple synthetic experiment was performed. A set of 50 3D-
points were randomly generated in the unit cube [−1, 1]3

and two cameras with unit focal lengths were placed in the
points (0, 0, 10)± r where r is a random vector of a speci-
fied length. Gaussian noise with standard deviation 0.0001
was added to the image projections. Then the relative ori-
entation of the cameras was estimated using the minimal

solver from [14] in a 100-iteration RANSAC loop. The so-
lution having most inliers was picked as a starting point for
bundle adjustment. This was repeated for different camera
distances and the results were averaged over 50 runs; see
Figure 2. Note that since the scale of the reconstruction
is arbitrary we can only compare the translation direction.
Still the figure shows clearly that, as the camera distance
decreases, the rotation estimates remain stable whereas the
translation errors increase drastically. This will also lead to
very poor accuracy in the 3D structure estimation.
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Theorem 1. Let xi and yi be unit vectors representing cor-
responding image points in two views. Assume that xi and
yi are related by a pure rotation

yi = Qxi. (2)

Consider an essential matrix [t]×R with t �= 0 such that

yT
i [t]×Rxi = 0. (3)

Then R = Q unless the image points yi lie on a quadratic
surface yT

i Ayi = 0, where A has the eigenvalues λ1,λ2 and
λ1 + λ2 with λ1λ2 ≤ 0 and A �= 0.

Proof. We let E = [t]×RQT and note that

yT
i Eyi = yT

i [t]×RQT yi = yT
i [t]×Rxi = 0. (4)

Consequently, yT
i (E + ET )yi = 0 as well. Since E has the

form of an essential matrix it follows from a theorem in [8]
that A = E + ET has eigenvalues λ1,λ2 and λ1 + λ2, with
λ1λ2 ≤ 0.

It remains to show that A �= 0. To this end, let n be a
rotation axis of S = RQT . If A = 0 then

0 = An = (E+ET )n = [t]×Sn−ST [t]×n = (I−ST )t×n,
(5)

and hence S has two orthogonal eigenvectors, n and t × n
with eigenvalue 1. The only rotation matrix with this prop-
erty is the identity. Hence, I = S = RQT and R = Q.

The theorem states that there is in general no other solu-
tion than R with t �= 0, and it is easy to see that the same
holds if t = 0. This shows that in the noise-free case the
rotation can generally be determined even with zero base-
line. To see what happens when there is image noise a sim-
ple synthetic experiment was performed. A set of 50 3D-
points were randomly generated in the unit cube [−1, 1]3

and two cameras with unit focal lengths were placed in the
points (0, 0, 10) ± r where r are random vectors of differ-
ent lengths. Gaussian noise with standard deviation 0.0001
was added to the image projections. Then the relative ori-
entation of the cameras was estimated using a minimal 5-
point solver followed by bundle adjustment. More precisely
the minimal solver from [13] was used in a 100-iteration
RANSAC loop. The solution having most inliers was picked
as a starting point for bundle adjustment. This was repeated
for different camera distances and the results were averaged
over 50 runs; see Figure 2. Note that since the scale of the
reconstruction is arbitrary we can only compare the trans-
lation direction. Still the figure shows quite clearly that,
as the camera distance decreases, the rotation estimates re-
main stable whereas the translation errors increase drasti-
cally. We note that this will also lead to very poor accuracy
in the 3D structure estimation.
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Figure 2. Stability of the orientation estimate. Average error in
degrees of the estimates for the translation (red line) and rotation
(green line) vs. different baseline distances.

This experiment shows that there is no reason not to use
view pairs with short baselines. In fact, when the baseline is
short the number of correspondences is generally large and
hence the orientation estimate will often be more accurate
than with a larger baseline.

3. Cycles and Consistency
In this section, we introduce and motivate a mathemati-

cal model for rotational consistency in structure from mo-
tion problems. The next section presents algorithms for es-
timating orientations based on this model.

3.1. Problem Formulation

The relative orientations that are estimated from pairs of
views induce a camera graph. The graph has a vertex for
each camera and edges between cameras i and j if a relative
rotation, denoted by R̃ij , is given between these views. By
analyzing the graph we can estimate the absolute camera
rotations, Ri, with respect to a global coordinate system.

