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Abstract
This paper presents a novel approach to camera calibra-

tion that improves final accuracy with respect to standard
methods using precision planar targets, even if now inaccu-
rate, unmeasured, roughly planar targets can be used. The
work builds on a recent trend in camera calibration, namely
concurrent optimization of scene structure together with the
intrinsic camera parameters [4, 8, 1]. A novel formulation
is presented that allows maximum likelihood estimation in
the case of inaccurate targets, as it extends the camera ex-
trinsic parameters into a tight parametrization of the whole
scene structure. It furthermore observes the special cha-
racteristics of multi-view perspective projection of planar
targets. Its natural extensions to stereo camera calibration
and hand-eye calibration are also presented. Experiments
demonstrate improvements in the parametrization of the ca-
mera model as well as in eventual stereo reconstruction.

1. Introduction
Camera calibration is the process of estimating the pa-

rameters of a camera model that is capable of adequately
reflecting the operating principle of the actual camera. Ac-
curately calibrated cameras are prerequisite to most vision-
based algorithms. However, researchers still find it cha-
llenging to achieve the required accuracy in particular areas
like stereo vision or SLAM. Ever since the advent of high-
resolution, stereo vision algorithms are demanding higher
accuracy (i.e., more accurate epipolar geometry) to keep
computational costs in practical terms; SLAM puts simi-
lar requirements on calibration accuracy, mainly to reduce
dead reckoning drift, thus improving overall performance.

In this paper we are reworking the standard method for
camera calibration. On the basis of an adequate camera
model, the standard method optimally estimates camera pa-
rameters by sensibly minimizing discrepancies between ac-
tually collected and expected, model-based data. Of course,
the quality of gathered data plays an important role. Data
quality, quantity and diversity can be enhanced by con-
trolled scene structure, i.e., using calibration targets. In ad-
dition, accurate knowledge of the target’s geometry can be
provided. It is this last consideration that recently became
matter in question [4, 8, 1] and motivates our contribution.

In Section 2 the dangers arising from the requirement
of accurate knowledge of the scene structure are discussed.
If the latter requirements are lifted, optimal estimation by
sensible minimization of reprojection discrepancies must be
re-engineered. In Section 3 the standard formulation for
camera calibration will be adapted to this new paradigm.

2. Calibration by scene structure estimation
In the early years of computer vision, camera calibration

was a cumbersome process. 3-D knowledge of the scene
structure was a hard requirement [3, 2, 12] and high quality
targets were difficult to achieve. In contrast to this, the pos-
sibility to estimate the scene structure also exists, as a by-
product, along with regular camera calibration. In fact, this
was the most important trend in camera calibration since
the inclusion of optical distortion models. Tsai strikes this
new path by two calibration methods, where the pose of the
target (either 3-D or a planar, accurately shifted target) with
respect to (w.r.t.) the camera is being estimated [12, 13].
The most significant contribution, however, was simultane-
ously presented in the late nineties by Zhang, Sturm and
Maybank [14, 10]. Their approach allows free motion of
a precisely known planar calibration target. Their formula-
tion obtains an approximate solution for both the target pose
and the camera parameters from the readily obtained object-
to-camera homographies, by means of rigid body motion
constraints. The approach is flexible and accurate enough
to become standard practice to this day. This is not because
extensive 3-D knowledge of the scene directly compromises
calibration accuracy—the contrary is true, but because its
flexibility and simplicity prevent damage to calibration ow-
ing to human inaccuracies and mistakes [11, 8].

