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Abstract

In this paper we develop a novel approach for the scale-
space representations of scalar functions defined over Rie-
mannian manifolds. One of the main interest in such rep-
resentations stems from the task of 3D modelling where 2D
surfaces, endowed with various physical properties, are re-
covered from images. Multi-scale analysis allows to struc-
ture the information with respect to its intrinsic scale, hence
enabling a wide range of low-level computations, similar
to what is usually used for representing images. In con-
trast to the Euclidean image domain, where scale spaces
can be easily obtained through convolutions with Gaussian
kernels, surfaces require a more general approach that must
handle non-Euclidean spaces. Such a generalized scale-
space framework is the main contribution of this paper,
which builds on the spectral decomposition available with
the heat-diffusion framework to derive a computational ap-
proach for representing scalar functions on 2D Riemannian
manifolds using an intrinsic scale parameter. In addition,
we propose a feature detector and a region descriptor, based
on these representations, extending the widely used DOG
detector and HOG descriptor to manifolds. Experiments on
real datasets with various physical properties, i.e., scalar
functions, demonstrate the validity and the interest of this
approach.

1. Introduction

Recent computer vision methodologies allowed the de-
velopment of tools for modelling shapes of real objects, e.g.,
multiple-view stereo. The resulting surfaces are usually as-
sociated with numerous object-related features. These fea-
tures may well be seen as functions defined over the sur-
face domain. They describe either intrinsic properties of the
surface, such as various curvature information, or extrinsic
properties, such as color, motion information, etc. In the
process of analyzing these functions, the multi-scale repre-
sentation framework appears to be a fundamental tool that
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Figure 1. Fine-to-coarse (from up to down) representations of
scalar functions defined over 2D Riemannian manifolds.

can build rich low-level descriptors. This is particularly true
for the analysis of signals that correspond to physical mea-
surements, as mentioned by Lindeberg [12]. In that case,
signals usually carry information on different physical phe-
nomena, at various scales, and the extraction of meaningful
information relies on the ability to identify the appropriate
scales. Applications of this principle are numerous in im-
age interpretation, including smoothing, feature detection
and segmentation, to mention but a few. In order to extend
this type of analysis to functions defined on 2D surfaces of
3D shapes, a more general framework is required that gen-
eralizes scale-space representation to functions defined over
Riemannian manifolds.

Based on the seminal work of Witkin [20], scale-space



representations of images are traditionally built by con-
volving images with Gaussian kernels at different scales,
the scale parameter being associated with the variance of
the Gaussian function. This yields a continuous family of
convolved images, indexed by the scale, where spectral or
Fourier components of the intensity signals are progres-
sively removed, from high to low frequencies, as the scale
increases. The extension of this scheme to a function de-
fined over a Riemannian manifold requires the generaliza-
tion of Gaussian kernels to such non-metric spaces. While
such generalizations do not necessarily present closed form
expressions, yet they result from the fact, as pointed out by
Koenderink [9], that scale-space representations of images
can also be seen as the solutions of a heat-diffusion process.
This process, governed by the heat-diffusion equation, pro-
gressively diffuses image-intensity information over the im-
age domain, starting with the original image-intensity val-
ues seen as the initial state. This principle extends to func-
tions defined over Riemannian manifolds, yielding a scale-
space family of functions that are solutions of the heat-
diffusion equation on non-metric spaces [2]. The time pa-
rameter in the heat-diffusion process plays the role of scale
in the resulting representations. As time elapses, diffusion
blurs the original function, thus progressively eliminating
higher frequency components. This is the approach fol-
lowed in this paper: The solution of the heat-diffusion equa-
tion on Riemannian manifolds is used to derive a very gen-
eral framework for representing any function at multiples
scales.

The original contribution of this paper is two-fold. First,
a computational approach is proposed to built scale-space
representations of any function defined on discrete mani-
folds, e.g., meshes and graphs. The approach is grounded
on the formal framework of heat diffusion on non-metric
spaces. It guarantees, in conjunction with the associated
Laplace-Beltrami operator, isotropic and homogeneous dif-
fusion of the initial function values over the manifold and
hence it yields geometrically consistent scale-space repre-
sentations. Second, we propose feature detection and de-
scription algorithms that illustrate the practical usefulness
of our novel scale-space framework. These algorithms are
generalizations of the well known difference-of-Gaussian
(DOG) image detector and of the histogram of gradient
(HOG) region descriptor to any function defined over a
manifold. Similar to the image-DOG, the manifold-DOG
is able to capture the scale of a feature, hence providing
useful information for feature-based descriptions

The paper is organized as follows. Section 2 reviews pre-
vious works. Section 3 introduces the heat diffusion frame-
work and the computational approach. Section 4 presents
the feature detector and region descriptor. Experiments are
shown in Section 5, before concluding in Section 6.

