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Abstract

Consolidation of point clouds, including denoising, out-

lier removal and normal estimation, is an important pre-

processing step for surface reconstruction techniques. We

present a consolidation framework specialized on point

clouds created by multiple frames of a depth camera. An

adaptive view-dependent locally optimal projection opera-

tor denoises multiple depth maps while keeping their struc-

ture in two-dimensional grids. Depth cameras produce a

systematic variation of noise scales along the depth axis.

Adapting to different noise scales allows to remove noise

in the point cloud and preserve well-defined details at the

same time. Our framework provides additional consolida-

tion steps for depth maps like normal estimation and outlier

removal. We show how knowledge about the distribution of

noise in the input data can be effectively used for improving

point clouds.

1. Introduction

Consumer depth cameras provide a simple and cost-

efficient way of generating 3D point clouds from real world

scenes. A single frame provides a dense and colored point

cloud as seen from one viewpoint. By combining multiple

frames it is possible to capture large interior scenes [4]. The

resulting point clouds provide a good impression of the cap-

tured scene, but generating precise surfaces is challenging

due to noise, outliers and registration inaccuracies.

Depth precision of stereo cameras is generally decreas-

ing quadratically with increasing distance to the camera.

While the actual error is random noise and cannot be re-

moved automatically, the noise scale can be traced back

to camera design and analyzed systematically. If multiple

frames of a depth camera are combined, the scene will con-

tain reliable 3D points captured from near viewpoints as

well as points with high noise from distant camera loca-

tions. While some parts may only contain points with a

similar signal-to-noise ratio, there are also parts with a mix-

ture of different noise scales.

Our goal is to improve surface reconstruction from mul-

tiple depth maps by including the information about the

(a) Input point cloud (b) avdLOP

Figure 1. A depth map is cleaned from noise and outliers, while

details in well-defined areas are preserved. The monitor in the

foreground is hardly affected by the avdLOP operator, because it

contains only a small amount of noise. However, the wall in the

background is strongly improved with our algorithm as can be seen

in the bottom images.

varying precision of points. In overlapping areas, points

with a high confidence should have more impact on the fi-

nal surface than noisy points. Well defined areas contain-

ing mainly confident points should keep all details and thus

shouldn’t undergo too much smoothing. On the other hand,

areas without any confident points have to be smoothed in

order to get rid of outliers and noise.

It is hard to achieve these goals with general point pro-

cessing tools where all points are handled equally. Without

any additional information it is not possible to distinguish

between noise and real features in the data, especially when

there are areas with noise larger than the scale of small, but

well defined, details. Point processing techniques often de-

pend on a global neighborhood size. A large value will re-

move important details in well defined areas, while a small

value won’t denoise areas with poor signal-to-noise ratio.

In this paper we introduce a variation of the locally op-

timal projection (LOP) operator [10], where we incorporate



additional information given by depth maps. We explicitly

adapt the neighborhood size as well as the importance of

points according to their estimated noise scale. Addition-

ally, we modify the LOP operator such that the structure of

individual depth maps is preserved.

2. Related work

Huhle et al. [7] presented a non-local denoising algo-

rithm for depth maps, where color information can be op-

tionally included in the filter. Their method works on sin-

gle depth maps and does not take advantage of information

from other viewpoints.

Many different techniques are available for reconstruct-

ing surfaces from point-sampled data. A common approach

is to create an implicit surface definition from a point set.

Well-known algorithms include the projection on tangent

planes [5], radial basis functions [2], and Poisson recon-

struction [8]. The moving least squares (MLS) approach

[9, 1] creates a new point set surface by projecting points

onto a local polynomial function and thus removing out-

liers and noise. These reconstruction techniques implicitly

use a smoothness assumption, but variations for maintain-

ing sharp edges are available (e.g. [3]).

2.1. Locally optimal projection (LOP)

The locally optimal projection (LOP) operator [10] cre-

ates a cleaned point set from a noisy input point set, possibly

containing outliers and non-uniform sampling. In contrast

to previously mentioned reconstruction techniques, LOP

projects points onto the surface without using a local 2D

parameterization. LOP is closely related to the multivari-

ate L1 median, which is defined as the point minimizing the

sum of Euclidean distances to a data set P .

Given an unorganized point set P = {pj}j∈J ⊂ R
3,

LOP projects a set of points X0 = {xi}i∈I ⊂ R
3 onto

the surface defined by P . Usually, X0 is a downsampled

version of the given point set P and is upsampled to the

original density after the projection. Nevertheless, it is pos-

sible to project an arbitrary point set onto the surface. LOP

is solved by the fixed point of an iterative solution. For each

iteration k = 1, 2, 3, ...,
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The first term attracts points to the object surface while

the second term is a repulsive force to keep the points well

distributed. The function θ(r) = e−r2/(h/4)2 is a rapidly

decreasing weight function with a finite support radius of h.