It is pertinent to address this trend towards camera-to-
target pose estimation in the context of scene structure es-
timation, even though they do not yet include the geome-
try of the calibration target into the optimization. From the
camera’s point of view, the scene structure is equally de-
termined by both the target’s geometry and its relative pose
w.r.t. the camera. In other words, the 6 Degrees of Freedom
(DoF) of the target’s pose combine with local target geome-
try to form the actual scene structure that eventually projects
unto the camera. This trend therefore provides a clear indi-
cation to additionally estimate the target’s geometry.
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In fact, a few authors already made an attempt at this.
Since manufacturing accurate 3-D calibration targets is
more laborious than manufacturing planar ones, the ap-
proach was first taken in 3-D by Lavest et al. [4]. Even
though their results seem convincing, the method did not
become popular, probably because it is formulated in 3-D
and, from 1999 on, researchers largely opted for planar ca-
libration targets. Strobl and Hirzinger in Ref. [8] were the
first to deal with structure estimation in 2-D. They noticed
that off-the-shelf printers systematically cause errors, both
in global scale and in aspect ratio of the printed pattern.
The pattern is then minimally modeled by these two para-
meters, which can be simultaneously estimated during in-
trinsic and hand-eye calibrations, respectively. Albarelli et
al. [1] go one step further; they observe anisotropic error
distribution in reprojected object coordinates after calibra-
tion, which leads them to believe that significant, system-
atic pattern errors are actually pervasive—however small.
In addition, the considerable reduction in residual reprojec-
tion errors reached after full camera and scene structure op-
timization further strengthens their position, that slightest
pattern corrections really imply a significant accuracy im-
provement in camera calibration. Even though their initial
rationale is wrong (anisotropic error distributions are actu-
ally expected after nonlinear reprojection of isotropic image
noise), their approach is undoubtedly convenient, at least
when major inaccuracies in the calibration target occur.

Although the algorithms in Refs. [4] and [1] are indeed
very similar (incidentally, the latter fail to cite the former),
their conveyed messages differ. While Lavest et al. claim
that, by using their method, small inaccuracies will not get
to harm camera calibration, Albarelli et al. on the other hand
affirm that, by target geometry optimization, the user will
even be able to come by accuracy levels that are otherwise
virtually impossible to achieve at moderate cost. Whatever
message they convey, the two main differences in their me-
thods are: Firstly, Albarelli et al. assume planar patterns
and have the opportunity to make use of the convenient
algorithms in Refs. [14, 10, 8], whereas Lavest et al. re-
quire 3-D calibration targets and a laborious initialization
step. Secondly, Lavest et al. seem to directly include all
3-D geometry of the target into the optimization, for several
images, without further ado; Albarelli et al. on the contrary
are forced to construct an iterative algorithm that decouples
geometric estimation of the target from intrinsic parameters
estimation. It is mainly this last detail that we rework here.

As stated above, when considering together the target’s
geometry and its relative pose w.r.t. the camera, they form
together the scene structure. A parametrization using both,
a rigid body transformation (6 DoF) and 3×M Euclidean
coordinates (in 3-D) for all M feature points, is clearly over-
parameterized, cannot be estimated unambiguously, and
will not converge during nonlinear optimization. A tight

parametrization is achieved, e.g., by merely releasing 3×M
Euclidean coordinates. However, it is sensible to take ad-
vantage of the relative transformation between the calibra-
tion target and the camera cT

o, because the local geome-
try model will then still hold, unmodified, from a different
vantage point—this is convenient for multi-view optimiza-
tion. In the latter case, however, the local geometry model
of the calibration target has to be restricted to 3×M−6 pa-
rameters. The authors in Ref. [4] do not mention this issue,
which may have been another reason for the limited popu-
larity of their approach. In Ref. [1] the authors encounter
this problem; they deal with it by strictly decoupling target
geometry and camera parameters estimation in an iterative
way. While the latter approach should work, it is not neces-
sary to detach scene structure estimation from intrinsic opti-
mization if a tight parametrization is used. The perspective
distortion captured by the images ought to be sufficient to
distinguish between camera magnification (i.e. focal length)
and scene structure (target geometry and poses cT

o)—up to
scale, provided a multi-view calibration approach was cho-
sen. Furthermore, their rescaling step back to original ab-
solute scale is superfluous, as correct monocular intrinsic
calibration is possible irrespective of absolute scale [8].

3. Proposed method: intrinsic camera calibra-
tion and full scene structure estimation

In this section we are presenting a calibration method
that completely releases target geometry and performs
jointly with intrinsic parameters estimation. The approach
is similar to the standard calibration methods in Refs.
[14, 10, 8]. Expected, model-based operation is compared
with actual projections; after that, the resulting discrepan-
cies are minimized by tuning parameters in the projection
model. In this work the modification w.r.t. standard methods
will be the tight release of the target’s geometry during the
final nonlinear optimization. Critically, requirements on
the calibration target are now drastically lifted so that un-
measured patterns (e.g., a checkerboard printed on paper
using off-the-shelf printers) can be used, even on an uneven
surface. The only requirement now is that the pattern re-
mains static during calibration—unless it is rigid material.
If stereo camera calibration is intended, a sole scale para-
meter (e.g., absolute distance between two arbitrary corner
features) is required. A potential hand-eye calibration in
turn waives this last requirement.

