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Abstract

Feature quantization is a crucial component for efficient
large scale image retrieval and object recognition. By quan-
tizing local features into visual words, one hopes that fea-
tures that match each other obtain the same word ID. Then,
similarities between images can be measured with respect
to the corresponding histograms of visual words. Given the
appearance variations of local features, traditional quan-
tization methods do not take into account the distribution
of matched features. In this paper, we investigate how to
encode additional prior information on the feature distri-
bution via entropy optimization by leveraging ground truth
correspondence data. We propose a computationally effi-
cient optimization scheme for large scale vocabulary train-
ing. The results from our experiments suggest that entropy-
optimized vocabulary performs better than unsupervised
quantization methods in terms of recall and precision for
feature matching. We also demonstrate the advantage of
the optimized vocabulary for image retrieval.

1. Introduction
In large scale image retrieval and object recognition,

most state of the art techniques are based on the bags of
words (BOW) technique. [14, 9, 11, 12]. By quantizing
local features (e.g. SIFT [5]) (sampled densly or from key-
points) into a visual vocabulary it is possible to index im-
ages similarly to how documents are indexed for text re-
trieval. The time-consuming exhaustive nearest neighbor
search for local feature matching is approximated by feature
quantization. The main advantage of BOW for retrieval is
the efficient similarity computation between images based
on histograms of visual words. Feature quantization is the
process of clustering features into discrete unordered sets
based on certain criteria. Generally, in image retrieval and
object recognition, the criteria can be similarity between
features, labels of the features and so on, which lead to un-
supervised and supervised feature quantization. For exam-
ple, k-means and its variants are widely used as unsuper-
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Figure 1. Entropy optimization on synthetic data on R2 (best view
in color). 10 random clusters with 15 points, each drawn from a
normal distribution of standard variation 0.05*255. For the quanti-
zation with 6 clusters, the blue lines and circles are the correspond-
ing Voronoi diagram and centers of k-means and the red lines and
stars are the for entropy-optimized quantization using k-means as
initialization.

vised feature quantization methods to generate large visual
vocabularies from e.g. SIFT features based on Euclidean
distances. For local feature matching, such a similarity
measure is generally a proper criterion. However, due to
lighting conditions, perspective transformation, etc. local
features can be very different from each other. In this case,
unsupervised feature quantization based solely on similar-
ity might fail to capture the intra-class variation of local fea-
tures. Supervised feature quantization on the other hand uti-
lizes correspondence labels (extracted as ground truth from
some databases) and improve matching performance with
respect to such intra-class variation.

In this paper, we study a supervised feature quantization
approach based on entropy optimization. By minimizing
the entropy of the quantized vocabulary, we obtain (i) higher
matching true positive rate on corresponding local features
and (ii) better separation of unmatched features. While the
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computational complexity for the underlying optimization
is high, we propose analytical and numerical schemes to
enable large scale training. We explore the generalization
issues of this approach by extensive experiments on datasets
with ground truth. Furthermore, we propose a training for-
mulation in the spirit of max-margin clustering that achieves
better image retrieval performance than the baseline hierar-
chical k-means which is widely used.

Related Work Supervised feature quantization has been
studied from different perspectives in computer vision. For
image categorization, the aim of supervised feature quan-
tization is to incorporate semantic categorical information
into the training vocabulary in such a way that the histogram
representation of images encodes the patterns of each cate-
gory more accurately. Winn et al. [18] optimized the intra-
class compactness and inter-class discrimination by merg-
ing words from unsupervised k-means. In [10], Perronnin
et al. model class-specific visual vocabularies with Gaus-
sian mixture models and combine them with a universal vo-
cabulary. In [2], Ji et al. introduce hidden Markov random
fields for semantic embedding of local features to facilitate
large scale categorization tasks. With entropy as a criterion,
Moosmann et al. constructed random forests based on class
labels [7] and Lazebnik et al. [4] simultaneously optimized
the cluster centers initialized by k-means and the posterior
class distributions.

