Going into depth: Evaluating 2D and 3D cues for object classification on a new,
large-scale object dataset
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Abstract

Categorization of objects solely based on shape and ap-
pearance is still a largely unresolved issue. With the ad-
vent of new sensor technologies, such as consumer-level
range sensors, new possibilities for shape processing have
become available for a range of new application domains.
In the first part of this paper, we introduce a novel, large
dataset containing 18 categories of objects found in typ-
ical household and office environments—we envision this
dataset to be useful in many applications ranging from
robotics to computer vision. The second part of the paper
presents computational experiments on object categoriza-
tion with classifiers exploiting both two-dimensional and
three-dimensional information. We evaluate categorization
performance for both modalities in separate and combined
representations and demonstrate the advantages of using
range data for object and shape processing skills.

1. Introduction

The availability of consumer level range sensors such as
the Microsoft® Kinect™ has opened up new possibilities
for shape processing going beyond 2D color information.
This hardware will lead to new applications in computer
vision, interactive gaming, and also robotics. Many of these
application domains require perceptual capabilities such as
object recognition and categorization. In this paper, we have
chosen to demonstrate the advantages of having access to
range data in the robotics domain.

In robotics, it is already common to employ laser scan-
ners or other ranging devices for tasks such as navigation
and self-localization. Here, we want to study the effect of
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Figure 1: Color and depth images of categories in dataset.
First view of first object for each category. Number of ex-
emplars in parentheses.

incorporating range, or 3D', data for the purpose of recog-
nition and categorization of objects. The target platform for

' As we will use algorithms from computer graphics developed for 3D
applications, we will refer to the range data as 3D rather than 2.5D.



(a) Care-O-bot® 3

(b) Sensor head

Figure 2: Sensor setup of Care-O-bot® 3 for data acquisi-
tion. One stereo rig augmented with a range camera.

our evaluation is the service robot Care-0-bot® 3 [20] de-
veloped by the Fraunhofer IPA (see Fig. 2a). It is equipped
with two color cameras and a time-of-flight (TOF) camera.
The TOF camera emits modulated infrared light and uses
the phase shift of the reflected light to measure the distance
to the reflection surface. The range data acquired by the
setup is very similar in quality to that of the Microsoft®
Kinect™. Motivated by the intended application area and
the available sensors, we focus on the classification of un-
known objects exploiting both modalities in the joint do-
main. Classification requires training data to learn the com-
mon attributes that describe a specific category. To acquire
this data we recorded a dataset containing 154 object ex-
emplars belonging to 18 categories, which occur in typical
household and office scenarios’. We also evaluated classi-
fication performance on this dataset using data gathered by
2D and 3D sensors, and study how cue combination of both
cues can lead to enhanced categorization results.

2. RELATED WORK
2.1. Datasets

There are many well-known image databases for the
evaluation of object categorization algorithms based on 2D
information. Arguably one of the most popular ones in com-
puter vision research is the Caltech-101 dataset [7]. It con-
tains images from 101 categories with high intra-category
variability. An extended version, the Caltech-256 dataset
[10], contains 256 categories with a proper taxonomic struc-
ture. Other popular databases include the Graz-01 [18]
database, the ETHZ shape dataset [8], or the PASCAL Vi-
sual Object Class database [0].

Most computer vision literature focuses exclusively on
information obtained from 2D images. In that case the exist-
ing databases offer a suitable test-bed to evaluate algorithms
and compare results. However, for 3D data obtained for ex-

2The dataset is available for download at http: //www.kyb.mpg.
de/~browatbn.

ample from laser scans, or as in our case range cameras,
there are few comparable databases, or the data is rather
sparse. Sun et al. [23] have collected a data set containing
three object categories (mice, mugs, staplers) with 10 ob-
ject instances each. They obtain depth information using a
structured-light stereo camera. Lai et al. [17] have recently
introduced the RGB-D dataset. This database contains color
and depth information of 300 objects from 51 categories of
household objects and is organized in a hierarchical struc-
ture. The dataset was used to train an object recognition
system capable of detection 20 specific instances of objects
as well as 4 object classes (bowl, cup, coffee mug, soda
can) in cluttered scenes. Our paper extends the work of Lai
et al. in that our goals are to present additional object cat-
egories, and to systematically study how the combination
of multiple feature types across both modalities affects the
classification performance of various object categories; that
is, we want to demonstrate the benefits of combining 2D
(color, and texture) with 3D (range) information.