Our discussion will require some characteristics of the
group of 3D-rotations, often referred to as SO(3). The
usual metric on SO(3) can be defined

d(R, S) = max
x∈R3\{0}

∠(Rx, Sx) (6)

where ∠(x, y) denotes the angle between vectors x and y
taking values in [0, π]. If R is given by an axis of rotation
and an angle α ∈ [−π, π] then d(R, I) = |α|.

Ideally there would exist rotations Ri such that

Ri = R̃ijRj for all (i, j) ∈ E. (7)

Due to uncertainty in the matching process and the camera
model, this will not be the case. Instead we will have to
deal with low-level noise as well as completely inconsistent
rotations. Low-level noise can be handled with the method
in [6] but first, all outlier rotations must be removed. The
goal is to find a set of consistent rotations.
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Due to uncertainty in the matching process and the camera
model, this will not be the case. Instead we will have to
deal with low-level noise as well as completely inconsistent
rotations. Low-level noise can be handled with the method
in [6] but first, all outlier rotations must be removed. The
goal is to find a set of consistent rotations.

Definition 1. Given a camera graph G = (V,E) and error
tolerance ε, we say that G is consistent if there exist rota-
tions R1, . . . , RN where |V | = N satisfying

d(Ri, R̃ijRj) ≤ ε for all (i, j) ∈ E. (9)

If there are outlier rotations, the whole camera graph will
not be consistent. In these cases we want to find a large con-
sistent subgraph. More precisely, we want a subgraph that
contains as reliable orientations as possible. Let pij be the
probability that the estimated relative orientation R̃ij is an
outlier. In Section 2 we saw that the accuracy of an es-
timated rotation does not depend directly on the baseline
distance. Thus it is reasonable to model pij as a decreasing
function of the number of inliers, denoted by wij . For sim-
plicity, we choose to optimize the sum of wij’s rather than
trying to estimate the log probabilities. We seek those cam-
era orientations which are supported by the maximum num-
ber of point correspondences. However, the same approach
can be used when estimates of the probabilities exist.

Problem 1. Given a connected camera graph G = (V,E)
and edge weightswij , we want to find a consistent subgraph
Gc = (V,Ec) that maximizes

∑

(i,j)∈Ec

wij . (10)

This formulation involves finding both the absolute ro-
tations Ri and the set of consistent rotations Ec. One way
to attack this difficult optimization problem is to consider
cycles in the camera graph. This gives means to detect and
remove incorrect relative rotations prior to the continuous
optimization. Computing the product of rotations along a
cycle in the camera graph should give roughly the identity
matrix. Large deviations, inconsistencies, could indicate an
incorrectly estimated geometry. The next section contains
some theoretic results concerning the connection between
cycles and consistency.

3.2. Cycles and Consistency

The first result gives a necessary constraint on cycles for
a graph to be consistent. Essentially the same result can also
be found in [15] but we give a simpler proof.

Theorem 2. Consider a camera graph G that consists of a
single simple cycle i1, i2, i3 . . . in, i1. If the estimated rota-
tions along this cycle satisfy

d(R̃i1i2R̃i2i3 . . . R̃ini1 , I) = ω, (11)
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Figure 3. Cycle error vs. cycle length. The green curve gives the
average over 50 trials and the red curve the function y = c

√
x.

Proof. To prove that G is consistent with � = ω/n, it
is sufficient to find rotations Rij such that d(Rij , R̃ij) ≤
ω/n and R12R23 . . . Rn1 = I . To find R12, let D =
R̃12 . . . R̃n1. This is a rotation ω radians around some axis.
Let Dω/n be a rotation around the same axis but −ω/n ra-
dians and set R12 = Dω/nR̃12. Then

d(R12R̃23 . . . R̃n1, I) = ω − ω/n. (12)

By repeating this scheme with D = R̃23 . . . R̃n1R
T
12 we can

compute R23 such that the error decreases to (n − 2)ω/n
and the result follows by induction.

The above theorem states that if the cycle error is larger
than n�, than the cycle must contain an outlier rotation.
However, we want to know when it is probable that a cy-
cle contains an outlier. The following experiment illustrates
how the error in a cycle depends on the cycle length if there
are no outliers. If the error in a cycle is significantly larger
than this, then there is a high probability that the cycle con-
tains at least one outlier.