3.1. Feature detection

It is of paramount importance for accurate camera ca-
libration to precisely and robustly detect calibration target
features on the images. In fact, Lavest et al. argue that, by
following this paradigm of concurrent target geometry esti-
mation, the calibration results will no longer depend on the
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(lack of) accuracy of the pattern, but mainly on the accuracy
of feature detection [4]. Planar checkerboard patterns are
certainly convenient in terms of (sub-pixel) localization ac-
curacy of their corners [5, 9], thus our method is conceived
for (not restricted to) this type of data.

3.2. Initial closed-form solution

Like most optimization processes that are formulated as
residual minimization problems, camera calibration is vul-
nerable to local solutions. The current standard for its ini-
tialization stems from Refs. [14, 10].

In projective geometry, homogeneous plane coordinates
are transformed following a linear projective transforma-
tion called homography. Since the planar sensor of the ca-
mera and the planar target are approx. related by a projective
transformation, homographies nH between image projec-
tions nmi =[nui nvi 1]T and pattern features xi =[xi yi 1]T

can be estimated (̂ ) from at least four (three out of four
non-collinear) correspondences i, for every image n, so that
nmi≈nĤxi, ∀n ∈ {1, . . . , N}, i ∈ {1, . . . ,M}.

We aim at the pinhole camera model represented by its
intrinsic matrix A, which together with the rigid body trans-
formation between the camera frame and the object frame
cnT

o = [nr1 nr2 nr3 nt ], project 3-D coordinates as fol-
lows:

nmi≈A cnT
o [xi yi zi 1]T . (1)

For planar targets (zi,0) we have nĤ ∝ A[nr1 nr2 nt ].
Since r1 and r2 are orthonormal: r1 ·r2 = 0, r1 ·r1 = 1,
and r2 ·r2 = 1, i.e., cR

o∈SO(3). Sorting the scale out we
obtain hT

1 ω∞ h2 = 0 and hT
1 ω∞ h1 = hT

2 ω∞ h2, where
ω∞=A−TA−1 is the so-called absolute conic. These two
equations hold for N images, leading to 2N constraints for
e.g. 5 intrinsic unknowns, which can be solved for using a
linear least-squares criterion, if N≥3. The system of equa-
tions can be extended if stereo is used [6]. In Ref. [8] Strobl
and Hirzinger noted that, if the pattern coordinates are only
known up to aspect ratio, normalization of the rotation ma-
trices (hT

1 ω∞ h1 = hT
2 ω∞ h2) should not be performed.

The solution produced hereby is irrespective both, of the ab-
solute scale and of the aspect ratio of the planar pattern, and
it suffices to bootstrap nonlinear optimization.

3.3. Optional: nonlinear intrinsic optimization

Since optical distortion has not yet been compensated for
during initialization, the user may insert a standard, nonlin-
ear optimization in order to support eventual convergence.
At this point, the user may choose between the traditional
approach and the approach in Ref. [8], where the pattern
aspect ratio is being estimated. However, if the expected
(prior to printing) pattern dimensions are provided and off-
the-shelf printers are used, experiments show that this step
can be readily skipped.

Regular nonlinear optimization is maximum likelihood
estimation only if perfect knowledge of the target geometry
is assumed. It optimizes parameters by minimizing resi-
duals as follows:

Ω̂? = arg min
Ω̂

N∑
n=1

M∑
i=1

||nm̃i − nm̂i(Ω̂, xi)||2 , (2)

where the optimized (?) parameters Ω? include the intrinsic
matrix A, the distortion parameters k = {k1, k2, . . .}, and
the camera poses cnT

o. nm̃i are actually measured image
projections and nm̂i are expected, distorted projections of
the pattern features xi. The optimization can be extended
with the intrinsics of further cameras (stereo camera) along
with their rigid transformations w.r.t. the reference camera.