2.2. Object categorization

As the literature on object categorization based on
2D information is vast, we chose to focus here on the
state-of-the-art in 3D object processing. Most approaches
based on 3D information deal with recognizing previously
seen objects [12]. Often the focus lies on detection of
specific objects in complex scenes using local surface
descriptors on key points [14]. An extensive survey of 3D
object recognition techniques is given by Campbell and
Flynn in [5]. Classification tasks, posing the challenge of
assigning class labels to unknown objects, have gained
less attention so far. Ruiz-Correa et al. [21] introduced
symbolic surface signatures to label surface regions in
range scans. Objects were recognized by assigning regions
to the object classes snowmen, rabbits, and dogs. A
part-based classification approach was proposed by Huber
et al. [13]. Eight classes of vehicles were separated into
front, middle and back part. Based on Spin Images shape
parts are recognized and the object class inferred using
a generative model. The majority of literature on 3D
object classification deals with cases in which the object
geometry is available in the form of polygon meshes. A
common scenario is similar shape retrieval from 3D object
datasets [9]. Numerous approaches have been proposed to
compare 3D models and calculate a measure of similarity.
Bustos et al. provide an exhaustive overview of such shape
matching approaches [4].

3. A 2D & 3D object dataset

Our first task consisted of building a resource for test-
ing object categorization using 2D and 3D information. For
this, we recorded 18 categories of objects that are likely to
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be encountered by a robot operating in a household envi-
ronment. Each category contains between 3 and 14 objects.
In Fig. 1 all categories are depicted including the respective
number of exemplars. Each object was put on a step-motor-
controlled turntable in their default orientation (except for
silverware objects and scissors, which were propped up on a
stand) and we recorded views every 10° around the vertical
axis, yielding 36 views per object. In total, the dataset con-
tains 154 objects with 154 x 36 = 5544 views. Every view
consists of two high-resolution (1388 x 1038 px) 2D color
images and a range scan obtained from a PMD™ Cam-
Cube 2.0 time-of-flight camera. The resolution of the range
images is 204x204 px with an accuracy of approximately
+1% with respect to the measured distance. Compared to
the consumer version of the Microsoft® Kinect™, the hor-
izontal and vertical dimensions of the depth image are a lit-
tle lower, and those of the RGB image a little higher—the
combined image, however, is of similar resolution.

4. 2D and 3D features and cue combination
4.1. Features

We extract four 2D descriptors from the color images
as well as four 3D descriptors from the range scans. In
both cases the set of descriptors is intended to exploit dif-
ferent properties, aimed at providing complementary infor-
mation. For the 2D data we took Speeded Up Robust Fea-
tures (SURF) [ 1], Pyramids of histograms of oriented gradi-
ents [3], Self Similarity Features [22] and color histograms
(CIELAB color space).

The 2D descriptors are widely used in current computer
vision research. For 3D data, the choice of feature descrip-
tors is not as large as in the 2D case. We believe that the
following selection of descriptors covers a suitable range
of shape characteristics®: 3D Shape Context (SC3D) [16],
Depth Buffer [1 1], Shape-Index Histograms [15] and MD2
Shape Distributions [19].

Most of the features listed above are descriptive enough
for being used to build strong classifiers but still fast enough
to compute so that real time application is feasible. Extrac-
tion times range between <1 ms for color histograms and
~250 ms for Depth Buffers on a standard desktop PC with
a 3GHz dual-core CPU and 2GB RAM.

SUREF, Self Similarity, and SC3D are local feature de-
scriptors. To transform the local features into a global de-
scriptor we employ the common Bag of Words method. A
collection of feature vectors is taken from various objects
across all object classes and clustered in the respective fea-
ture space. The resulting set of cluster points (vocabulary)
is used to quantify the local features. A histogram is cre-

3We also experimented with incorporating absolute object size (in me-
ters) as an additional cue. This, however, did not lead to an increase in
classification performance.

ated that represents the local feature distribution in respect
to the vocabulary entries. We used a vocabulary size of 50
throughout all experiments. We did not alter this parameter
as we did not notice a significant sensitivity to changes in
the quantization process.

4.2. Training of single classifiers

After extracting features we train one support vector ma-
chine (SVM) for each feature type and each class. If n is
the number of classes and d the number of feature types, we
create n X d classifiers in total. SVM parameters are op-
timized through cross-validation on the training set. Each
of these classifiers predict whether an unknown sample is
likely to be a member of a certain object class based on spe-
cific feature type. It is obvious that we do not always obtain
a consistent prediction across different feature types for a
certain class. One class might be more dependent on infor-
mation supplied by a specific feature than a different class.