2. Related Work

Fine-to-coarse image descriptions have been widely used
in image analysis since the early image pyramid represen-
tations [5, 6]. The continuous scale-space representations
introduced by Witkin [20] formalized this concept, hence
providing the theoretical foundation for multi-scale image
analysis. As mentioned earlier, scale-space images can be
obtained by convolutions with Gaussian filters, but they are
also solutions of the heat equation [9, 8]. This idea was
used to build image pyramids [8] as well as to perform
anisotropic diffusion in order to preserve edges when fil-
tering images[15, 22]. In particular, in [22], scale-space
images are estimated through spectral decompositions of
the original images, hence removing the need for iterative
filtering operations on the images. In this paper, we ex-
tend this line of work to functions defined on Riemannian
manifolds, e.g., 2D surfaces of 3D shapes. Since there is
no closed-form filter formulation, we build on heat diffu-
sion over non-metric spaces and over the associated spectral
decompositions, in order to extract scale-space representa-
tions.

Closely related to the material presented and developed
in our paper, geometric diffusion methods applied to shapes
have recently received growing interest. They allow for
spectral representations of shapes using the eigenfunctions
of various discretizations of the Laplace-Beltrami opera-
tor [11, 17]. These representations exhibit invariance to iso-
metric deformations as well as robustness to noise. This
appears to be of particular interest when looking for invari-
ant shape descriptions to estimate shape signatures [16, 18]
or shape distances [4]. Laplace-Beltrami eigenfunctions
play a fundamental role in heat diffusion over the surface
of a shape, since they are also eigenfunctions of the heat-
kernel, thus providing an eigenbasis for the heat-diffusion
solutions. We use them exactly for that purpose, as an or-
thogonal basis function over which spectral representations
at different scales of any function can then be determined.

While the first category of the aforementioned ap-
proaches considers the external intensity function defined
over the image domain R2, the second category considers
the intrinsic geometric information of a 2D surface. Nev-
ertheless spectral analysis allows to handle both extrinsic
and intrinsic data in an elegant way. A recent attempt in
that direction is proposed in [10], where geometric and pho-
tometric information is merged by considering surfaces as
2D manifolds embedded in a higher dimensional space with
both attributes. Although the purpose of [10] is to define
shape descriptors, our approach shares similarities that will
be discussed in Section 3.3. Another work of interest is that
of Luo et al. [14], which aims to estimate the gradient of a
function defined over a manifold. They propose to perform
this estimation in the eigenspace spanned by the Laplacian



eigenfunctions. The interest lies in the robustness to noise
in both the manifold and the input function, but at the cost
of having many intermediate approximations. We discuss
gradient estimation in Section 3.4 and we propose an alter-
native method.

The recently works of [21] and [7] are probably the clos-
est, in spirit, to our approach. In these works both a scale-
space representation and SIFT-like detectors [13] are pro-
posed. The scale-space descriptions of functions defined
over 2D discrete surfaces (meshes) are obtained using lo-
cal Gaussian filters as approximations of the heat kernel.
In this paper we take a radically different strategy, ground-
ing the scale-space descriptions on the theoretically well-
founded formalism of the heat-diffusion solution on Rie-
mannian manifolds. We derive a computationally efficient
formulation, illustrate the method with numerous examples
and we thoroughly compare our results with [21].

3. Scale-Space Representation

In this section we explain how to build a scale-space rep-
resentation of any scalar function defined over a manifold.
This representation is based on the heat-kernel that gener-
alizes the Gaussian kernel to manifolds. It applies to any
square integrable function1 defined over a Riemannian man-
ifold, however, in the context of this paper, we limit our-
selves to scalar functions defined over 2D manifolds, e.g.,
surfaces.