Fifty pairs of views were generated in the exact same
manner as in the experiment of rotation stability (Section 2).
For each pair a rotation was estimated using RANSAC fol-
lowed by bundle adjustment. Let Ri be the ground truth
rotation for the ith view pair and let R̃i be the estimated ro-
tation. For each n the error d(R1R2 . . . Rn, R̃1R̃2 . . . R̃n)
was measured. The error for different values of n, is shown
in Figure 3 (averaged over 50 runs). The conclusion is that
comparing the cycle error to

√
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√
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then ε = ω/n is the smallest ε such thatG is consistent with
Definition 1.
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d(R12R̃23 . . . R̃n1, I) = ω − ω/n. (12)
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T
12 we can

compute R23 such that the error decreases to (n − 2)ω/n
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For low levels of noise we will use the method pro-
posed in [6]. It is based on representing rotations as unit



quaternions. Let us first remark that unit quaternions q and
−q correspond to the same rotation and that the quaternion
representation gives us a way to compute the distance be-
tween rotations. Let 〈p, q〉 denote scalar multiplication with
quaternions seen as 4-vectors. If 〈p, q〉 ≥ 0 we have

d(Rp, Rq) = 2 arccos 〈p, q〉. (13)

Using quaternions, (8) can be expressed as

Q̃ijqj − qi = 0, for all (i, j) ∈ E. (14)

Here qi,qj are the quaternions of the absolute rotations of
cameras i and j and Q̃ij is a 4× 4 matrix corresponding to
quaternion multiplication by q̃ij . In [6] the camera orien-
tations are determined by solving these equations in a least
squares sense. To motivate this, look at two unit quater-
nions p and q corresponding to rotations Rp and Rq such
that d(Rp, Rq) = α. Assuming that α is small, (13) yields,

|p− q|2 = 〈p− q, p− q〉 = 2− 2 cos (α/2) (15)

= 4 sin2 (α/4) ≈ α2/4. (16)

Thus what we are minimizing is approximately the sum of
squared angular errors.

It was noted in [3] that the ambiguity when representing
rotations with quaternions may cause this method to fail.
Say for example that the camera has moved around a build-
ing, while rotating an angle 2π. Let q1 = (1, 0, 0, 0). If
we choose quaternion representation in the standard way,
we will constrain the orientation quaternions qi to move
smoothly on the unit sphere of quaternions. This means that
when we are back where we started the orientation has just
moved halfway around the sphere of unit quaternions. So
for the linear equations to hold we have to represent q1 with
(1, 0, 0, 0) in some equations and (−1, 0, 0, 0) in others.

The approach presented in the next subsection to remove
inconsistent relative rotations will also provide estimates q̄i
for the camera orientations. This gives us a way to resolve
the ambiguity problem. For all (i, j) ∈ E:

1. Represent R̃ij with a quaternion q̃ij .
2. Compute Q̃ij as the matrix representation of q̃ij .
3. If |q̄i − Q̃ij q̄j | > |q̄i + Q̃ij q̄j |, set Q̃ij = −Q̃ij .
4.2. Handling Large Errors

The results in Section 3.2 showed that cycles can be used
to detect inconsistent rotations, but considering all cycles is
rarely feasible. Instead, we start from a spanning tree. If
there are cycles in the graph there are also multiple ways
to choose spanning trees. Following Problem 1, it seems
natural to seek a maximum-weight spanning tree. Such a
tree is easily found using a greedy algorithm [1].

Assuming (for a moment) that the generated spanning
tree contains no outlier rotations, we now have means to

detect outliers among the other epipolar geometries. It easy
to see that adding any edge to a spanning tree will generate
a cycle. Let RC be the composition of all rotations along
the cycle. As shown in Section 3.2, for a cycle of length
|C|, if

d(RC , I) >
√
|C|ε, (17)

then with high probability, the cycle contains an outlier ro-
tation and should not be used; see Algorithm 1.

Algorithm 1 Rotational consistency

Compute a maximum spanning tree, T , with weights wij .
Set Ec = T .
for each e ∈ E \ T

Let C be the cycle formed by e and T .
if the error in C is less than

√
|C|ε

Ec = Ec ∪ e
Estimate absolute orientations from Ec (see Section 4.1).
Apply additional search heuristics (see text).

