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Abstract
This paper proposes a new Bayesian online learning

method on a Riemannian manifold for video objects. The
basic idea is to consider the dynamic appearance of an
object as a point moving on a manifold, where a dual
model is applied to estimate the posterior trajectory of
this moving point at each time instant under the Bayesian
framework. The dual model uses two state variables for
modeling the online learning process on Riemannian
manifolds: one is for object appearances on Riemannian
manifolds, another is for velocity vectors in tangent planes
of manifolds. The key difference of our method as compared
with most existing Riemannian manifold tracking methods
is to compute the Riemannian mean from a set of particle
manifold points at each time instant rather than using
a sliding window of manifold points at different times.
Next to that, we propose to use Gabor filter outputs on
partitioned sub-areas of object bounding box as features,
from which the covariance matrix of object appearance is
formed. As an application example, the proposed online
learning is employed to a Riemannian manifold object
tracking scheme where tracking and online learning are
performed alternatively. Experiments are performed on
both visual-band videos and infrared videos, and compared
with two existing manifold trackers that are most relevant.
Results have shown significant improvement in terms of
tracking drift, tightness and accuracy of tracked boxes
especially for objects with large pose changes.

Keywords: manifold online learning, visual object
tracking, infrared object tracking, Riemannian mani-
fold, covariance tracking, Gabor features, bounding box
partition.

1. Introduction
Online learning for estimating time-evolving stochastic

processes is an important research issue in signal process-
ing and computer vision. One of the main tasks for on-
line learning is to estimate current statistics, parameters or
states of a non-stationary system or object from new obser-

vations. In the context of online visual tracking that does
not have the opportunity of offline training, online learn-
ing of visual object appearance must be robust to the object
intrinsic parameters (e.g. pose variation, shape deforma-
tion) and resilient to the extrinsic (e.g. illumination, cam-
era motion, viewpoint and occlusion) variations using some
previous tracked frames. Many techniques have been pro-
posed for adaptively learning the appearance changes of
visual objects in videos, for examples, using incremental
learning in vector space with a sample mean update [1, 2],
or exploiting manifold learning where a moving object is
considered as a point moving on a smoothed curved sur-
face whose motion is described by the corresponding vec-
tors in the tangent planes [3, 4, 5]. Since manifold learning
uses different sets of subspaces to describe a moving object,
and planar video objects actually reside in nonlinear spaces
or smoothly changing spaces [6], manifold learning tech-
niques may generate much more robust results as compared
with that of linear learning techniques.

Many applications in image or video processing involve
the inference on positive symmetric matrices, for instance,
using covariance matrices for character recognition or en-
coding of Diffusion Tensor Imaging (DTI) along principle
diffusion directions. The space of n × n non-singular co-
variance matrices of object features (or, Symmetric Positive
Definite (SPD) matrices) can be formulated as connected
points on the Riemannian manifold. The Log-Euclidean
as well as affine invariant metrics [7, 8] provide a frame-
work for generating statistics on the Riemannian manifold.
Numerical results of both metrics are similar, however, the
first metric has a simpler form of distances and Rieman-
nian means as compared with the second one that has no
closed form solution for the Riemannian mean. [4] proposes
a method that uses covariance matrices of object features for
visual tracking. [9] uses an exhaustive search and a distance
measure for finding the best matching where model updat-
ing is performed using Lie group structures on the SPD
Riemannian manifold. The method may track objects with
moderate pose changes however significant pose changes
remain a challenging task. Other covariance tracking ap-
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proaches are also proposed, e.g. [10] uses particle filters
(PFs) [11] and an affine invariant metric [8] on a SPD Rie-
mannian manifold for finding the similarity of covariance
matrices and tracking the location, width and height of ob-
ject bounding box. [12] incrementally learns the covariance
matrix by a Log-Euclidean metric [7] on a SPD Riemannian
manifold and particle filters (PFs) to track the central loca-
tion and scale parameter of object bounding box. None of
these methods simultaneously estimate affine bounding box
parameters and online learning of the covariance matrices.
[13] employs a Log-Euclidean metric on a SPD Riemannian
manifold for tracking affine box parameters of moving ob-
ject. It incrementally learns the eigen object representation
in tangent planes of SPD Riemannian manifold. [14] pro-
poses a head pose estimation approach by using covariance
matrices of object features and a nearest centroid classifier.