η(r) is another decreasing function, defined as 1/(r3), pe-

nalizing points which come too close to neighboring points.

Huang et al. [6] provide an extension named WLOP

(weighted locally optimal projection) for achieving a uni-

form distribution although the input point cloud is highly

non-uniform. Weighted local densities are computed for

each point pi in P and xi in Xk which measure how densely

points are distributed within the neighborhood size. The at-

traction term is weighted lower for dense areas, while the

repulsion term is weighted higher. Additionally, the authors

propose a new repulsion function η(r) = −r, which has a

smoother slope and thus penalizes more at larger r.

3. Adaptive view-dependent LOP

The LOP operator is useful for consumer depth cameras,

as interior scenes are very diverse and thus the reconstruc-

tion should be independent from a local parameterization.

It is possible to apply similar adaptations, as described for

LOP in this section, to other reconstruction techniques.

Our algorithm modifies the LOP operator in two ways.

First, we use confidence values to consider different noise

scales in a range scan. Second, we want to keep depth maps

and thus adapt points only in their viewing direction. Op-

posite to the original LOP, it is not possible to distribute

arbitrary input points on the surface with our adapted algo-

rithm. Instead it is assumed that the input point cloud P , or

a downsampled version of it, is used as starting point X0

for the iterative LOP algorithm.

3.1. Adapting to different noise scales

The precision of point clouds generated by depth cam-

eras strongly varies with the distance from the sensor. While

nearby surfaces are captured quite accurately, more distant

objects are represented with a high level of noise. For stereo

cameras, the precision approximately decreases quadrati-

cally with the distance to the camera. Including this infor-

mation into the LOP operator can improve the reconstruc-

tion quality of both, single depth maps and multiple regis-

tered depth maps captured from different viewpoints.

A larger influence neighborhood is required for noisy

points as they might be located far from the actual surface.

Another problem, especially valid for single depth maps,

is that there might not even exist any confident points in a

larger neighborhood. In this case we accept that the sur-

face is smoothed by the enlarged neighborhood size, but the

noise is effectively removed.

In the beginning, the neighborhood size is adapted for

each point xi corresponding to its noise scale, which we as-

sume to increase quadratically for increasing depth values.

A global neighborhood size h is defined for a camera dis-

tance of 1 meter and is adjusted for each projected point xi



Figure 2. View-dependent projection: The point at the orange

cross (xi) is projected onto the unknown surface defined by the

blue points (pj). The point can only move along its viewing direc-

tion in order to maintain the depth map. The point sizes visualize

the weighting function θ(r) based on Euclidean distances.

to hi = hz2i where zi denotes the distance of point xi to its

camera plane.

When a point is projected near to confident points during

the iterative algorithm, the support radius has to be adapted

to the increased confidence value. A new neighborhood size

hk+1
i is computed in each iteration (Eq. 3), based on the

depth values within the local neighborhood.
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Additionally, points should be attracted more by surface

points with high precision than by noisy points. Therefore,

we weight surface points pj with the function ρ(d) = 1/d
applied on the points’ depth values zj .

Equation 4 shows the modified computation of αi
j for

adapting to different noise scales. The modified weight

function θ(r, d) has the adapted support radius as additional

parameter.
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j =

θ(
∥

∥ξkij
∥

∥ , hi) ρ(zj)
∥

∥ξkij
∥

∥

(4)

3.2. View­dependent projection

There are several reasons for keeping point-sampled data

organized in a set of depth maps. The alignment of points

in a two-dimensional grid can be favorable for fast com-

putations of surface properties such as normal estimation.

In case of consumer depth cameras, some applications may

benefit from the coupling between depth maps and color

images, or the temporal order of capturing is needed.

In order to keep depth maps as seen from the original

viewpoint, translations along the viewing directions are the

only possible adjustments of the point cloud. Instead of

summing over surface points, we first project the points

onto the viewing ray of the currently projected point and

sum over displacements relative to the original point along

Figure 3. On surfaces with a steep angle to the viewing direction

points might get attracted to point clusters away from the real sur-

face. The orange line represents the real surface, the blue points

are sample points slightly off the surface. The point on the top

view ray would be projected away from the surface if no repulsion

term is applied.

this ray (see Figure 2). The weighting function θ(r) is still

applied to Euclidean distances between xi and pj . This en-

sures that points located further away from the viewing ray

are weighted lower than nearby points.