The absolute orientations yielded by this approach can
be improved by repeating steps 2 to 7 to give a better solu-
tion to Problem 1. If the initial spanning tree did contain an
actual outlier rotation, then it would prevent us from adding
rotations that should be regarded as inliers. Let Eoutlier be
the set of outlier edges after the for-loop of Algorithm 1.
We also use some other search heuristics for improving the
solution:

- For each e ∈ Eoutlier, estimate absolute rotations for
Ec ∪ e and check for consistency.

- For each e ∈ Eoutlier, create a new spanning tree that
contains e and repeat steps 2 to 7 of Algorithm 1.

These simple heuristics work remarkably well. Since the
spanning tree will consist of those relative rotations that had
the highest number of inliers, large errors in the spanning
tree are unlikely. In Table 1 we show the effects of applying
our heuristics to the datasets of the experimental section.
The total number of epipolar pairs after the RANSAC stage,
after the initial spanning tree and for the final reconstruc-
tion stage, respectively, are presented. Note that the local
heuristics of improving the initial spanning tree solution is
an important step. The fact that we are able to reconstruct
plausible 3D reconstructions for all the data sets, also show
that the rotational consistency algorithm does a good job.

Another way to check the validity of the rotational con-
sistency estimation is to apply the algorithm to closed-loop
sequences, that is, a sequence of images where the camera
trajectory is a long closed loop. Note that this fact is not
used in the inference. Figure 4 shows two such examples.
The camera graphs, before and after applying the algorithm,



Sequence Images Epipolar Initial Final
name pairs tree result

CASTLE 83 667 509 519
ROAD ROLLER 41 214 138 148

RAILROAD 34 126 112 114
STREET 99 1413 1044 1242

APARTMENT 222 1570 1097 1201
CATHEDRAL 544 8168 7868 7868

Table 1. Results of rotational consistency: Number of images, total
number of two-view geometries, the initial number of consistent
pairs and the final number of consistent pairs are tabled.

Figure 4. Left: Camera graphs before and after running Algo-
rithm 1 for the ROAD ROLLER sequence. Right: Camera graphs
before and after running Algorithm 1 for the CASTLE sequence.
Each edge corresponds to an estimated relative rotation. For this
illustration the cameras have been placed on a circle using prior
knowledge of the true geometry, but this prior knowledge has not
been used to detect the erroneous rotations.

are plotted as circles. Only two-view geometries that passed
the RANSAC stage with at least 10 image correspondences
are used as input. An edge in the (circular) camera graph
corresponds to a two-view geometry. As can be seen, there
are many false edges occurring for cameras far away from
each other. By enforcing rotational consistency, hence com-
puting a solution for Problem 1, the resulting camera graphs
do not have any false edges.

In [23] a method for removing inconsistent cycles is pro-
posed. This method is however limited to cycles of length
6 (and uses a prior that is independent of cycle length). For
the sequences in Figure 4, many of the erroneous edges can-
not be detected without analyzing considerably longer cy-
cles. Therefore many of the incorrect edges would not be
removed by that method.

5. Reconstructions

We have tested the developed approach on a collection
of real image sequences. Figures 5-10 show some screen-
shots. This section presents some performance statistics and
a comparison to the state-of-the-art software BUNDLER.

Data. The set of image collections has been obtained by
taking photos with standard digital cameras. Image sizes
vary from a couple of hundred to up to 3000 pixels in width.
The number of images in a sequence ranges from 34 to 544

images; see Table 1. Only images where it has been possi-
ble to extract the focal length from the EXIF tag has been
processed. The principal point is assumed to be in the mid-
dle of the image and the skew is set to zero and the aspect
ratio to one.

Figure 5. CASTLE. The top and left figures shows the 3D result
from BUNDLER and on the right, our result is given. By careful
inspection, one can see that the top and bottom image rows of
the top figure display different facades of the castle. (A window
is blocked by stairs in the top row.) This confusion of facades
yields an incomplete and false reconstruction. Using rotational
consistency, a complete trajectory is obtained.