More work on manifold tracking have been reported,
e.g., [3] uses conjugate gradient and Newton’s method for
subspace tracking on Grassmann and Stiefel manifolds and
applied to orthogonal procrustes; [15] proposes piecewise
geodesics on complex Grassmann manifolds using projec-
tion matrices for subspace tracking where simulations were
performed on synthetic signals from an array of sensors.
[16] proposes visual tracking by applying a Kalman filter to
the velocity of basis matrix in the tangent plane of Grass-
mann manifold. [17] utilizes PFs on the Riemannian man-
ifold to estimate the target position and time-varying noise
covariance with simulations on trajectories of 2D point tar-
gets. [5] proposes nonlinear mean shift on Riemannian
manifolds for image segmentation and nonlinear filtering.
[18] proposes a Kalman filter on SPD Riemannian mani-
folds for visual object tracking. [19] uses an offline mani-
fold training strategy from a face dataset containing differ-
ent poses and subsequent online learning of local linearity
of an appearance manifold by PFs with a coarse-to-fine fac-
torized sampling [20].

These methods show rather promising results for video
scenarios under certain constraints (e.g. moderate pose
changes). Despite these efforts, tracking 2D planar objects
from videos containing significant pose changes remains an
open and challenging issue. One of main reasons is that
these Riemannian manifold methods estimate an object ap-
pearance at current time from a Riemannian mean using a
set of manifold points within an observation window. Al-
though this reduces the computations, it leads to less accu-
rate appearance learning when the underlying object model
changes significantly during the window of new observa-
tions, and the estimated mean manifold point may deviate
from the true location.

To tackle the problem, we propose a new scheme in Rie-
mannian manifolds where the posterior manifold point is
estimated at each new observation rather than using the Rie-
mannian mean from a window of observations in the con-

ventional Riemannian manifold learning. The rationale be-
hind the proposed method is that given a new observation
on a Riemannian manifold and previous tracked object, a
particle filter is utilized to generate a set of particle points
on the manifold. The particles are generated on the mani-
fold by using a dual model (where both the covariance ma-
trix (on the Riemannian manifold) and the velocity vector
(in the tangent plane) are included as the state vector of
the model) from the previous manifold point. Likelihood is
computed from predicted manifold particle points and the
current observation. From these, a posterior estimation of
manifold point is obtained as the weighted sum of manifold
particles by using the Log-Euclidean metric. In this way,
the posterior manifold point is obtained at each time instant
through modeling object dynamics as piece-wise geodesics
on the manifold. Although there were similar strategies on
the Grassmann manifold [16], our method is different as it
is defined on Riemannian manifolds where the spaces of
symmetric positive definite matrices are defined, this also
leads to using a set of new equations due to different mani-
folds. The detail of the proposed online learning method is
described in Section 3.

2. Geometry of SPD Riemannian Manifolds
and Particle Filters

This section briefly reviews Riemannian geometry on the
space of symmetric positive definite (SPD) matrices. We
review the mapping functions between Riemannian mani-
fold points and their tangent planes, distance metrics, Rie-
mannian mean, and particle filters (PFs) that are used in the
subsequent sections. For simplifying the notations, we de-
note Symm+

n as the space of n × n SPD matrices on a Rie-
mannian manifold, M as the Riemannian manifold, and T
as tangent planes of Riemannian manifold in the remaining
part of this paper.

2.1. Riemannian Geometry

The space of Symm+
n lies on a Riemannian manifold that

constitutes a convex-half cone in the vector space of matri-
ces. The derivative at a point on M lies in the T which is a
vector space formed by symmetric matrices, not necessarily
Symm+

n . Two Riemannian metrics, affine-invariant metric
and Log-Euclidean metric [7, 8] are frequently used to com-
pute the statistics on Symm+

n . Numerical results of both Rie-
mannian metrics are similar, however, Log-Euclidean met-
ric is computationally efficient and computation of mean
points on M has a closed form [7, 8, 5].
Exponential mapping function (T → M): The exponen-
tial mapping function maps a tangent vector to a point on
a manifold. Given a point P (i.e., a starting point P(t=0))
on the manifold M and the corresponding tangent vector ∆
in the tangent plane T , (1) maps the tangent vector along
the geodesic to yield the end point Q on the manifold at



the unit time, i.e. Q = P (1). The exponential map [5] for
Log-Euclidean metric is given by:

expP (∆) = exp(log P + ∆) (1)