For image retrieval and object recognition, feature quan-
tization is utilized to approximate and speed up the match-
ing process between images. There exist several variants
on utilizing existing correspondence information for super-
vised feature quantization. One way to utilize supervision
is to learn an optimal projection or apply metric learning
before quantization such that the matched pairs of features
have smaller distances than non-matched pairs in the new
mapping [13, 1, 15]. All methods achieve substantial im-
provement in the retrieval tasks. Finally, there are works
based on k-means and vocabulary trees. By using a huge
dataset with ground truth correspondences, Mikulik et al.
[6] train unsupervised vocabulary trees and then apply a su-
pervised soft-assignment of visual words based on the dis-
tribution of matched feature points. By contrast, in [3],
entropy-based optimization is used to improve the match-
ing performance of the visual vocabulary generated by k-
means. Recent works also aim to construct discriminative
hashing function for feature quantization with ground truth
information [16, 8].

Our approach works on the original feature space and
encodes the ground truth correspondences in the process of
vocabulary generation. Unlike [4], we focus on optimiz-
ing the feature quantization for large scale feature match-
ing. We also extend the work in [3] with a formulation for
image retrieval, efficient computation for finer quantization

and larger correspondence classes. There are several limita-
tions of the work described in [3]. Firstly, the ground-truth
set experimented with is too small to generalize well. Sec-
ondly, very coarse hierarchical quantization (K = 3 at each
level) is used and the results clearly suffer from quantization
errors. We see that quantization errors can seriously affect
the overall true positive rate and false positive rate that. In
this work, we focus on efficient entropy optimization over
K in the order of 102 and training with much larger number
of correspondence classes.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the method for entropy-based vocabulary
optimization and propose schemes for efficient large scale
training. In Section 3, the patch data with correspondence
ground truth we used is described in detail. We demonstrate
the performance of the optimized vocabulary with respect
to local feature matching and image retrieval in Section 4.
Finally, we conclude with future work in Section 5.

2. Our Method
In this section, we present the formulation for entropy-

based vocabulary optimization. In this formulation, we
work with data with partial matching ground truth e.g. lo-
cal features with labels specifying their corresponding 3D
points. To optimize the energy, we have used gradient-
descent method. We also utilize the low-rank property to
speed up the gradient computation. Finally, we discuss the
connection of this formulation to large margin clustering.

2.1. Formulation

Entropy traditionally used in information theory for cod-
ing has also been applied in supervised learning of vocabu-
lary [7, 4, 3]. In [3], entropy has been shown to be a good
criterion to optimize feature matching with respect to true
positive rate (TPR) and false positive rate (FPR) in the sense
that minimizing the entropy increases the TPR and in the
meantime decreases FPR. Given N features of Nc corre-
spondence classes, for a visual vocabulary of NK words,
the entropy is defined as

E = −
NK∑
k=1

rk

Nc∑
j=1

pjk log pjk, (1)

where rk is the percentage of features in cluster k and pkj
is percentage of features belonging to correspondence class
j that falls in word k. We have used logarithm with base 2
here. By minimizing entropy, one can increase the discrim-
inativity for each word in the vocabulary such that features
belonging to the correspondence class tend to fall into the
same word.

Now let us denote the total number of features in cluster
k as nk and the number of features of correpondence class j



in clustering k as hjk. Substituting rk = nk

N , and pjk =
hjk

nk

into (1), we have

E = −
NK∑
k=1

nk
N

Nc∑
j=1

hjk
nk

log pjk

= − 1

N

Nc∑
j=1

NK∑
k=1

hjk log pjk (2)

The entropy defined above is not continuous with respect to
the word assignments. To enable optimization with gradi-
ent descent in the continuous settings, we smooth the word
assignment with soft-assignment weights. The weight of a
feature xi assigned to word k with cluster center ck is de-
fined as

wik =
vik∑NK

j=1 vik
, (3)

where vik = exp(−||xi−ck||2
m ) and m is the size of the mar-

gin that controls the degree of distance smoothing. ||.||2 de-
notes the L2 norm. For each feature xi, the weights are nor-
malized such that

∑NK

k=1 wik = 1. We can immediately see
that both nk and hkj can be written as functions of wik’s:
nk =

∑N
i=1 wik and hkj =

∑
i∈πj

wik, where πj is the set
of features belonging the correspondence class j.