The first term in Equation 2 now becomes

xk
i + vki

∑

j∈J

(ξkij · v
k
i )

αi
j

∑

j∈J αi
j

, (5)

where vki is the normalized view vector from the camera

center to point xk
i .

3.3. Repulsion term

The second term in Equation 2 strives for equally dis-

tributing points on the surface by putting a penalty on points

located very near to each other. In our case, it is only im-

portant that points within one frame are well distributed, as

the data is organized in individual depth maps rather than in

a global, evenly spaced, point set.

A good distribution is implicitly given for points on sur-

faces oriented parallel to the camera plane, as points can

only move along the viewing direction. Applying the repul-

sion term on such surfaces would even have a negative effect

on the convergence. As the points cannot move within the

plane, the only way for moving nearby points apart would

point away from the actual surface.

On the other hand, a regularization term is needed for

surfaces which are nearly parallel to the viewing direction.

Figure 3 shows how points might get attracted to local clus-

ters and a fair point distribution can improve the reconstruc-

tion result.

These observations lead to the following modifications

of the repulsion term:
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The set I(i) contains all points captured from the same

viewpoint as point xi. The normalized view direction vi



Figure 4. From top to bottom: original point set, projection without

repulsion, projection with repulsion µ = 0.45. The left part of

the scene is parallel to the camera plane whereas the right part

is orthogonal to the camera plane. Including the repulsion term

improves the projection at the right part of the scene, while there

is hardly any effect on the left part.

points from the camera center to point xi, ni denotes the

normal at point xi. The weight function θ uses again a vari-

able support radius. The neighborhood size is here adjusted

to the depth of a point to account for varying distances be-

tween neighboring pixels due to perspective projection. The

effect of our new repulsion term is shown in Figure 4.

4. Further consolidation steps

Consolidating a point set, or a set of depth maps, is an

important preprocessing step for other actions such as ren-

dering or further reconstruction steps. In this section we

describe additional tasks besides the projection operator, in-

cluding normal estimation, outlier removal, and resampling.

4.1. Normal estimation

Reliable surface normals are needed for the modified re-

pulsion term in our projection operator (see Section 3.3).

Further, they are an important property for many other point

processing tasks.

We compute a surface normal ni by fitting a plane with

a least-squares approach to the neighborhood of point xi

within radius r[11]. The neighborhood size r is a crucial

parameter, as a high value will smooth edges too much

while a low value will lead to unreliable normals. Similar

to our adaptive projection operator we use the knowledge

about the noise distribution in depth maps. Each point uses

an individual neighborhood size ri = rz2i , where zi is the

point’s depth value and r defines the neighborhood size for

a depth of one meter. This is the same modification as for

the adaptive support radius in Section 3.1 and again reflects

the quadratic attenuation of precision with increasing depth.

During the avdLOP algorithm, the neighborhood size for es-

timating normals is recomputed in every iteration according

to Eq. 3 in order to take increasing confidence values into

account.

Consistently oriented normals are easily created by en-

suring that normals point to the side of the tangent plane

(a) Fixed number of neighbors

(b) Varying neighborhood size

Figure 5. Normal estimation (a) with 200 nearest neighbors and (b)

with a varying neighborhood size (15 mm at one meter distance).

Foreground objects, such as the monitor, get well defined normals

with both methods. The normals for the flat wall in the background

are much stronger affected by noise when a fixed number of neigh-

bors is used.

where the camera is located. An example of our normal

estimation can be seen in Figure 5.

4.2. Depth map resampling

Applying the LOP operator on all depth values might be

too costly for large datasets. In many cases it is sufficient to

apply the projection on a subset of points and resample the

depth maps in between. We interpolate between neighbor-

ing points in the image space, but weight them according to

their Euclidean distances in 3D to ensure that depth values

are not interpolated across large depth discontinuities.

4.3. Outlier removal

The view-dependent projection operator adjusts 3D

points only along their viewing direction and doesn’t affect

points far from any other points. While noise is effectively

removed along the viewing direction, outliers and devia-

tions parallel to the camera plane might still be present.

Given that all parts of a scene are captured by multi-

ple frames, outliers do not have any close points in other

frames. Within their own frame, outliers appear at a bound-

ary, i.e. neighboring points are occluded or a large depth

discontinuity arises next to the point. This leads to a sim-

ple approach for outlier removal, where iteratively bound-

ary points, that do not appear in other frames, are deleted.