Logarithmic mapping function (M → T ): The logarith-
mic mapping function maps a manifold point to a vector
in the tangent plane. Given two points P , Q on M, (2)
results in a velocity vector ∆ in T corresponding to the
geodesic from P to Q on M. The logarithmic map [5] for
Log-Euclidean metric is given by:

∆ = logP Q = log Q − log P (2)

Geodesic: The shortest distance between two points on a
manifold is called geodesic. Given two points P , Q on M,
the geodesic under Log-Euclidean metric is given by [5]:

D(P,Q) = ‖ logP Q‖2 = ‖ log Q − log P‖2 (3)

Riemannian mean: is the expected value of a set of points
on M. Given a finite number of points Pt at different time
instant, t = 1, · · · , N , on M, the expected value or the
mean of the Log-Euclidean metric is given by:

ELE(P1, · · · , PN ) = exp

(
1
N

N∑
t=1

log Pt

)
(4)

Computing the mean in (4) implies mapping the points on
M to the tangent space T by using the log operator, fol-
lowed by the mean in T , and then mapping the result back
to M using the exponential mapping function. It is worth
noting that the above Riemannian mean (either under Log-
Euclidean metric or affine invariant metric) is defined over
a time window of manifold points.
Remarks: For the affine invariant metric, the associated ex-
ponential mapping, logarithmic mapping and geodesics can
be found in [8].

2.2. Particle Filters

Particle Filter (PF) tracking, as a recursive Bayesian esti-
mation, is formulated through estimating the posterior prob-
ability of state vector using the rule of propagation of state
density over time,

p(st|z0:t) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|z0:t−1)dst−1

(5)
where st is the state vector at time t, z0:t is the observa-
tions (image pixels with the bounding box) up to t. Using
the weighted sum of randomly generated samples or parti-
cles drawn from a proposal distribution q, the posterior pdf
estimate is approximated as:

p(st|z0:t) ≈
∑

i

ωi
tδ(st − si

t) (6)

where si
t is the ith particle, wi

t is the weight,
∑

i ωi
t = 1,

i = 1, · · · , Np is the total number of particles.

3. Proposed Online Learning on a Riemannian
Manifold under the Bayesian Framework

To formulate the Bayesian online learning on a Riemannian
manifold, the proposed scheme exploits the stochastic pro-
cess on Riemannian manifold as a piecewise-geodesic curve
with random velocities at individual pieces by using a priori
model and an observation model. The prior is a Markov pro-
cess generated by independent and identically distributed
(i.i.d) increments, and the observations are obtained from
the previous tracking. Fig.1 shows the block diagram of the
proposed online learning scheme.

Figure 1. The proposed online learning on the Riemannian Manifold un-
der the Bayesian framework. The notations Cj

t−1, C̃j
t , C̃

(obj)
t , Ĉt denote

candidate object appearance covariance at t and (t+1), tracked object ap-
pearance at t and (t+1), respectively.

The basic idea behind the proposed learning method is to
use a dual model where the state vector contains two vari-
ables: One is the point on Riemannian manifold (i.e co-
variance matrix Ct of object appearance described by the
features in the partitioned image sub-regions within object
bounding box), and another is the velocity vector ∆t of the
manifold point in the tangent plane. The dual model maps
the manifold points to the tangent plane, predicts a new ve-
locity vector by using the constant velocity model and then
maps the results back to the manifold. It is worth emphasiz-
ing that the proposed scheme is significantly different from
the conventional covariance online learning/tracking meth-
ods in terms of estimating new manifold point. In the con-
ventional methods, each new manifold point is obtained us-
ing a Riemannian mean over a set of manifold points from
a sliding time window [t−N + 1, · · · , t]; while in the pro-
posed scheme, the Riemannian mean is computed over a set
of particle manifold points generated in a same time instant
t. In our proposed scheme, a previously tracked Ct−1 and
its corresponding velocity vector ∆t−1 are treated as prior
estimates. A particle filter is applied in the manifold where
a set of particles Cj

t−1 (or, corresponding ∆j
t−1) are gen-

erated for each Ct−1. The likelihood (or, conditional pdf)
is computed by using the geodesic between the current ob-
servation C̃

(obj)
t and the predicted manifold points C̃j

t . The
posterior manifold point Ĉt (i.e., online learned object ap-
pearance) are then estimated from weighted particles using
the equivalent operation on the manifold, detailed as fol-
lows:



3.1. The Dual Model

Two dynamic models, one is in the tangent plane, and an-
other is on the manifold, are formed as follows:{