Optimizing the entropy in (1) with respect to the NK
cluster centers amounts to the following minimization prob-
lem:

min
c
− 1

N

Nc∑
j=1

∑
i∈πj

NK∑
k=1

wik log

∑
i∈πj

wik∑N
i=1 wik

, (4)

where c = [cT1 , c
T
2 , . . . , c

T
NK

]T .
In [4], the probability of each feature belonging to each

correspondence class can also be updated. In the case here,
we assume the correspondence classes estimated from ge-
ometry models are of high quality. Due to the fact Nc is
large in our setting, it is generally quite difficult to obtain
good estimation of such probabilities, which is also quite
different from the scenario in [4] where categorical labels of
local patches obtained from image labels are generally very
noisy. Therefore, we only focus on optimizing c. Here m
is seen as parameter and is determined by cross-validation.
For the non-linear optimization, we initialize the the center
c with k-means and use gradient descent method L-BFGS
to obtain a local minima. We derive the analytical gradient
and relevant efficient implementation in the next section.

2.2. Efficient Gradient Computation

The gradient of E with respect to the centers c can be
derived analytically. Given (2), we have

∇E = − 1

N

Nc∑
j=1

NK∑
k=1

(
∇hjk log pjk −

1

ln(2)
nk∇pjk

)
(5)

Since
∑NK

k=1 nkpjk = |πj | is a constant, we can see that
∇(
∑NK

k=1 nkpjk) =
∑NK

k=1 nk∇pjk = 0. We then have

∇E = − 1

N

Nc∑
j=1

NK∑
k=1

∇hjk log pjk (6)

And we know that hkj =
∑
i∈πj

wik, therefore, we have
∇hjk =

∑
i∈πj
∇wik and

∇E = − 1

N

Nc∑
j=1

∑
i∈πj

NK∑
k=1

∇wik log pjk (7)

where ∇wik = (∂wik

∂c1

T
, . . . , ∂wik

∂cNK

T
)T . It can be shown

that, given (3) ,

∂wik
∂ck′

=
1

2
(δkk′wik′ − wik′wik)

xi − ck′

m||xi − ck′ ||2
(8)

where δkk′ = 1 if k = k′, else δkk′ = 0.
Regarding computational complexity, ∇wik is a vector

of length dNK and computing it takes O(dNK), where d
is the number of dimension of the features. Therefore, the
overall computational complexity for computing the gradi-
ent ∇E is O(dNNK

2). We can enable more efficient gra-
dient computation by utilizing the structure of the problem.
Firstly, we can observe that

NK∑
k=1

∇wiklog(pjk) =
∂wi

∂vi

∂vi
∂c

α (9)

where wi = (wi1, . . . , wiNK
)T , vi = (vi1, . . . , viNK

)T

and α = (log pj1, . . . , log pjNK
)T . On the other hand, we

have

∂wi

∂vi
=

1∑NK

k=1 vik
Id×NK

− 1∑NK

k=1 vik
wi 1Td×NK

(10)

where Id×NK
is a identity matrix of size dNK × dNK and

1Td×NK
is a dNK × 1 vector, and

∂vi
∂c

α = (log pi1
∂vi1
∂c1

T

, . . . , log piNK

∂viNK

∂cNK

T

)T (11)

We can see that β = ∂vi

∂c α is a vector of length dNK .
Substituting (10) and (11) into (9), we have

NK∑
k=1

∇wik log pjk =
1∑NK

k=1 vik

(
β −wi (1T β)

)
(12)

Here both β and the inner product 1T β can be calculated
in O(dNK). Therefore, by exploring the ordering of cal-
culation, the overall computational complexity for ∇E is
reduced to O(dNNK). As N and NK increase for large
scale training, utilizing this scheme is crucial.
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Figure 2. The convergence of the L-BFGS with exact and approxi-
mate function and gradient calculation. Eexact is the convergence
of the exact calculation. Eappr and E∗

appr are the convergence
with approximate calculation, while evaluated for all features and
only those features within distance threshold µm. The relative
difference between the approximate and exact computation is of
order 10−4, which takes 40s and 275s respectively.