3.4. Simultaneous intrinsic camera calibration and
full scene structure estimation

As stated in Section 2, it is sensible to fully release scene
structure, extending optimization parameters to the target’s
geometry. Three recent approaches were reviewed that are
either erroneous, incomplete, or needlessly complex. Here
we bring forward a novel target parametrization that is per-
fect complement to the N relative transformations cnT

o, to
jointly model full scene structure.

Target geometry is a parameter to reprojection in Eq. (2),
but it is not part of the optimization parameters Ω. The blunt
inclusion of M 3-D target points is suggested in Ref. [4].
This leads to overparametrization when coupled with the N
unknown transformations cnT̂

o
(3×M+6 DoF at every sta-

tion n) and estimations change uncontrollably during opti-
mization, which precludes absolute convergence. To obtain
a tight representation, 6 DoF have to be subtracted from
the geometric model of the target (now 3×M−6 DoF) to
overall 3×M DoF at every station n—and scene structure
is uniquely defined. However, since intrinsic camera cali-
bration is possible irrespective of the absolute scale of the
scene, a further DoF has to be subtracted. In Fig. 1 the 7
DoF that are excluded from optimization are depicted; they
involve three corner features—their choice is arbitrary as
long as they are non-collinear. Feature x3D

1 = [0 0 0]T is
fixed to be pattern origin since else it couples with nt. Two
other fixed points are x3D

2 = [d 0 0]T and x3D
3 = [x3 y3 0]T.

y2,0, z2,0, and z3,0 fix the target orientation so that it
will not get coupled with the orientation in cnT̂

o
. x2,d fixes

the absolute pattern scale to an arbitrary value. In spite of
these constraints, the target geometry is still released up to
its absolute scale—which cannot be estimated during cali-
bration after all.

The new optimization parameters Ω+ include x3, y3,
and x3D

i ∀i ∈ {4, . . . ,M}, i.e. 3×(M−3)+2 variables:

Ω̂
+

? = arg min
Ω̂

+

N∑
n=1

M∑
i=1

||nm̃i − nm̂i(Ω̂
+
, d)||2. (3)
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In doing so, we cast the former Eq. (2) into a much harder
optimization task as the parameters vector length skyrockets
from e.g. 5+2+6×N to 5+2+6×N +3×(M−3)+2,
where M � N . Being the residuals vector already long
(up to 2×M×N ), the required Jacobian matrix increases
exponentially in size. Even though computing efficiency is
uncritical in camera calibration, we recommend providing
Jacobian sparsity patterns to this optimization.1

x    = [0 0 0]1
T

x    = [d 0 0]2
T

x    = [x   y  0]3
T

3 3

Tc
o

3D

3D

3D

Figure 1. Pattern features x3D
1 , x3D

2 and x3D
3 that will be (in part)

fixed during joint intrinsic and full scene structure optimization.

3.5. Extension #1: stereo camera calibration

A natural extension of this work is in the case of stereo:

Ω̂
⊕
? = arg min

Ω̂
⊕

C∑
c=1

N∑
n=1

M∑
i=1

||cnm̃i − c
nm̂i(Ω̂

⊕
, d)||2. (4)

Compared to Ω+ the optimization parameters Ω⊕ addition-
ally include the intrinsics of further cameras (Ac, kc) and
their rigid, relative transformations c1T

ccw.r.t. the reference
camera c1. If two cameras are used, the residuals vector
length amounts to up to 2×2×M×N , and the parameters
vector to, e.g., (5+2)×2+6+6×N+3×(M−3)+2. It is worth
noting that the value of d is not arbitrary anymore, if stereo
ought to be calibrated to correct metric scale; the user has to
provide a valid distance d between two (arbitrary) features.