3.1. The Heat Kernel

Let M be a closed (compact and without boundaries)
2D manifold embedded in R3 and f : M → R a square
integrable function onM, colour or curvature for example.
The heat operator Ht is defined as the convolution with a
kernel K:

Htf(x) =
∫
M
K(x, y; t)f(y) dy, (1)

where the heat kernel K(x, y; t) satisfies the partial differ-
ential heat equation:

∂Htf
∂t

= ∆MHtf with lim
t→0
Htf = f, (2)

and ∆M = div grad denotes the Laplace-Beltrami oper-
ator that generalizes the Laplace operator to Riemmanian
manifolds. Intuitively, Htf measures the heat distribution
at time t, starting with an initial heat distribution f on
M. The kernel K has no closed form expression in
general but is known to be a Gaussian kernel when M

1i.e., for which the integral of the square of the absolute value is finite.

is a d-dimensional Euclidean space Rd, e.g. the image
plane. Consequently, the heat kernel is often referred as the
extension of the Gaussian Kernel to general manifolds.

Although the closed form expression of K is not known,
we can use instead its spectral decomposition that can be de-
termined onM. The operator ∆M is self-adjoint negative-
semidefinite, assuming that {φi}’s are its eigenfunctions
then:

∆Mφi = −λi φi, λ0 = 0 < ... < λ∞.

From the above heat equation (2) we have:

Htf = et∆Mf,

hence:

Htφi = e−tλiφi,∀i.

Thus eigenfunctions of the Laplace-Beltrami operator are
also eigenfunctions of the heat operator on M and it can
be shown that the heat kernel has the following analytical
expression:

K(x, y; t) =
∞∑
i=0

e−tλiφi(x)φi(y).

Since the {φi}’s form an orthonormal basis for square
integrable functionsL2(M) on the manifoldM and assum-
ing that f ∈ L2(M):

f(x) =
∞∑
i=0

βiφi(x), (3)

where βi =< f, φi > are the spectral -Fourier- coefficients
of f . Therefore:

Htf(x) =
∞∑
i=0

βie
−tλiφi(x), (4)

and the scale-space representation f(·; t) of f is then de-
fined as the family of functions:

f(x; t) = Htf(x) =
∞∑
i=0

βie
−tλiφi(x), (5)

that represents convolutions of the function f on M per-
formed with the heat kernel at scale t. In Euclidean spaces,
this is the analog to a scale-space representation based on a
Gaussian kernel with variance σ2 = 2t.



3.2. Estimation on meshes

In order to estimate the scale-space representation of f ,
we need to determine the eigenfunctions and eigenvalues
{φi} and {λi} of ∆M as well as the spectral coefficients
{βi} of f .

In the case of a discrete representation M of M, i.e. a
mesh or a graph with n vertices (or nodes) v, the n × n
unnormalized graph Laplacian matrixLM approximates the
negative of the Laplace-Beltrami operator ∆M:

LM (i, j) =

 deg(vi) if i = j,
−wij if i 6= j and vi is adjacent to vj ,
0 otherwise ,

withwij the edge weights and deg(vi) =
∑
j 6=i wij . The

matrix LM can be purely combinatorial, i.ewij ∈ {0, 1}, or
involve weightswij ≥ 0, e.g. cotangent weights, often used
in computer graphics [19]. Weights are discussed below in
the practical context of this work. Since LM is symmet-
ric positive-semidefinite, its eigen or spectral decomposi-
tion writes:

LM = ΦΛΦ>,

where Λ = diag(λ0, .., λn−1) is the diagonal matrix of
eigenvalues λ0 = 0 < ... < λn−1 and Φ is the matrix of
eigenvectors {φ0, .., φn−1} that form an orthonormal basis
of Rn.

The discrete heat operator Ht is then the n × n matrix
such that:

∂Ht

∂t
= −LMHt,

thus:
Ht = e−tLM = Φe−tΛΦ>.

Let F = (f(v0) . . . f(vj) . . . f(vn−1))> be the n vector
of discrete values of the function f evaluated at vertices vj ,
i.e. F (j) = f(vj). The scale-space representation of F is
then the set of vectors Ft parameterized by t:

Ft = HtF = Φe−tΛΦ>F.

F can be represented in the orthonormal basis formed by the
eigenvectors; Ignoring the null eigenvalue and associated
constant eigenvector we obtain:

F =
n−1∑
i=1

βiφi, (6)

where the spectral coefficients of F are:

βi =< F, φi >= F>φi.