2.3. Approximate Computation

In the L-BFGS iterations, both the entropy and its gradi-
ent are evaluated multiple times. As the size of the vocab-
ulary and the number of features increase, the optimization
procedure takes considerable amount of time even with the
scheme discussed in Section 2.2. One way to speed up the
optimization to further reduce the computational complex-
ity for the energy and gradient computation. To do this, we
first observe that as NK increases, only a small number of
centers will contribute to the sum

∑NK

k=1 in both (2) and (6).
This is because a specific feature tends to have large eu-
clidean distances to most of the centers which means that
wij is very small for j’s. In this case, for each feature,
we can compute the sum only over the active set of cen-
ters Φi,µ = {j|wij ≤ µm}, where µ is the parameter con-
trolling the magnitude of approximation. Specifically, with
sufficiently large µ, we have equivalently the exact compu-
tation since then Φi,µ = {1, 2, . . . , NK}. Generally, with
large NK and small µ, |Φi,µ| � NK . This enables fast ap-
proximate calculation, if we pre-compute Φi,µ. However, as
we update the centers, the active set is also altered for each
feature. To overcome this, we also update the active set as
outer iterations. Specifically, we update the active sets for
all the features after a few approximate L-BFGS updates
on |c. Empirically, we observe that the active set becomes
relatively stable (close to those of local minima) after 2-3
outer iterations updates. This motivate the idea of progres-
sively decrease update frequency of the active sets. For in-
stance, for 100 approximate L-BFGS iterations, we update
the active set at 10th and 30th iteration respectively. As it is
shown in Figure 2, we achieve similar convergence as exact

computation with such approximation in significantly less
amount of time.

2.4. Connection to Max-Margin Clustering

In this section, we discuss another application of the en-
tropy optimization and its connection to max-margin clus-
tering. For unsupervised learning, max margin clustering
tends to have better generalization as its supervised coun-
terpart support vector machine. In this training scenario,
each feature is treated as belonging to a singular class (with
only one feature). For each feature i, if the weights wik’s
are scattered over NK clusters, the entropy will increase.
Therefore, minimizing the entropy as defined in the pre-
vious section, we tend to refine the centers such that each
single feature is close to only a very few of centers. Due
to the duality of Vononoi diagram (separating planes) and
the cluster centers, the minimization is equivalent to pulling
features away from the separating planes, which resembles
the mechanism of max margin clustering.

3. Ground-Truth Dataset
To encode the learned vocabulary with correspondence

information, ground-truth data is needed. Specifically, in
this work, we focus on local descriptors e.g. SIFT of
patches around 3D points of a scene where the correspon-
dences are already extracted from geometric models. A
good ground-truth dataset should encapsulate for each 3D
point, a set of local descriptors of large appearance varia-
tions due to viewing angles or lighting conditions etc. This
is crucial for the generalization of the vocabulary learning.

There exist several large datasets with partial matching
information e.g. the UBC patch data [17] and Prague patch
data [6]. UBC patch data contains three landmarks (Statue
of Liberty, Notredame and Yosemite) with approximately
1.5M features of 500K correspondence classes. On aver-
age, there are 2-5 features for each class in the UBC patch
set. By correspondence class, we mean features that cor-
respond to the same 3D point. On the other hand, Prague
patch data consists of 564M features belonging to 111M
correspondences classes. Some of correspondence classes
in this dataset contains up to 102 features, which have high
possibility of capturing varieties of the same patch. There-
fore, in our work here, we used Prague patch data for exper-
iments. In Figure 3, we show features of correspondence
classes tracked by graph-based geometry models from [6].

4. Experiments
We demonstrate the performance of the entropy formula-

tion in (4) in different settings. We compare its performance
against widely used k-means. Generally, we evaluate the
resulting vocabularies with respect to TPR and FPR. To un-
derstand the generalization of the method, given a subset S
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Figure 4. The effects of iterations and m for vocabularies of different sizes (NK = 5, 10, 20, 50, 100 ) (S1). Left: the effects of number of
iterations when m = 5; Right: the effects of m with 100 iterations.