∆t = ∆t−1 + V1

Ct = expCt−1
(∆t)

(7)

The first equation in (7) is a dynamic appearance model de-
fined in the tangent plane under a constant velocity assump-
tion, where V1 is zero-mean white noise. The 2nd equation
in (7) is the dynamic appearance model where two manifold
points of successive time instants are related by mapping
the velocity vector ∆t in the tangent plane to the manifold
with the origin as the previously tracked object point on the
manifold Ct−1.
A particle filter is applied on the Riemannian manifold to
generate candidate points (or, particles) Cj

t j = 1, · · · , N1,
N1 is the number of particles. Let Cj

t−1 be the previous
manifold particle point at t−1 and ∆j

t−1 be the correspond-
ing velocity particle that connects (Cj

t−2, C
j
t−1) where Cj

t−1

is on the end point of the geodesic starting from Cj
t−2. The

predicted velocity particles ∆j
t are generated according to

the first equation in (7), where σ2
V1

is the noise (σ2
V1

= .0001
in our tests). Newly predicted manifold points Cj

t are then
obtained by mapping ∆j

t according to the second equation
in (7). This prediction procedure is summarized by the fol-
lowing pseudo algorithm:

Table 1. Pseudo algorithm for the prediction
Given: Covariance matrix Ct−1 and corresponding velocity vector
∆t−1 from tracked object at (t-1);
Generate: particles Cj

t−1 and the corresponding ∆j
t−1;

for particle j = 1, · · · , N1 do:
1. For each ∆j

t−1, generate ∆j
t according to

∆j
t = ∆j

t−1 + V1 in (7);
2. For each ∆j

t , calculate C̃j
t according to

C̃j
t = exp

C
j
t−1

(∆j
t ) in (7);

end{j}

3.2. Likelihood

It is modeled as the Gaussian distribution of Log-Euclidean
geodesic d(C̃(obj)

t , C̃j
t ) between the current observation and

predicted particles as:

p(C̃(obj)
t |C̃j

t ) = exp

{
−d(C̃(obj)

t , C̃j
t )

σ2
l

}
where σ2

l is the measurement noise (σ2
l = .1 in our tests)

and

d(C̃(obj)
t , C̃j

t ) =
∥∥∥log

C̃
(obj)
t

C̃j
t

∥∥∥
2

= ‖ log C̃j
t −log C̃

(obj)
t ‖2

The likelihood is then assigned as the weights of particles,
i.e., wj

t = p(C̃(obj)
t |C̃j

t ). These weights are then normal-

ized by wj
t = wj

t∑
j wj

t

.

3.3. Posterior Online Learned Manifold Point

Finally, the MMSE estimate of the covariance matrix Ĉt of
object appearance is obtained by applying Log-Euclidean
Riemannian mean on weighted predicted manifold particle
points at time t from the particle filter,

Ĉt = exp

 1
N1

N1∑
j=1

wj
t log C̃j

t

 (8)

where wj
t is the particle filter weights (see Section 3.2).

3.4. Object Features and Covariance Matrix

The object appearance is described by a feature vector
extracted from the image within the bounding box. In our
method, we use Gabor filtered images in partitioned sub-
regions of the bounding box to form the feature vector. Let
the features be a d-component vector f(x, y) for each sub-
region(d = 19 in our tests),

f(x, y) =
[
x, y, I, I1

g , . . . , I16
g

]T
(9)

where (x, y) is the pixel position, I is the image intensity,
Ik
g , k = 1, . . . , 16 are filtered images from 2D Gabor filters

of different orientations and frequencies. The Gabor filter
kernel gf,θ(x, y) is defined by [23]:

gf,θ(x, y) =
1

2πσxσy
exp

[
−1

2

(
x̃2

σ2
x

+
ỹ2

σ2
y

)]
exp(2πifx̃)

(10)
where x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ,
(x, y) denotes the pixel position, f is the center frequency,
θ is the orientation of Gabor filter, while σx and σy are
the spread of the filter along x and y directions. In our
tests, 16 Gabor filters are applied at 4 central frequencies
(fi = 1/3, 1/6, 1/12, /1/24) each having 4 orientations
(θk = kπ/4, k = 0, · · · , 3), and σx = σy = 0.5fi.
The covariance matrix of the object appearance is formed
from the feature vector, similar to [4]), however the dif-
ference is that the covariance matrix consists of L sub-
covariance matrices as the result of partitioning object
bounding box into L sub-regions. For the jth sub-region,
j = 1, · · · , L, a sub-covariance matrix is formed from the
sample average. Cj = 1