4.3. Ensemble prediction

To obtain a joint prediction from the different classi-
fiers we train a multilayer perceptron (MLP) for each object
class. The outputs of the single classifiers are used as train-
ing samples. In our case a training sample for the perceptron
would be an eight-dimensional vector produced by the eight
different descriptors. To evaluate the performance of either
2D or 3D data independently, the MLPs are trained with the
four-dimensional input vector retrieved from the four de-
scriptors of one modality. We do not define the structure of
the network a priori. The free parameters of the MLP, that
is, the number of layers as well as the number of nodes per
layers are found through cross-validation on the training set.
Cross-validation is done for each class separately.

5. Evaluation

As a baseline for further evaluations, we tested the 2D
part of our approach on the Caltech-101 database. Using a
standard training setup of 30 training samples, we obtained
a recognition rate of 60.1% by relying on the combina-
tion of the four 2D features. The performance stays some-
what below results reported in current literature (e.g. [2]),
which might be due to more extensive parameter tuning and
more optimized classifier kernels that these papers employ.
Nevertheless, for simple 2D features without any additional
shape/configuration modeling of the categories, these per-
formance levels are encouraging—especially as the features
can be evaluated in near-real-time.

5.1. Overall categorization performance

For our evaluations, the database was randomly split into
training and test sets*. 6 objects per class were used for

“4For the evaluations, we excluded the classes perforator and phone due
to the low number of exemplars. Furthermore, we combined forks, knives,



Table 1: Classification performance

Descriptor Performance
SURF 42.4%
PHOG 69.9%
Self-Similarity 41.7%
Color 26.6%
2D only 66.6%
Shape Distributions 25.4%
Shape Index 34.6%
Shape Context 3D 55.2%
Depth Buffer 72.9%
3D only 74.6%
2D +3D 82.8%

training, the remaining objects were put into the test set.
For each object, we selected 18 views for training and 18
views for testing. The views were equally distributed across
the 36 available views, i.e. one view every 20°. The train-
ing set consisted of 82 objects with a total of 1476 views.
The test set contained 74 objects with 1332 views. Features
were extracted for each view and classifiers were trained ac-
cording to Sec. 4. Classification results are listed in Table
1. The values represent average classification accuracy nor-
malized by class size. In case only 2D descriptors are used,
we obtain 66.6% correct categorization, whereas the 3D de-
scriptors yield 74.6% correct results. Combining both 2D
and 3D descriptors, the performance increases significantly
to 82.8% correct.

We also tested combinations of all descriptors from one
modality (2D or 3D), which did not lead to a significant
improvement of the results. In the 3D case, the joint per-
formance is 2.3% higher than the performance of the best
single descriptor (Depth Buffer). The performance of all
2D descriptors combined is around 3.3% lower than the
best single one (PHOG). However, if the two modalities are
fused, the results improve clearly, which is due to the dif-
ferent object characteristics that the features latch on to.

In Fig. 3 categorization performance is shown for each
class separately. This data shows that some classes are more
sensitive to 2D information (e.g. silverware), whereas for
other classes 3D cues are more effective (e.g. drink car-
tons). For almost all classes, however, the combination of
both information pathways leads to an increase in perfor-
mance.

5.2. ROC curves and confusion matrices

The rate of correct results is only one part of the story.
First of all, one might wish to specifically set acceptance
thresholds for the different classes, in order to control the

and spoon into the joint category silverware.

number of false alarms versus hits. The ROC curves for the
2D, 3D and combined cases are shown in Fig. 5. These
results show that the 3D cues are always better than the 2D
cues, and that the combined case always provides a clear
increase over the single modalities. From these curves, the
EER (Equal-Error-Rates), which provide a good indication
of the trade-off between false alarms and hits are deter-
mined as: 2D (12.0%), 3D (8.7%), Combined (6.2%).

In some cases, it might be interesting to look at the pat-
tern of confusions to determine, for example, the degree of
generalizability of the features, or to provide a different,
more effective clustering of categories. Fig. 4 shows the
confusion matrices for all features, as well as separately for
the 2D and 3D features. Consistent with the previous cate-
gorization results, predictions are more consistent if based
on 3D features than on 2D features (cf. number of non-zero
off-diagonal elements in each matrix). Furthermore, if we
examine the categories that are often confused in the com-
bined case (e.g. dish liquids and bottles), we see that those
contain the classes that also are confused for both 2D and
3D data. If in contrast at least one modality is able to clearly
distinguish between two classes, the result in the combined
case is determined by the more descriptive modality. This
does not only suggest that the two modalities capture differ-
ent class properties but also that they can be combined very
effectively.