Hence:

Ft =
n−1∑
i=1

(F>φi)e−tλiφi. (7)

The above expression allows us to build a scale-space rep-
resentation of any function f : M → R. At vertex vj , the
value f(vj ; t) is simply the jth element Ft(j) of vector Ft.

3.3. Computational Strategy

The decomposition (6) of the function F requires in prin-
ciple the computation of all eigenvectors φi. Such compu-
tation is however prohibitive when n becomes large, as is
often the case with meshed surfaces. As a consequence,
only the smallest non-zero eigenvalue-eigenvector pairs are
usually considered in order to reduce the complexity. In
this paragraph, we discuss the resulting approximation for
F and therefore its scale-space representation Ft.

Considering only the k smallest non-zero eigenvalue-
eigenvector pairs, i.e., {λi, φi}ki=1, k � n, is equivalent
to removing high frequency components in F . The ratio-
nale being that high frequency components do not signifi-
cantly contribute to spectral decompositions. Such an ex-
ample can be observed in Figure 2. However, depending
on the weights wij , spectral decompositions without high
frequency components are more or less accurate. In partic-
ular, weights that encode only combinatorial and geometric
information about the mesh may lead to eigenvectors that
poorly represent the function F in (6), unless many of them
are considered.

In order to compensate for such a behavior, weights can
be chosen such that they reflect the properties of F as well,
e.g.:

wij = −G(|vi − vj |, σ)−G(|fi − fj |, τ),

where G denotes the Gaussian kernel, | · | is a metric, the
Euclidean distance in our case, and where standard devia-
tions σ and τ can be learned from the input data. Gaussian
kernel weights have been advocated by Belkin et al. [1] as
providing good properties such as convergence to the con-
tinuous Laplace-Beltrami operator. Interestingly, the above
weights correspond to a spectral decomposition where the
original manifold M is considered in a higher dimensional
space R3+l where l is the dimension of the co-domain of
F , e.g. 1 in case of a scalar function. In this space, ver-
tices on the discrete manifold M correspond to points with
3+ l coordinates: (vj , fj). This is very similar, in principle,
to the recent work of Knovnatsky et al. [10] on the fusion
of geometric and photometric information for shape analy-
sis. Nevertheless, our purpose is different, since we want
to build scale-space representations of scalar functions, in-
stead of estimating shape signatures.
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Figure 2. Reconstructions of the original scalar function f using k eigenvalue / eigenvector pairs.

Embedding M in a higher dimensional space allows for
better spectral decompositions of the function F with fewer
eigenvectors than in R3. However, it should be noticed that
the eigenvalues and eigenvectors must be recomputed when
the values fj are changing onM . Hence, the computational
cost benefit may lower when scale-space representations of
several functions, or functions with different values, are to
be estimated on the same manifold.

3.4. Gradients

In order to build local descriptors of the function F , e.g.
SIFT, spatial gradients on M are often required. Using the
scale-space representation f(·; t) instead of f for that pur-
pose allows gradients to be computed at a given scale t,
as provided for instance by a feature detection approach,
e.g. DOG, hence enabling scale (sampling) invariant de-
scriptions.

Denoting f(v; t) and φi(v) the scalar values of f(·; t)
and φi at vertex v respectively and using expression (7), we
have:

∇Mf(v; t) =
n−1∑
i=i

βie
−tλi∇Mφi(v), (8)

where ∇M is the gradient operator on M . Thus the gra-
dient of f(·; t) simply relates to the gradients of the eigen-
vectors φi at v. In order to estimate the discrete gradient
of any scalar function l at any vertex v ∈ M , directional
derivatives are usually considered. By definition, the direc-
tional derivative on M in the direction (w − v) around v
writes:

(w − v)>

‖w − v‖
∇M l(v) =

l(w)− l(v)
‖w − v‖

.

Hence ∇M l(v) can be approximated by the vector g that
best fits the directional derivatives at v in the least square
sense:

∇M l(v) = min
g

∑
w∈N (v)

‖g>(w − v)− l(w) + l(v)‖2,

where N (v) is usually the first ring of vertices around v.
Note that g can advantageously be constrained to belong to
the tangent plane at v when this plane is known. The above
least square estimation can be applied:

1. On the eigenfunctions φi at v , which then yield
∇Mf(v; t) through expression (8), or

2. Directly on f(v; t).

While the second approach presents a lower computational
cost, the former better accounts for frequency components
individually making it more robust to noise in f . In addition
the computational cost in that case is balanced by the fact
that the estimation is done once for all scales; it can also be
reduced by considering less frequency components in the
decompositions.