3.6. Extension #2: hand-eye calibration

Hand-eye calibration is the estimation of the rigid body
transformation tT

c1 relating the end-effector frame of, e.g.,
a robot manipulator (hand, t) to the reference camera frame
(eye, c1) mounted on it [7]. Similar to stereo calibration,
regular hand-eye calibration requires correct metric scale.
Since more often than not hand-eye calibration is decou-
pled from intrinsic camera calibration, the hand-eye cali-
bration method presented by Strobl and Hirzinger in Ref.
[8], Method #1, still holds. In a nutshell: The discrepancies
(On) between expected and measured transformations are
minimized. Expected transformations c1T̂

o

? stem from in-

trinsic calibration; measured transformations bT̃
t

from the
1 The use of analytical Jacobians is here, however, discouraged as resi-

duals are in distorted image space, Jacobians are hard to get, and it is too
costly to perform variable substitution on them in the first place.

(erroneous) motion readings of the manipulator. Note that
here the absolute scale d can be simultaneously estimated
during optimization. Following the notation in Refs. [7, 8]:

{tT̂
c

?, bT̂
o

?, d̂?}=arg min
tT̂ c, bT̂ o, d̂

∑N
n=1On(Φ(cT̂

o

?, d̂ ), bT̃
t
, ...)

where the function Φ scales the transformations cT̂
o

? in
range—according to the scaling factor d̂ being estimated.
If this method is used, the user does not even need to pro-
vide a valid distance d for stereo calibration; he or she only
needs to rescale c1T̂

cc

? back to correct metric scale using d̂?.

4. Experiments
In this section we are analyzing the results of last sec-

tion’s method, both on calibration data and in independent
validation experiments. After that we shall discuss on the
utility of the presented approach.

A stereo camera was used consisting of two progres-
sive scan AVT Marlin cameras with SVGA 1/2” Sony CCD
chips and Sony VCL-06S12XM 6 mm objectives; experi-
ments show that a radial distortion model using only two
parameters (3rd and 5th degree) suffice to model the optics’
geometric distortion. Stereo base distance is approx. 5 cm.

Two calibration targets are used: On the one hand a
precision pattern size A3 printed on a metallic plate; on
the other hand a printed A3 sheet of paper with the same
checkerboard pattern of 14×20 = 280 corner features. The
distance between features is approx. 2 cm. The paper pa-
ttern was folded previous to calibration to affect its pla-
narity, thus represents a worst-case scenario, see Fig. 2. In
both cases the calibration consists of 12 tilted images at
three different heights w.r.t. the pattern: 20, 40 and 80 cm.
Of course, not all corner points are seen in every image.

At this point it is worth mentioning the reason for taking
additional images at different heights, since usually 4 or 8
images suffice: It is critical to optical distortion estimation
to fill in images with features, so that distortion can be cor-
rectly estimated in the image corners [9]. Naturally, some
features in the image corners might be imaged only once.
Using our novel method, those lone features are now totally
released in 3-D to match their actual image projections, thus
will not enforce correct distortion model parametrization.
To avoid lone features, we additionally take distant images.

Figure 2. Wrinkled paper calibration target size A3.
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Table 1. Intrinsic parameters after standard (Std.) and simultaneous scene structure and stereo calibration (Full), using a precision target.
Left camera Right camera (both)

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS Rα Rβ Ru0 Rv0 Rk1 Rk2 RMS RMS

Std. 724.79 724.12 372.42 272.34 −0.1963 0.0995 0.155 728.31 728.01 391.73 270.35 −0.1962 0.1008 0.173 0.165

Full 724.32 724.35 372.20 271.22 −0.1973 0.0993 0.078 727.85 728.40 391.55 269.23 −0.1982 0.1033 0.077 0.077

Calibration starts out by accurately detecting and loca-
ting corners in the images using DLR CalDe [9], with sub-
pixel accuracy. Since calibration will also estimate the tar-
get’s geometry, it is not necessary to provide accurate pa-
ttern dimensions—experiments in Ref. [8] showed strong
convergence in a similar scenario. However, the metallic
plate was initially meant to deliver ground-truth geometry,
or rather to show the potential precision in target geometry
estimation, thus we do adopt accurate pattern dimensions in
that case (actual square size is 19.985×19.950 mm).

The optimization method in Sections 3.4 and 3.5 was
implemented in MATLAB R©; the used Levenberg-Marquardt
optimization function is lsqnonlin in its large-scale variant.
We choose to provide Jacobian patterns for its sparse nu-
merical implementation to keep computational costs low.