Figure 3. Patches of two correspondence classes from the Prague
dataset with lighting variation and perspective transformation

of data with correspondence ground truth, we split data into
training set and test set in two ways: (S1) for each corre-
spondence class in S, we randomly select 50% of features
in that class and include them to the training set, and the
others as part of test set; (S2) we construct the training set
by randomly selecting 50% of the correspondence classes in
S (i.e. all features in those classes), and the test set consists
of the features in the non-overlapping set of correspondence
classes.

For the following experiments, we generate S by ran-
domly picking 20K tracks from the Prague patch set. To
guarantee that each correspondence class having the order
of features (since some correspondence class has up to 10K
feature), we limit the number of features in correspondence
class in the range of 20 to 60. To evaluate the vocabular-
ies, we need to generate matched pairs and non-matched
pairs of features. Given the partial ground truth, all dis-
tinct pairs of features in the each correspondence class form
the matched pairs. And we construct non-matched pairs
by randomly pairing up features from two different corre-
spondences classes. The number of possible non-matched

pairs are quadratic to the number of correspondence classes.
Therefore, we randomly construct 500N pairs which should
sufficient to avoid bias in estimating FPR.

4.1. Parameter Sensitivity

We investigate the effects of different choices of param-
eters i.e. size of the margin m, the number of iterations in
the L-BFGS. For all experiments in this section, we split the
data according to (S1). Firstly, we would like to understand
how the overall performance is affected by the convergence
of the optimization. On the left of Figure 4, for different
NK , we can see that as we increase the number of iteration
from 50 to 100, one only gain very slightly in performance.
This suggests that in large scale application, we can trade-
off training time without too much loss in performance by
limiting the number of iterations. To overcome the local
minima, we also try optimization with multiple k-means
initialization. In our experiments, we do not gain much im-
provement with the extra initialization. On the other hand,
it turns out that the size of margin m can also affect the per-
formance. In essence, m is dependent on the distribution
of the data e.g. the magnitude of the variances within each
correspondence class. On the right of Figure 4, it can be
seen that during testing, one achieves the best performance
with m = 5 for the data we test on. The inferior perfor-
mance when m = 1 and m = 20, can be related to under-
smoothing and over-smoothing of the distances to centers,
respectively.

4.2. Generalization

We can see that for training and test setting S1, by encod-
ing matched information into the the entropy optimization
gives much better performance compared to k-means. To
further understand the generalization of the method, we test
the method with data split setting (S2). In this case, it is
expected that the method has more difficulty to generalize.
Since in (S1), the distribution of each correspondence class
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Figure 5. Entropy-optimized vocabulary vs. k-means under non-
overlapping correspondence classes (S2). Here m = 5 and the
number of iterations is 200

is similar both in the training set and test set. However, in
(S2), the distribution of the correspondence classes in the
test set can be very different from those in the training set.
In Figure 5, we can see that the method only generalize well
for vocabularies of small sizes i.e. when NK = 5, 10. Oth-
erwise, for large K, the vocabulary is equivalent or worse
than the unsupervised k-means, which is a clear indication
of overfitting. This behavior could be explained by the dif-
ference of the distributions of training set and test set, as
well as the curse of dimensionality. To ensure similar dis-
tributions locally in each cluster, we also try starting with
a coarse quantization with k-means, and then apply the en-
tropy optimization on each cluster. We expect this might
then facilitate the generalization of the optimization. How-
ever, we observe similar generalization issue for the opti-
mization.

4.3. Optimization over Subspace

To gain better insight of the generalization of the method,
we also try entropy optimization on subspace of the SIFT
features. The reason we investigate this settings is to
see how the dimensionality would alter the behavior of
the method. The subspaces we work with are simply
subdivision of the 128 dimension of the SIFT feature x
evenly with a factor of s e.g. when s = 32, the sub-
spaces are [x1, ..., x32], ..., [x97, ..., x128]. In Figure 6, we
can see that the entropy-based method improves over the k-
means slightly but consistently for all NK’s for subspaces
[x1, ..., x32] and [x97, ..., x128]. On the other hand, for sub-
spaces [x33, ..., x64] and [x65, ..., x96], applying optimiza-
tion does not gain much improvement against k-means.
We have similar observations for different partitions of the
SIFT feature spaces (e.g. s = 8, 16, 64). Similarly, as
seen in Figure 7, for the subspace division with 64 dimen-
sions [x1, ..., x64] and [x65, ..., x128], we still only gain bet-
ter matching performance for small NK . This suggests that
it is possible to obtain better generalization by reducing the

Level k-means Eopt (m = 5) Eopt (m = 10)

3 0.4642 0.4738 0.4743

Table 1. Image retrieval performance of hierarchical k-means and
entropy-optimized vocabulary.

dimensionality of the feature space. Further investigation is
required on better subspace projection than the natural par-
tition here.