In [14] gradients are estimated in the eigenspace spanned
by the φis, where a different metric applies, thus requiring
a pullback metric to transfer the estimated gradients in the
original space. We take a simpler strategy and estimate gra-
dients directly in the original space, yet still keeping the ad-
vantages of spectral decompositions, but without the need
for transfers between spaces.

4. Features

Using the framework developed in the previous section,
we propose a new feature detector and a new region descrip-
tor, that is similar in spirit to [13, 21].

4.1. Feature Detection (Spectral-DoH)

Using the scale-space representation based on the spec-
tral decomposition and on the heat diffusion kernel, we
adopt a similar approach to [13] in the image domain and
search for the extrema of the function’s Laplacian across
scales. Scale-space representations of images are tradition-
ally built by convolving images with Gaussian kernels at
different scales, where the scale parameter being associated
with the variance σ of the Gaussian function. Similarly,
the case of the spectral decomposition, the scale is associ-
ated with time parameter t of the heat kernel. For Euclidean
spaces, the relationship is given by σ2 = 2t.

The scale-space representation of the scalar function f is
constructed using the spectral decomposition with k = 100
eigenvalue/eigenvectors pairs. The initial time diffusion pa-
rameter t0 from the spectral domain corresponds to a mesh
distance measure d0, related by t0 = d2

0/2. d0 is chosen



based on a global surface measure r, corresponding to 1%
of the diagonal of the bounding box encompassing the sur-
face. The value is further normalized by the average edge
size eavg , in order to account for different mesh samplings.
Thus, d0 = r/eavg .

The scale-space representations considersC = 3 octaves
(i.e. doubling of the t), each octave being divided into S =
6 scales, separated by the same constant factor (see [13] for
more details). The formula for computing the t at octave c
and scale s is given by t = t02c+s/S . The main advantage is
that, instead of performing iterative convolutions as in [21],
where higher octaves take longer to compute, the function
representation at any scale can now be computed directly
using the spectral decomposition and the appropriate t.

The Difference of Heat (DoH) operator is constructed
by subtracting adjacent functions in the scale-space. The
feature points are selected as the maxima of the scale-
space across the DoH scales, followed by non-maximum-
suppression, using a two ring neighbourhood in the current
and in the adjacent scales. In addition, the feature point gra-
dient has to be at least x = 1 standard deviations away from
the gradient mean for that scale.

The top γ = 5% of the maximum number of vertices
are being considered, sorted descending by magnitude, and
chosen proportionally across scales, according to the num-
ber of detections in each scale. Choosing such a schema,
versus opting for either a value cut-off or a fixed number
of detections, makes the thresholding flexible for different
scalar functions on meshes with variable number of ver-
tices.

4.2. Region Descriptor (Spectral-HoG)

The descriptor is very similar in spirit to MeshHoG [21].
The region descriptor for a given feature point is computed
using a geodesic support region of radius d0. At first, a local
coordinate system is chosen, in order to make the descriptor
invariant to rotation. Then, a two-level histogram of gradi-
ents is computed, both spatially, at a coarse level, in order to
maintain a certain high-level spatial ordering, and using ori-
entations, at a finer level. For more details, please see [21].
The major improvements to [21] are the more principled
way of computing the gradient and the fact that gradients
for each descriptor are computed at the scale at which the
feature point was detected.

5. Experiments

The scale-space framework we propose is a generic
method to analyze any scalar function defined over a 2D
manifold. However, in order to give quantitative evidence

of its benefits, we perform an extensive comparison with
already existing discrete local approximate approach [21].

We have created our own dataset, as supposed to use an
existent one, such as [3], in order to be able to test the re-
peatability of the detector and the robustness of the descrip-
tor under both photometric and geometric deformations.

5.1. Dataset

The dataset consists of 3 base shapes (also called null
shapes), with simulated transformations applied to them.
The photometric transformations are noise and shot noise.
The geometric transformations are noise, shot noise, rota-
tion, scale, local scale, sampling, holes, micro-holes, topol-
ogy and isometry. Each transformation has 5 levels of
noise applies to it. Generally, the level corresponds to the
noise amplitude. Therefore, for one base shape, a total of
12× 5 = 60 shapes are obtained.