4.1. Joint optimization of camera and scene

Next we are showing the resulting camera parameters
and scene structure as well as the residuals after calibration
both in image and in 3-D target coordinates.

4.1.1 Using an accurate, planar metallic target

Planar calibration targets imprinted on metallic plates pro-
vide both structural stability and high planarity. This is a
best-case scenario to camera calibration, thus less profit is
expected from concurrent scene structure estimation.

In fact, both monocular (Section 3.4) and stereo (Sec-
tion 3.5) joint intrinsic and full scene structure estimations
deliver almost identical camera parameters w.r.t. the stan-
dard approaches, cf. Tabs. 1 and 2. The reason is the very
slight optimization of the pattern structure achieved, see
Fig. 3, in the region of a tenth of a millimeter. The tar-
get optimization is mainly in its 2-D imprinted pattern be-
cause, apparently, it is still subject to inaccurate printing
errors similar to off-the-shelf paper printers, see Fig. 6 (a).
Fig. 3 (a) shows a planarity correction in the order of a tenth
over 200 mm—a very slight bending of the plate.

A remarkable result is, however, the significant reduc-
tion both in image and object reprojection residuals, see
Figs. 5 and 6. Image reprojection residual errors are mea-
sured by their Root Mean Square error (RMS). Neverthe-
less, these reductions result from calibration-related mini-
mizations and their potential effects in final accuracy still
have to be experimentally verified, see Section 4.2.

Table 2. Intrinsics after standard (Std.) and simultaneous scene
structure and monocular calibration (Full), using a precision target.

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 724.58 723.93 372.44 272.17 −0.1960 0.0994 0.151

Full 724.50 723.69 371.92 271.08 −0.1955 0.0975 0.063

0.05
0.00
-0.05
-0.10

0

100

-100

-100

100

0 y (mm)x (mm)

∆z
 (m

m
)

0.02

0.00

-0.02

0
100

-100

-100

100
0

y (mm)

x (mm)

∆y
 (m

m
)

0.02

0.00

-0.02

0
100

-100

-100
1000

y (mm)

x (mm)

∆x
 (m

m
)

(a)

(b)

(c)

Figure 3. Corrected feature positions ∆z (height), ∆y and ∆x (in
2-D) after joint intrinsic and full scene structure estimation on the
precision target. Corrections are consistent after monocular and
stereo approaches.
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Table 3. Intrinsics after standard (Std.) and simultaneous scene structure and stereo calib. (Full), using an unknown, wrinkled paper target.
Left camera Right camera (both)

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS Rα Rβ Ru0 Rv0 Rk1 Rk2 RMS RMS

Std. 718.99 724.10 362.60 268.97 −0.2534 0.1706 2.180 719.64 724.71 393.26 271.03 −0.2050 0.0840 2.084 2.133

Full 724.71 724.07 372.53 270.87 −0.1968 0.0971 0.111 728.18 728.08 391.74 268.89 −0.1981 0.1013 0.115 0.113

4.1.2 Using an unknown, wrinkled paper target

Checkerboard patterns on paper using off-the-shelf printers
are the most convenient calibration targets that still guaran-
tee accuracy and repeatability in detection and location of
their corner projections, through several images.2 Indeed,
printed patterns are the most used calibration targets world-
wide [5, 9]. Researchers struggle to stick them on planar
surfaces and, more often than not, to measure up their di-
mensions. Eventually they get humid and bumpy and need
to be replaced.

For reasons of space we are addressing a worst-case sce-
nario where the pattern is not measured after printing. We
assume corner distances of 2 cm as in the original Post-
Script R© file. On top of that, the paper target has a folding
mark in the middle so that it is clearly not planar, see Fig. 2.

Standard camera calibration cannot deliver accurate re-
sults over this pattern, see Tabs. 3 and 4. The image repro-
jection residuals after calibration in Fig. 7 (a) are very high,
owing to strong systematic errors in the object model, see
Fig. 8 (a). The presented methods in Sections 3.4 and 3.5
do compensate for these object model errors, see Figs. 7 (b)
and 8 (b), so that the intrinsic camera parameters virtually
match former results in Tabs. 1 and 2.3 The object model
optimization performed during calibration is depicted in
Fig. 4. The results correspond with the expected deforma-
tion showing unevenness of approx. 6 mm.