M−1

∑M
l=1(fj(l) − µj)(fj(l) −

µj)T , where M and µj are the total number of samples and
the sample mean of the jth sub-region, respectively.
The Log-Euclidean metric on the Riemannian manifold can
be explained as applying the logarithm to the the above sub-
covariance matrix, resulting in log(Cj). Since the covari-
ance matrix and its matrix logarithm are both symmetric,
there are only d × (d + 1)/2 independent values. There-
fore, log(Cj) is represented as a vector of independent
values, i.e. only by the upper triangular part of matrix.
vec(log(Cj)) = [log(cj

1,1), log(cj
2,1), · · · log(cj

d,d)]
T .

Finally, the vector representation of bounding box
region (vec(log(C))) is obtained by concatenat-
ing vec(Cj) over all sub-regions: vec(log(C)) =



[vec(log(C1)) · · · vec(log(CL))]T . In our tests, L=16 (or,
4 × 4) partitioned sub-regions are used.

4. Application to Object Tracking with Online
Learning

In this section, we describe an application that utilizes the
proposed Bayesian-framework based Riemannian manifold
online learning for tracking visual objects from videos that
may contain significant pose changes. In the video object
tracking, online object learning and object tracking are per-
formed in an alternative fasion. Fig.2 shows the block dia-
gram of the integrated online learning and tracking scheme.

Figure 2. Block diagram of the integrated online learning (bottom block)
and tracking (top block) scheme based on the proposed dual model of Rie-
mannian manifold learning. In the block diagram, the tracked object at t is
C̃

(obj)
t , and the posterior online learned object is denoted as Ĉ

(obj)
t .

The integrated tracking scheme consists of a tracking pro-
cess and an online learning process, running in an alterna-
tive fashion. The tracking process is similar in the spirit
to that in [2], where a particle filter is used to estimate the
bounding box parameters, while the object appearance is
embedded as the likelihood of the particle filter (i.e., particle
filter-2). The difference is that the appearance in this tracker
is characterized on the Riemannian manifold using covari-
ance matrices while the object appearance in the tracker of
[2] is defined on a linear space. The bounding box are de-
scribed by a 6-component affine parameters by a state vec-
tor st = [y1

t y2
t βt γt αt φt]T , i.e., 2D box center, scale, ro-

tation, aspect ratio and skew. Particles are generated accord-
ing to the Brownian motion model. The likelihood is then
assigned as the particle filter weight, which is modeled as
the Gaussian-distributed Log-Euclidean distance between
the kth candidate appearance Ck

t and the reference object
appearance from the online learning Ĉt−1. The feature vec-
tor of candidate object appearance and its covariance matrix
Cj is computed using image within each candidate bound-
ing box using the method described in Section 3.4. Finally,
the ML (maximum likelihood) estimate of object bounding
box is computed.
The online learning process is applied to update the refer-
ence appearance model of object, using the covariance ma-
trices of previously tracked object and previous particles of
particle filter (particle filter-1). The process is summarized
in Table 1).

5. Experiments and Results
For testing the effectiveness of the proposed online learning
method, object tracking (with online learning integrated)
from several visual-band and infrared videos with signifi-
cant object pose changes, captured by a moving or a static
camera, are used. The object bounding box in the first frame
is manually marked, and the box is partitioned into M = 16
non-overlapped rectangular sub-regions. Each object box is
normalized to 32 × 32 pixels. For the online learning pro-
cess, N1 = 600 and σ2 = 0.25 are set for the particle filter
PF1; For the tracking process, N2 = 400 and σ2

v2
= 0.001

are set for the particle filter PF2; σ2
l = 0.1 is used.

5.1. Results and Comparisons

Fig.4-9 (Red box) shows the tracking results from six
videos, where the first four videos are captured by a visual-
band camera and the remaining two video by an infrared
camera. To compare the performance of the proposed
tracker with and without online learning, Fig.3 shows the
distance of tracking vs. the frame number from the video
’Danni’(Fig.4). The results show that the major perfor-
mance improvement in tracking is most visible when the
video frame number (or, time) increases. Since object ap-
pearance changes gradually in time, online learning of refer-
ence object distribution has indeed yielded visible improve-
ment in tracking.