In the case of photometric transformations (i.e. color
noise and color shot noise), the noise modifies the scalar
function (colour), whereas in the case of geometric trans-
formations (i.e. geometry noise and geometry shot noise),
the noise modifies 3-D positions of the mesh vertices. In
the case of topology, the original mesh was sliced with thin
planes. For isometry, we used non-rigid semi-elastic trans-
formations obtained either automatically or manually in a
modelling software, such as Blender.

In the cases of noise, shot noise, rotation, holes, micro-
holes, local scale, topology, isometry the level corre-
sponds to the amplitude of the noise. For isometries,
the noise level indicates how far apart in time the 3-D
models are. For topology, the noise level corresponds to
the number of evenly spaced planes that split the mesh.
For scale, the noise levels correspond to scale factors
{0.5, 0.83, 1.25, 1.62, 2.0}. For sampling, the noise level
x corresponds to a target mesh with the average edge size
is computed as eavg ∗ (1.0 + x), obtained using edge split,
edge collapse and edge swap operations.

5.2. Evaluation Methodology

The performance is measured by comparing the features
and descriptors obtained for the null shape with the ones
obtained for the different transformations.

Feature Detection. The criteria employed for quantify-
ing the quality of feature detection is repeatability. Given
that the ground-truth (one-to-one correspondence) is known
for each transformed shape B of the null shape A, the re-
peatability is calculated as the percentage of detected fea-
ture points in B that are within a geodesic ball of radius
r = 1% of the surface area, from one of the detected inter-
est points in A.
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Figure 3. Invariance to manifold sampling: each row shows a mesh with the top 150 interest points and the scale-space representation.

Feature Description.The robustness of the feature de-
scription is measured as the average normalized L2 norm
between descriptors corresponding to matched feature
points.

5.3. Results

Two different scalar fields are considered: photometric
information (colour intensity) and geometric information
(mean curvature).

The results for Spectral-DoH and Spectral-HoG, the
newly proposed method, are shown in Table 1. The results
obtained with Mesh DoG and Mesh HoG, one of the state-
of-the-art methods proposed by Zaharescu et al. [21], are
presented in Table 2. As it can be observed, the newly pro-
posed spectral method outperforms [21] for both feature de-
tection and region description, exhibiting a higher resilience
to noise, thanks to its more global approach.

6. Conclusion

We have proposed a new scale-space representation and
gradient computation method for scalar functions defined
over 2D manifolds using a spectral decomposition with the
heat diffusion kernel. A great advantage of the proposed
method is that, once such a decomposition is computed, all
scales responses can be computed with very little extra com-
putational cost. In addition, we have proposed novel feature
detection and region description methods based on this rep-
resentation and compared favourably it with another state-
of-the-art implementation.
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Colour Intensity Mean Curvature

Strength
Noise(F)

Shot Noise(F)
Noise(G)

Shot Noise(G)
Rotation

Scale
Local Scale

Sampling
Holes

Micro-Holes
Topology
Isometry
Average

Repeatability
1 <2 <3 <4 <5

0.99 0.99 0.98 0.97 0.95
0.98 0.94 0.94 0.92 0.90
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.98 0.95 0.97 0.92 0.90
0.98 0.97 0.96 0.96 0.95
0.99 0.99 0.99 0.99 0.98
0.96 0.96 0.92 0.89 0.94
0.94 0.96 0.94 0.94 0.95
0.98 0.98 0.97 0.97 0.96

Robustness
1 <2 <3 <4 <5

0.07 0.10 0.13 0.16 0.19
0.10 0.19 0.25 0.29 0.32
0.17 0.22 0.25 0.28 0.29
0.04 0.07 0.11 0.16 0.26
0.01 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.00
0.12 0.16 0.18 0.20 0.22
0.27 0.33 0.35 0.37 0.36
0.04 0.07 0.11 0.11 0.12
0.04 0.04 0.09 0.08 0.09
0.16 0.21 0.24 0.29 0.28
0.20 0.20 0.21 0.22 0.21
0.10 0.13 0.16 0.18 0.20