A further drawback of using the standard method with
this type of patterns is that measuring its dimensions is di-
fficult, as the pattern is delicate and easy to deform. By
using our method this step is rendered superfluous. In the
case of stereo calibration (Section 3.5), the input of a single
absolute distance between two arbitrary pattern corners suf-
fices. If hand-eye calibration is additionally performed, the
user can spare this last measurement.

2 The only more convenient calibration target is unstructured scenery
(self-calibration), which does not, however, guarantee accurate and robust
feature detection and localization.

3 In the case of stereo calibration, residuals do not quite reach the le-
vels of the metallic pattern, cf. Tabs. 1 and 3. If the paper was not folded
but directly put on a table after printing, results do match exactly, irrespec-
tive of natural paper bending. The difference can be explained either by
noisy detection of pattern features due to local shadows, or by stagnant
convergence of the nonlinear optimization. Either way, the validity of the
parametrization is not stated by the calibration RMS but by independent
validation experiments, see Section 4.2.

Table 4. Intrinsics after standard (Std.) and simult. scene structure
and monoc. calibration (Full), using an unknown, wrinkled paper.

Lα Lβ Lu0 Lv0 Lk1 Lk2 RMS

Std. 718.65 723.05 370.78 268.53 −0.2518 0.1721 2.105

Full 724.35 723.58 372.18 270.90 −0.1943 0.0946 0.069
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Figure 4. Corrected feature positions ∆z (height), ∆y and ∆x (in
2-D) after joint intrinsic and full scene structure estimation on the
paper target. Corrections are consistent after monocular and stereo
approaches.
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Figure 5. Magnified (100×) image reprojection errors for all 12 left cali-
bration images after std. camera calibration (a) and after full estimation (b),
using a precision pattern. RMS error reduces from 0.151 to 0.063 p.
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Figure 6. Perpendicular projection of magnified (100×) object reprojec-
tion errors for all 12 left calibration images after standard camera calibra-
tion (a) and after full estimation (b), using a metallic precision pattern.

4.2. Accuracy evaluation

Next we are showing stereo triangulation results on data
independent from calibration that will be used to check ca-
libration methods against each other. We replicate the vali-
dation experiment in Ref. [1], which measures the distance
d between two rigid points in 3-D space. The camera con-
tinuously moves in the direction of its optical axis. In order
to reach optimal feature localization accuracy, we take two
particular corner features in a checkerboard pattern that is
standing perpendicular to the camera motion. The features
are approx. 22 cm apart from each other.

The measured distance d is irrelevant to our analysis as
it ultimately depends on the accuracy when measuring the
pattern scale by hand during calibration, which is naturally
limited (refer to Section 3.5). A valid hint for calibration
accuracy is, however, the consistency of the distance esti-
mation at different triangulation ranges [1]. Fig. 9 (a) shows
that, both with and without full scene structure estimation,
the metallic plate-based stereo camera calibration delivers
near-constant estimations, drifting half a millimeter (out of
220 mm) from 0.3 to 1 m range. Paper target-based cali-
bration causes a major drift of 2 mm unless full structure
estimation is performed—then results match the former.

Flawless stereo triangulation is of course impeded
by inaccurate feature detection and imperfect camera
calibration—i.e., estimated ray directions will not intersect.
As a triangulation result for a particular feature, we choose
the 3-D point i in the middle of the segment of minimum
distance between the left (camera c1) and the right (camera
c2) stereo rays c1l and c2r. It can be represented as follows:
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Figure 7. Magnified (10×) image reprojection errors for all 12 left cali-
bration images after std. camera calibration (a) and after full estimation (b),
using a wrinkled paper pattern. RMS error reduces from 2.105 to 0.069 p.