Figure 3. Performance comparison: Proposed tracking scheme with on-
line learning versus without online learning for the video ”Danni”.

The proposed scheme is compared with two existing
manifold trackers that are most relevant to our scheme:
(a) Tracker-1 uses covariance-based tracking in [4] (b)
Tracker-2 uses probabilistic tracking on the Riemannian
manifold in [10].

In the first case (Fig.4), a human face is tracked from
a visual-band video where the face has significant pose
change accompanied by rotations, translations and scale
changes. In the second and third case (Fig.5 and Fig.6), car
is tracked from a visual-band video captured by a moving
and static camera respectively in different frames of video.
In the fourth case (Fig.7) tracking is performed on a visual-
band video containing jogging woman with short term oc-
clusion during the course of motion. In the fifth and sixth
case (Fig.8 and Fig.9), the video contains a human face cap-
tured by calibrated infrared (IR) camera and is rather chal-
lenging for tracking due to low contrast and strong thermal



Figure 4. Tracking results from ”Danni face” video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 (Green box); Row-3:Tracker-2 (Yellow Box).

Figure 5. Tracking results from ”Car1” video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 where the results are copied from the figure in [4])
(Green box); Row-3: Tracker-2 (Yellow box).

Figure 6. Tracking results from ”Car2” video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 (Green box); Row-3: Tracker-2 (Yellow Box).

noise.

From the tracking results, one can see that Tracker-1,
tracked areas have often drifted or lost from target objects
due to its inability to follow the orientation changes. For

Tracker-2, the performance is shown somewhat better, how-
ever the box size is often severely deviated from the real
sizes may be due to lack of online learning to adapt ob-
ject appearance change. The proposed method has clearly



Figure 7. Tracking results from ”jogging1” video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 (Green box); Row-3: Tracker-2 (Yellow Box).

Figure 8. Tracking results from ”IR face-1 video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 (Green box); Row-3: Tracker-2 (Yellow Box).

Figure 9. Tracking results from IR face-2 video. Row-1: proposed scheme (Red box); Row-2: Tracker-1 (Green box); Row-3: Tracker-2 (Yellow Box).

provided better tracking. The proposed method has suc-
cessfully tracked target objects through videos, even during
large pose change. This is due to embedding of the up-
dated appearance (learned on the Riemannian manifold) in
likelihood for tracking bounding box shape affine parame-
ters of moving object.The bounding box from the proposed

method is shown to be relatively tight and accurate.

5.2. Performance Evaluation

The Euclidian distance is used to compute the distance
between the 4 corners of tracked object box and the ground
truth box (marked manually with visually acceptable orien-



tation, size, width and height). Fig.10 shows the resulting
distances between the tracked region and the ground truth
region as a function of image frames for 3 different meth-
ods on ”Danni” face video (Fig.4). Comparing the results

Figure 10. Results of Euclidian distances between the tracked and
ground-truth regions for the video ”Danni face” . Red curve: distances for
the proposed tracker; Green curve: tracker-1 (i.e., the covariance tracker in
[4]); Blue curve: tracker-2 (i.e., the probabilistic tracker on the Riemannian
manifold in [10]);

in Fig.10 and from observing the tracking results in Fig.4-9,
the proposed tracker have provided clearly improved track-
ing performance.

5.3. Computation

For the proposed tracker, the average time required for
tracking object in each video frame is 15 seconds using our
Matlab program running in a pc with Intel Xeon CPU 2GHz
and 4 GB RAM.

6. Conclusion
The new Bayesian framework-based Riemannian mani-

fold learning method is shown to be effective and robust in
our tests. Utilizing the dual model and two state variables
enables effective posterior estimates of Riemannian mani-
fold points (i.e. appearance of objects). A key difference
in the proposed method by computing Riemannian mean
from a set of particle manifold points in each time instant
has led to more accurate estimation in the proposed tracker.
Our tests have also shown that Gabor features on partitioned
sub-areas of object bounding box is effective to describe the
appearance of both visual and infrared objects. Applica-
tion of the proposed online learning to video object track-
ing has shown to visibly improve the tracking performance
in terms of reducing tracking drift and tight tracked object
boxes, especially in video scenarios with large object pose
changes. Comparisons and performance evaluations with
two existing and most relevant manifold tracking methods
have shown that our tracker integrated with the proposed
manifold online learning method has achieved more robust
performance. The average speed of the proposed online
learning is about 15 seconds/frame by our Matlab programs
which needs improvement.
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