4.4. Image Retrieval

To evaluate the method in a more formal setting, we use
the entropy-optimized vocabulary as the quantization step
in bags-of-words recognition pipeline . We test the method
on the Oxford 5K dataset [11, 12]. The task is to retrieve
similar images to the 55 query images (5 for each of the 11
landmarks in Oxford) in the dataset of 5062 images. The
performance is then evaluate with mean Average Precision
(mAP) score. Higher mAP indicates that the underlying
system on average retrieves the similar corresponding im-
ages at the top of the ranked list.

In this case, we treat each feature as a correspondence
class and the optimized vocabulary will tend to have large
margin between features. As an initial evaluation, to make
the entropy-optimization feasible for such large scale data,
we follow the hierarchical k-means strategy. We first ap-
plied the hierarchical k-means on the top levels, and use
entropy optimization at the last level to reduce the number
of features to optimize over. Specifically, we train a vo-
cabulary tree with L − 1 levels and K splits at each level,
at the level L, we apply the entropy optimization. In Ta-
ble 1, we show the retrieval performance of the optimize
vocabulary against normal k-means with L = 3, K = 100
(1M words). We can see that the entropy optimization does
slightly improve the mAP by approximately 1% with some
margin sizes (further increasing m to 20 deteriorate the per-
formance) .The results on the same tree with L = 2, show
similar performance boost when m = 5, but are actually
worse when we increase margin to 10 (the word distribu-
tion of vocabulary becomes non-uniform). We suggest that
such improvement is due to the fact the entropy optimiza-
tion increases the margins of the dual separating planes of
the k-means centers. In this way, corresponding features
(of smaller distances) would have lower probability being
separated by separating planes.

5. Conclusion
In this paper, we study and extend the idea of entropy-

optimized feature quantization in large scale training. The
approach outperforms the unsupervised k-means when the
distribution of training data and test data is similar. How-
ever, our experiments show that the gain of the optimization
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Figure 6. Entropy-optimized vocabulary on subspaces [x1, ..., x32] , . . . , [x97, ..., x128] under non-overlapping correspondence classes
(S2).

0 0.05 0.1 0.15 0.2 0.25

0.4

0.5

0.6

0.7

0.8

0.9

T
P

R

FPR

1:64

 

 

N
K
 = 5

N
K
 = 10

N
K
 = 20

N
K
 = 50

N
K
 = 100

k−means
entropy

0 0.05 0.1 0.15 0.2 0.25

0.4

0.5

0.6

0.7

0.8

0.9

T
P

R

FPR

65:128

 

 

N
K
 = 5

N
K
 = 10

N
K
 = 20

N
K
 = 50

N
K
 = 100

k−means
entropy

Figure 7. Entropy-optimized vocabulary on subspaces [x1, ..., x64] , . . . , [x65, ..., x128] under non-overlapping correspondence classes
(S2).

is less obvious due to the difference of the distribution of
training and test data. This is related to the high dimension-
ality of the SIFT features. On the other hand, we explore the
resemblance of the entropy optimization and max-margin
clustering. By optimizing the entropy on single-feature cor-
respondence class, the method tends to produce quantiza-

tion that respect both the intra-cluster variation and pair-
wise distances. The effectiveness of the idea is verified in
image retrieval task.

As future work, we will investigate the generalization of
proposed approach. One idea is to study the optimal (sub-
space) projection using kernel learning or metric learning



that enables the better generalization on diverse distribution
raining data and test data. Furthermore, it is also worthwhile
to further explore the application of entropy optimization in
max-margin clustering.
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