(a) Input point set (b) avdLOP (h = 0.03, µ = 0)

Figure 6. A planar surface, captured by six frames, is reconstructed

with avdLOP after five iterations. The bottom row shows close-ups

of the most distant frame which contains the largest noise scales.

Table 1. CPU runtime for applying the avdLOP operator. F-No:

number of frames; P-No: number of original points; X-No: num-

ber of projected points; T0: time for µ=0; TR: time for µ=0.2.

Times are given for all iterations in seconds. All examples were

run on an Intel Core i7, 2.67 GHz CPU with 12 GB RAM.

F-No P-No X-No T0 TR

Figure 1, 8 11 2849989 178182 488 -

Figure 6 6 390624 97590 32 103

Figure 7 4 126804 7919 16 84

Figure 9 3 164444 41125 16 128

5. Results

Figures 1, 6, 8 and 9 show the results of applying avd-

LOP on depth maps captured with Microsoft’s Kinect. For

each data set, multiple frames from the freely moved camera

have been registered with a combination of SIFT-features

and ICP. The resulting point clouds contain noise, slight

misalignments, deviations due to missing calibration and

outliers due to wrong depth calculations. All distances are

given in meters.

Figure 7 shows a synthetic example where a simple scene

has been captured by four virtual depth cameras. The syn-

thetically generated depth maps do not contain any artifacts

besides the quadratically increasing noise.

The algorithm usually converges after a few iterations.

Figure 10 illustrates the convergence behavior for two data

sets. Computation time for one iteration depends on the

number of points and the parameter h. Applying the pro-

jection with µ = 0 reduces the computation time, since es-

timating normals is only necessary for computing the repul-

sion term. Timings for the example data sets are provided

in Table 1.

(a) Input point cloud (b) avdLOP (h = 0.03)

(c) LOP (h = 0.03) (d) LOP (h = 0.08)
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Figure 7. avdLOP vs. LOP on virtually generated depth maps, af-

ter 10 iterations with µ = 0.2. (b) avdLOP removes the noise

on the surface in the background and keeps the edge in the fore-

ground. General LOP is either not able to denoise distant surfaces

(c) or overly smooths details in near surfaces (d). This can also

be seen in charts (e) and (f) which illustrate the accuracy, i.e. the

average distance between filtered sample points and the original

scene rectangles. Only avdLOP is able to provide good results for

the front as well as the rear part of the scene.

6. Conclusions

We have presented a modified version of the locally op-

timal projection (LOP) operator for specifically addressing



(a) Input point set

(b) LOP ( 5 iterations, h = 0.06, µ = 0.4)

(c) avdLOP (5 iterations, h = 0.015, µ = 0)

Figure 8. avdLOP vs. LOP on real data set. The original LOP op-

erator (b) provides good results for the monitor in the foreground,

but the same configuration fails to remove the noise on the back-

ground wall, seen at the right of the image. In contrast, the adap-

tive LOP (c) provides good results over the whole scene. A higher

support radius h for the original LOP would overly smooth fore-

ground objects, since the effect in these areas is already stronger

than with avdLOP. Details of this data set can be seen in Figure 1.

point-sampled data from depth cameras. We exploit the fact

that noise is quadratically increasing with the distance to the

camera. Adapting to different noise scales allows to keep

details in well-defined areas, while areas with large noise

values have to be smoothed. Furthermore, points with poor

precision can be projected onto accurate points available

from other depth maps. Additionally, we keep the struc-

ture of input depth maps by restricting the projection onto

viewing directions.

In the future, the algorithm might be further improved by

incorporating additional knowledge from an extensive pre-

cision analysis of depth cameras. This might reveal addi-

tional parameters for the distribution of noise scale besides

depth.

Our consolidation framework for depth maps provides

effective improvements on the input data and thus is a valu-

able pre-processing tool for further reconstruction steps. It

(a) Original (b) avdLOP (c) LOP

Figure 9. Comparing avdLOP and LOP on thin and non-planar

structures, captured by three frames. The right images show a

close-up containing only the points from the most distant frames.

The avdLOP-operator (h = 0.03, µ = 0, 10 iterations) has a much

lower shrinkage effect than the original LOP (h = 0.03, µ = 0.45,

10 iterations) by keeping points in their viewing ray.
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(b) For dataset in Fig. 9

Figure 10. avdLOP has a smooth convergence behavior, which is

visualized by plots of distances
∥

∥Xk+1 −Xk
∥

∥ / |X|. The bottom

images show details for a subset of iterations.

allows to include also distant and noisy points into a recon-

struction system and hence the necessary amount of frames

can be reduced.
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