Repeatability
1 <2 <3 <4 <5

0.99 0.99 0.99 0.99 0.99
1.00 1.00 1.00 1.00 1.00
0.94 0.93 0.93 0.94 0.92
0.99 0.96 0.96 0.95 0.92
1.00 1.00 1.00 0.99 1.00
1.00 1.00 1.00 1.00 1.00
0.97 0.95 0.94 0.92 0.93
0.92 0.91 0.92 0.90 0.94
0.98 0.97 0.97 0.94 0.94
0.99 0.98 0.98 0.97 0.97
0.95 0.96 0.92 0.89 0.95
0.94 0.94 0.93 0.93 0.94
0.97 0.97 0.96 0.95 0.96

Robustness
1 <2 <3 <4 <5

0.01 0.01 0.01 0.01 0.01
0.00 0.00 0.00 0.00 0.00
0.24 0.28 0.30 0.32 0.34
0.08 0.14 0.23 0.33 0.45
0.01 0.02 0.02 0.02 0.01
0.01 0.01 0.01 0.01 0.01
0.19 0.24 0.27 0.29 0.30
0.29 0.33 0.36 0.37 0.37
0.05 0.07 0.12 0.11 0.13
0.04 0.05 0.09 0.11 0.12
0.17 0.18 0.21 0.28 0.28
0.24 0.24 0.24 0.26 0.24
0.11 0.13 0.15 0.18 0.19

Table 1. Performance evaluation of the Spectral-DoH detector (repeatability) and of the Spectral-HOG descriptor (robustness).

Colour Intensity Mean Curvature

Strength
Noise(F)

Shot Noise(F)
Noise(G)

Shot Noise(G)
Rotation

Scale
Local Scale

Sampling
Holes

Micro-Holes
Topology
Isometry
Average

Repeatability
1 <2 <3 <4 <5

0.94 0.93 0.93 0.92 0.85
0.98 0.94 0.88 0.83 0.73
0.98 0.98 0.98 0.97 0.96
0.99 0.99 0.97 0.97 0.94
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.99 0.98 0.97 0.97 0.97
0.94 0.93 0.89 0.89 0.92
0.99 1.00 0.97 0.99 0.95
1.00 1.00 0.98 0.99 0.98
0.97 0.89 0.90 0.79 0.82
0.89 0.92 0.91 0.91 0.90
0.97 0.96 0.95 0.93 0.92

Robustness
1 <2 <3 <4 <5

0.05 0.06 0.08 0.11 0.16
0.12 0.28 0.32 0.36 0.37
0.21 0.26 0.29 0.32 0.34
0.07 0.13 0.22 0.31 0.39
0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01
0.16 0.20 0.23 0.25 0.27
0.31 0.36 0.36 0.38 0.39
0.02 0.05 0.10 0.08 0.14
0.03 0.03 0.09 0.10 0.11
0.21 0.29 0.30 0.32 0.35
0.22 0.23 0.23 0.25 0.24
0.12 0.16 0.19 0.21 0.23

Repeatability
1 <2 <3 <4 <5

0.97 0.97 0.97 0.97 0.97
1.00 1.00 1.00 1.00 1.00
0.93 0.90 0.88 0.87 0.85
0.98 0.96 0.94 0.92 0.91
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.97 0.95 0.93 0.92 0.91
0.88 0.88 0.89 0.83 0.89
0.99 0.99 0.98 0.97 0.97
0.99 0.99 0.98 0.98 0.97
0.96 0.95 0.85 0.90 0.91
0.91 0.92 0.90 0.90 0.90
0.96 0.96 0.94 0.94 0.94

Robustness
1 <2 <3 <4 <5

0.03 0.03 0.03 0.02 0.03
0.00 0.00 0.00 0.00 0.00
0.27 0.31 0.34 0.36 0.38
0.09 0.16 0.25 0.34 0.43
0.01 0.01 0.01 0.05 0.01
0.01 0.01 0.01 0.01 0.01
0.24 0.30 0.34 0.36 0.37
0.33 0.34 0.34 0.34 0.34
0.01 0.04 0.10 0.08 0.10
0.02 0.02 0.10 0.11 0.12
0.17 0.19 0.26 0.25 0.28
0.26 0.27 0.25 0.28 0.27
0.12 0.14 0.17 0.18 0.19

Table 2. Performance evaluation of the Mesh-DoG detector (repeatability) and of the Mesh-HoG descriptor (robustness).
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