Implementation details. For the feature extraction and
matching, as for the extraction of focal lengths, we use ex-
actly the same setting as in BUNDLER. More precisely, the
matching stage is based on standard SIFT matching with
default settings. Note that the input to our system and
BUNDLER is identical since the same software is used. For
the estimation of pairwise epipolar geometries, we allow
1000 RANSAC iterations. The threshold is set to 3 pixels for
a point correspondences (measured from the epipolar line
in each image). If more than 10 point correspondences are
obtained for an image pair, the two-view geometry is kept
for later processing. We always check for cheirality (pos-
itive depths). When computing camera translation and 3D
points, we allow a larger error, namely 10 pixels, as the ini-
tial estimates of rotations may be slightly off.

All our algorithms have been implemented in MATLAB.
Given estimated two-view geometries, running times are



typically between 5-10 minutes depending on the number
of images, and the number of extracted feature points. The
same parameter settings have been used for all the data
sets.2

Figure 6. ROAD ROLLER. Top: BUNDLER. Bottom: Proposed
method.

Figure 7. RAILROAD. Left: BUNDLER. Right: Proposed method.

Closed-loop sequences. For our first three experiments
we have chosen to use closed-loop sequences. For these
datasets it is easy to detect if the method fails by investi-
gating the ability to close the loop. Note that since there is
no independent system that is guaranteed to give the true re-
construction it is very difficult to obtain ground truth. Hence
the only way that we can really determine the quality of the
reconstruction is by visual inspection. Note that, in our sys-
tem, the ordering of the images is nowhere used. However,
the images are taken in order so this gives us a way to check
if correct epipolar geometries have been computed.

2The data sets and code will be made publicly available.

The closed-loop sequences are the CASTLE (see Fig-
ure 5), ROAD ROLLER (see Figures 1 and 6) and RAIL-
ROAD (see Figure 7). In the first two sequences there are re-
peated textures introducing false two-view geometries. Be-
cause of these false geometries BUNDLER fails to recon-
struct the loop. Note that the front and the back of the castle
are confused. In case of the RAILROAD data set, it is a bit
unclear why BUNDLER fails, but we believe it is due to too
unreliable two-view epipolar estimates.

Figure 8. STREET. Solutions from the leave-one-out test. Top:
Complete reconstruction using the proposed method. Bottom: In-
complete reconstruction using BUNDLER; see text for details.

Leave-one-out test. STREET. In our method, all images
are handled in a uniform manner. This is in contrast to
BUNDLER which selects an initial epipolar geometry to
base the reconstruction on and then sequentially adds new
images. To test this dependency, we tried to reconstruct the
same sequence with one image removed. This was repeated
for all 99 images. The reconstructions were validated by
registering to the original reconstruction. While our method
is unaffected by removing one image in all cases, there
are two cases for which BUNDLER fails to reconstruct the
whole scene (and in these cases, only 45 and 57 cameras are
reconstructed, respectively); see Figure 8.

Regular scenes. APARTMENT. In this two bedroom
apartment, there are (natural) weak geometric links between
different rooms. It is difficult to detect any difference from
the two overview images in Figure 9. Both methods pro-
vide satisfactory results, and the differences are minor, how-
ever it turns out that there are 6 images of the bathroom that
BUNDLER is not able to incorporate into the reconstruction.
The final data set is the CATHEDRAL, see Figure 10. Both
methods produce satisfactory results for this data set.

6. Conclusions
We have presented a system for large-scale 3D recon-

structions from unordered images. Compared to the stan-
dard sequential approaches, we have shown that short base-
lines can be used as reliable building blocks, since rotations



Figure 9. APARTMENT. Top: BUNDLER. Bottom: Proposed
method.

Figure 10. CATHEDRAL. Left: BUNDLER. Right: Proposed
method.

can be estimated accurately and matching between such
views is relatively simple. Moreover, in our non-sequential
system, we have demonstrated improvements with respect
to state-of-the-art regarding loop-closing, detecting repeti-
tive structures and obtaining a good global solution without
depending on a specific base pair of views. These features
have been supported by theoretical results as well as exper-
imental comparisons on real data.

Another possible weakness of the proposed method is
that repetitive structures with consistent rotations, for ex-
ample two parallel billboards would not be detected by ro-
tational consistency and would have to be handled by the
final robust estimation stage, but this stage is not designed
to cope with large rates of outlier points. Although we have
not encountered such problems in practice, we view it as an
interesting topic for future work.
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