Finally, the remaining confusions after cue combination
include categories that are hard to distinguish not only for a
computational system. We observe high confusion rates for
cans and drink cartons, as well as dish liquids and bottles.
Especially if only 2D data is used drink cartons are very
likely to be confused with cans, as in the 2D images both
objects appear as rectangular items with varying texture.
Even here, however, the addition of 3D features (which will
add the curvature of cans) reduces the number of confu-
sions substantially. As an additional observation, frequently
confused categories might rather be distinguished by their
functionality than by their appearance/shape. Although the
generalizability seems already quite good with the number
of exemplars currently in the database, we would expect to
be able to capture the inherent category structure even better
with a larger number of exemplars in the difficult categories.

In summary, employing 3D descriptors gives better re-
sults than 2D descriptors. However, by combining both cues
we obtain an even better overall performance with signifi-
cant increases for many object classes.

5.3. Generalizability across views and number of
objects

The classification results with respect to the number of
objects used for training are plotted in Fig. 6. The number
of views per object was kept constant. As before, a view
was selected every 20°, resulting in 18 views for each ob-
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Figure 3: Classification results of single classes.
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Figure 4:

ject. Evaluation was carried out on the remaining objects
in the dataset. For small classes we made sure to retain at
least one object in the test set. As a result, for the class
scissors the number of training objects is limited to 4. The
evaluation for each object count was repeated 30 times with
random splits into training and test set. It is not surpris-

Confusion matrices: Combined cues (left), 3D only (middle), 2D only (right)

ing to see the performance rise as the number of objects is
increased—again, one cannot expect generalization of such
variable categories to happen from only one exemplar.

Fig. 7 shows the classification performance with respect
to the number of views per object. The evaluation procedure
remained the same with the difference of selecting 6 train-
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Figure 6: Classification results for number of training ob-
jects. 18 views per object.

ing objects for each category and altering the number of
views per object. We see that in contrast to object count the
number of views seems to plays a minor role, as long as a
minimum amount of object orientations is covered. With 3-
4 views—for 2D and 3D data combined—we achieve near
optimal performance. Since views are equidistantly dis-
tributed, 3 views results in one view every 120°. Our data
suggests that already a small number of views can be suffi-
cient to obtain an adequate sampling of the object surface.
In contrast, when using only 2D or 3D information, more
views are needed to reach peak performance. This seems
reasonable as less information is encoded in each view.

If we again look at the results for single classes, we see
that the benefit of additional views depends strongly on the
shape characteristics of the respective class. The compari-
son of Fig. 8 and Fig. 9 shows that classes of asymmetri-
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Figure 8: Classification rates for two symmetrical objects.
Symmetical objects show low sensitivity to view count.

cal objects such as binders or drink cartons exhibit a much
steeper increase in classification accuracy than classes of
more round and symmetrically shaped objects such as cups
and bottles. Interestingly, in the case of drink cartons, this
increase is only visible in the 3D domain and the combined
case — this is due to the fact, that the drink cartons as a cat-
egory contain very different labels and therefore 2D appear-
ance measures will have problems with a clear identification
of the overall category, whereas the 3D shape is much better
defined for this category.

6. Conclusions

In this work we have introduced a new dataset for
joint 2D and 3D object categorization containing data of
real-world objects. The dataset was designed to allow
for good generalization to real-world applications, which
are based on Microsoft® Kinect™, for example. Using
this dataset, we have demonstrated that the incorporation
of range data is highly beneficial for object categoriza-
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tion tasks. The fact that combination of multiple sensory
inputs leads to increased recognition performance is not
surprising—however, the performance gains are sometimes
substantial.

Multi-modal object representations that integrate cues
beyond visual information, such as haptic, proprioceptive or
auditive cues might offer even more potential to capture the
variety of features defining the objects in our environment.
How to acquire and employ such rich representations has to
be studied in future work. We believe that multi-sensory 3D
object categorization is a research topic that will gain even
more importance in the future as range sensors have become
a consumer-level product. We hope that by supplying the re-
search community with our data set, and by demonstrating
the merits of sensor combination, more work in this domain
will follow.
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