100

50

0

-50

-100

-150 0 150

y (mm)  10x 100x

x (mm)

100

50

0

-50

-100

y (mm)

-150 0 150x (mm)
(a) (b)

Figure 8. Perpendicular projection of magnified (10×) object reprojection
errors for all 12 left calibration images after standard camera calibration (a)
and after full estimation (b), using a wrinkled paper pattern.

c1i = L c1l +
N

2
c1n = R

(
c1R̂

c2

? c2r
)
+ c1t̂

c2−N

2
c1n

/
c1n = c1l×c1R̂

c2

? c2r, L∈R, N ∈R, R∈R . (5)

Eq. (5) forms a linear system of 3 equations and 3 unknowns
L, N and R that is solved using LU factorization. Similar
to consistency in distance estimation in Fig. 9 (a), the mini-
mum distance N between stereo reprojection rays also indi-
cates calibration accuracy. Fig. 9 (b) shows its mean value
for both corner points w.r.t. camera range. For the metal-
lic plate-based calibration, stereo triangulation is performed
with half a tenth of a millimeter triangulation error at any
distance tested. Scene structure estimation does slightly im-
prove consistency (9.9% error decrease). Results are clearer
for the paper target-based calibration, where triangulation
errors increase to four tenths of a millimeter at far range, if
the standard calibration method is used. If scene structure
estimation was performed, error levels shrink anew to half a
tenth of a millimeter (72% error decrease), exactly as when
using the metallic plate.4

It is worth noting that the extrinsic rigid transformation
between cameras c1T̂

c2
is mainly responsible for the results

presented here. Contrary to the experiment in Ref. [1], in
this work the stereo transformation fully results from the full
structure estimation paradigm in question, see Section 3.5.
Furthermore the examined range extends to 1 m.

4 More specifically 7.8% worse than after full scene structure estima-
tion using the metallic plate, but then 3.4% better than standard calibration
using the precision metallic pattern.
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Figure 9. Validation by stereo: (a) Distance d between rigid points
and (b) mean value of the triangulation error, w.r.t. camera range.

4.3. Discussion

At first the above results make for somewhat of a disap-
pointment. If camera calibration is dutifully performed, less
extra accuracy is attained by simultaneous estimation of full
scene structure.5 All things considered, however, it is very
difficult for most users to produce an exact calibration tar-
get and, on top of that, it comes at no cost to calibration
accuracy to perform simultaneous intrinsic and full scene
structure estimation as long as two slight limitations are ob-
served: Firstly, to avoid gathering features in image corners
with exclusive support; additional images are encouraged
where the pattern is fully captured.6 Secondly, the calibra-
tion target has to remain static unless it is rigid material; it
is the camera and not the calibration target that should be
shifted for grabbing images.

The preliminary results in this work show that simulta-
neous intrinsic and full scene structure estimation should be
performed in any situation where the calibration target is
expected to be nearly planar. Apart from delivering results
at least as accurate as from a flawless standard implemen-
tation, the method deskills the calibration procedure, thus
prevents damage from pattern inaccuracies and human mis-
takes. This is especially true in the case of printed paper
patterns or bigger targets (e.g. patterns projected by an over-
head projector), which are difficult to measure accurately.
In view of the blatant similarity to bundle adjustment—gold
standard for structure from motion approaches, the current
methods have the potential to be considered gold standard
for pinhole camera calibration using planar targets.

5 At Ref. [1] Albarelli et al. observe that, using their method on an accu-
rate planar target, scene structure is optimized prior to camera parameters
since this minimizes residuals faster—they cannot provide an explanation
for that. Our read of this phenomenon is that, since it is only scene struc-
ture optimization that minimizes residual errors, camera parameters do not
significantly change. Standard, least-squares optimization with abundant,
redundant data already compensated for the former structure inaccuracies,
thereby delivering optimal, accurate intrinsic parameters in the first place.

6 For that matter, it is widespread to take only this type of images during
camera calibration, which is harmful to accurate estimations.

5. Conclusion
The novel approach presented in this paper enables re-

searchers to perform camera calibration using, e.g., freshly
printed patterns, outperforming conventional methods that
require precision patterns. The pattern does not even need
to be measured for monocular camera calibration. If stereo
camera calibration with correct metric scale is intended,
a single distance measurement has to be provided unless
hand-eye calibration following Ref. [8] is performed—then
again no pattern measurements are required.

Experiments on real calibration data and an evaluation of
stereo reconstruction accuracy validate the approach. The
algorithm will be soon included in the camera calibration
toolbox DLR CalDe and DLR CalLab [9].
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